
Submitted 6 June 2019
Accepted 16 December 2019
Published 6 March 2020

Corresponding author
Alexandre G. de Brevern,
alexandre.debrevern@univ-paris-
diderot.fr

Academic editor
Mohammed Gagaoua

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj.8408

Copyright
2020 Melarkode Vattekatte et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Discrete analysis of camelid variable
domains: sequences, structures, and
in-silico structure prediction
Akhila Melarkode Vattekatte1,2,3,4, Nicolas Ken Shinada1,2,4,5, Tarun J. Narwani1,2,4,
Floriane Noël1,2,4,6,7, Olivier Bertrand1,2,4, Jean-Philippe Meyniel8,
Alain Malpertuy9, Jean-Christophe Gelly1,2,4,10, Frédéric Cadet1,2,3,11 and
Alexandre G. de Brevern1,2,3,4,10

1Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion,
Univ. des Antilles, Paris, France

2 Laboratoire d’Excellence GR-Ex, Paris, France
3 Faculté des Sciences et Technologies, Saint Denis, La Réunion, France
4 Institut National de la Transfusion Sanguine (INTS), Paris, France
5Discngine SAS, Paris, France
6PSL Research University, INSERM, UMR 932, Institut Curie, Paris, France
7Université Paris Sud, Université Paris-Saclay, Orsay, France
8 ISoft, Saint-Aubin, France
9Atragene, Ivry-sur-Seine, France
10 IBL, Paris, France
11Peaccel, Protein Engineering Accelerator, Paris, France

ABSTRACT
Antigen binding by antibodies requires precise orientation of the complementarity-
determining region (CDR) loops in the variable domain to establish the correct contact
surface. Members of the family Camelidae have a modified form of immunoglobulin
gamma (IgG) with only heavy chains, called Heavy Chain only Antibodies (HCAb).
Antigen binding in HCAbs is mediated by only three CDR loops from the single
variable domain (VHH) at the N-terminus of each heavy chain. This feature of the
VHH, along with their other important features, e.g., easy expression, small size,
thermo-stability and hydrophilicity, made them promising candidates for therapeutics
and diagnostics. Thus, to design better VHH domains, it is important to thoroughly
understand their sequence and structure characteristics and relationship. In this study,
sequence characteristics of VHH domains have been analysed in depth, along with
their structural features using innovative approaches, namely a structural alphabet.
An elaborate summary of various studies proposing structural models of VHHdomains
showed diversity in the algorithms used. Finally, a case study to elucidate the differences
in structural models from single and multiple templates is presented. In this case study,
along with the above-mentioned aspects of VHH, an exciting view of various factors in
structure prediction of VHH, like template framework selection, is also discussed.
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INTRODUCTION
Immunoglobulin Gamma (IgG) (see Fig. 1A) is a major component of the immune system
in vertebrates. Members of the family Camelidae have a modified form of IgG, called Heavy
Chain only Antibodies (HCAbs). HCAbs, as their name suggests, are completely devoid of
(i) light chains and (ii) CH1 domain in the heavy chain (see Fig. 1B) (Hamers-Casterman
et al., 1993). Interestingly, the N-terminal domain of each chain of HCAb, named VHH,
is functional when expressed independently. A VHH domain is 20 times smaller than
complete IgG, ranging from 120 to 150 amino acids in length. Each VHH domain (see
Figs. 1C–1E) has only 3 Complementary Determining Regions (CDR) to bind to their
antigens. These loops connect the more structured regions called the Framework Regions
(FR), considered sequentially and structurally well conserved.

Due to the lack of a light chain variable domain (VL), VHH sequences have evolved
to adapt to the hydrophilic environment (Muyldermans et al., 1994), also leading to
higher thermal tolerance (Van der Linden et al., 1999; Stefan et al., 2002). Additional
topological advantages of VHH include convex shaped CDR3 found in VHH that bind
to enzymes (Muyldermans, 2013), to access epitopes which are otherwise inaccessible to
classical antibodies. The small size, ease of expression, unique biochemical and biophysical
properties of these domains made them (Nabuurs et al., 2012) appealing tool for applied
biotechnology, healthcare therapeutics and diagnostics. For instance, VHH domains
can cross the blood–brain barrier (Rutgers et al., 2011; Nabuurs et al., 2012) or penetrate
tumour core, helping in non-invasive screening of tumours (Massa et al., 2014; Rashidian
et al., 2015). AbLynx R© (Ablynx, 2016) had developed a VHH against acquired Thrombotic
Thrombocytopenic Purpura which was successful in clinical trials (Peyvandi et al., 2016),
and is patented under the name Caplacizumab in Europe.

In their 2017 study, Zuo and co-workers (Zuo et al., 2017) found more than 2,300
sequences of VHH domains, but 90% in patents and only 74% in PDB structures. With
the availability of huge numbers of VHH sequences in the large majority of the proteins,
it is interesting and essential to predict models of VHH domains, to understand their
binding and specific properties. In 2010, our lab proposed the first structural model using
comparative modelling of a VHH have been designed against ACKR1 (Smolarek et al.,
2010b). Since our study, 21 investigations have used in silico structure prediction of VHH,
to either understand structural features or to understand the interactions between VHH
and its ligand using the molecular docking summarised in Table S1.

The most common approach to protein 3D structure prediction using template-based
modelling is comparative modelling. The principle is to build the structural model of a
query protein sequence using the structure of a homologous protein as a template. In case
of comparative modelling of variable domains of IgGs, peculiar challenges arise, which are:
(i) the presence of interspersed amino acid regions with varying sequence conservation,
(ii) hypervariable regions showing high diversity in length and in conformation and (iii)
prediction of the inclination angle between the VH and the VL domains which determines
the antigen-binding interface. For VHH, the third criterion does not apply, but the CDR3
loop is longer and is more conformationally diverse compared to its VH counterparts.
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Figure 1 IgG and HCAb. (A) IgG schematic representation with heavy chain (domains VH, CH1,
CH2 and CH3) and light chain (domains VL and CL) and (B) Heavy Chain Only Antibodies (HCAbs),
schematic representation with domains VHH, CH2 and CH3; (C) 2D representation of Immunoglobulin
fold of VHH domain with demarcated Framework Regions (FRs) and Complementarity Determining
Regions (CDRs), loop lengths are approximated for representation purposes. FR1 is composed of
β-strands A1, A2 and B, FR2 is composed of β-strands C and C′, FR3 of 4 β-strands C′′, D, E and F, FR4
end the VHH sequence by last β-strand, G. (D) 3D cartoon representation of VHH (PDB ID: 1BZQ chain
K (Decanniere et al., 1999) and (E) 90◦ rotation of the same with the CDRs coloured.

Full-size DOI: 10.7717/peerj.8408/fig-1

Antibody Modelling Assessment group (AMA) has held two assessment meetings in
2011 and 2014 to rank different methodologies such as the Dassault Systèmes BIOVIA
(Fasnacht et al., 2014), RosettaAntibody (Sircar, Kim & Gray, 2009), Schrödinger R©(Beard
et al., 2013; Zhu et al., 2014; Salam et al., 2014), PIGS (Marcatili, Rosi & Tramontano, 2008)
and KotaiAntibody (Yamashita et al., 2014). Most of them use hybrid modelling, which
is to model CDR loops separately (by comparative modelling or ab-intio) and using
comparative modelling for FR. Since only VH/VL from IgGs were used, the protocols tested
by AMA may not be extrapolated to VHH structure prediction. Although some of these
methods are capable of modelling VHH, most of the VHH structures in our survey used
classical comparative modelling protocols.

Another important point is that VHH topology may seem simple with a conserved
immunoglobulin fold composed of ‘‘conserved’’ FRs and a reduced number of CDRs; the
complexity arising due to longer CDR1 andCDR3 contribute to non-trivial task of structure
prediction. We have shown the crucial choice of the structural template (Smolarek et al.,
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2010a) that can lead to a totally different orientation of the CDRs. No study has summarised
the different approaches since our study, or possible limitations and biases. Our work is
intended to make a contribution in this area. The present paper provides an update on
(i) different sources of information on VHH sequence and structures, (ii) global and local
properties of VHH sequences and structures, (iii) different methods used in 3D structure
prediction, and (iv) drawbacks of the most frequently used prediction protocol. The main
goal of this paper is to provide useful findings to researchers interested in analysing VHH
domains and its structure prediction.

MATERIALS AND METHODS
Datasets
VHH (nanobody)sequences were obtained from NCBI Genbank (Benson et al., 2005)
(https://www.ncbi.nlm.nih.gov/genbank/) and Uniprot (Boutet et al., 2016) (http:
//www.uniprot.org/). VHH structures were taken from the Protein Databank (PDB, https://
www.rcsb.org/pdb/home/home.do) (Berman et al., 2000). This dataset was put together by
March, 2018. Sequences were aligned using Clustal Omega v1.2.1 (http://www.clustal.org)
(Sievers et al., 2011) and using Jalview v.2.10 (http://www.jalview.org) (Waterhouse et al.,
2009), and analysed usingWebLogo (Schneider & Stephens, 1990;Crooks et al., 2004). CDRs
were analysed using PyIgClassify classification (http://dunbrack2.fccc.edu/pyigclassify/)
(Adolf-Bryfogle et al., 2015) (described in greater detail below).

Comparative modelling of VHH
Modeller.9v.16 was used in the study to model VHH. Briefly, an alignment file in the
prescribed format of the query with the desired template(s) is generated. From this
alignment, the algorithm derives spatial restraints or probability density functions for
each residue to be modelled. 3D model(s) of the query protein are obtained with the
optimisation of the input restraints. The best structural model is selected with best DOPE
score (Shen & Sali, 2006;Melo & Sali, 2007).

In the study case, two different scenarios were used: (i) 4 templates were used to propose
a multi-template approach and (ii) individual templates were used, leading to five distinct
cases. In each case a total of 100 models were generated and were ranked using DOPE
score.

Assessment of structural similarity and disulphide bridge
conformations of VHH domains
The most popular method to evaluate similarity is the distanc-based similarity measure
Root Mean Squared Deviation (RMSD); it is calculated by the averaging of distances
between n-pairs of equivalent atoms. It can be applied to a whole protein or a subset of
specified equivalent atoms from two proteins. It must be noted that RMSD value takes only
into account equivalent residue, i.e., it is not appropriate when the segments are of different
lengths. RMSD was computed with ProFit (http://www.bioinf.org.uk/programs/profit/)
that is based on the McLachlan algorithm (McLachlan & IUCr, 1982) and iPBA
(http://www.dsimb.inserm.fr/dsimb_tools/ipba/) (Gelly et al., 2011); this last also provides
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Global Distance Test Total Score (GDT-TS) values (McLachlan & IUCr, 1982; Zemla,
2003).

A recent classification of disulphide bridges (Schmidt, Ho & Hogg, 2006) includes 20
kinds of disulphide bonds based on the signs of the five dihedral angles between the Cα
atoms of any two cysteines involved and the Dihedral strain energy. For example, the sign
pattern ‘- - - - - -’ indicates that all the dihedral angles χ1, χ2, χ3, χ ‘1, χ ‘2 between the
two C α atoms Cys and Cys’ have negative values.

Local conformational analysis
Secondary structures were assigned with the most widely used algorithm, namely DSSP
(CMBI version 2000) with default parameters (Kabsch et Sander 83). Protein Blocks (PBs)
were also used. PBs are a structural alphabet composed of 16 local prototypes (Joseph et
al., 2010) five residues in length. PBs give a reasonable approximation of all local protein
3D structures (de Brevern, Etchebest & Hazout, 2000) and are very efficient in protein
superimpositions (Joseph, Srinivasan & de Brevern, 2012) and MD (Molecular Dynamics)
analyses (de Brevern et al., 2005). They are labelled from a to p. PBsm and d can be roughly
described as prototypes for α-helix and central β-strand, respectively. PBs a to c primarily
represent β-strand N-caps and PBs e and f represent β-strand C-caps; PBs g to j are specific
to coils; PBs k and l to α-helix N-caps, while PBs n to p to α-helix C-caps. PB (de Brevern,
2005) assignment was carried out using our PBxplore tool (available at GitHub) (Barnoud
et al., 2017).

The equivalent number of PBs (Neq) is a statistical measurement similar to an entropy
index. It represents the average number of PBs for a residue at a given position which is
calculated as follows (de Brevern, Etchebest & Hazout, 2000):

Neq= exp

(
−

16∑
x=1

fx Infx

)
(1)

Where, fx is the probability of PB x. A Neq value of 1 indicates that only one type of PB is
observed, while a value of 16 is equivalent to a random distribution.

To detect a change in PBs profile, a 1PB value was calculated. It corresponds to the
absolute sum of the differences for each PB between the probabilities of a PB x being
present in the first and the second structures (x goes from PB a to PB p).1PB is calculated
as follows:

1PB=
16∑
x=1

|(f 1x − f
4
x )|. (2)

Where, f 1x and f 2x are the percentages of occurrence of a PB x in the analysed structures.
A value of 0 indicates perfect PB identity, while a score of 2 indicates a total difference.

The change in PB entropy at given position between two different sets of structures
analysed is denoted using 1Neq which is calculated as the following:

1Neq= |Neq1−Neq2|. (3)
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PyIgClassify database
CDRs support most of the interactions with the epitope. Different classifications have been
proposed to analyse them (Chothia & Lesk, 1987; Martin & Thornton, 1996; Al-Lazikani,
Lesk & Chothia, 1997; Shirai, Kidera & Nakamura, 1999). The most recent classification
of CDRs was proposed by North and co-workers (North, Lehmann & Dunbrack, 2011).
The AHo numbering scheme (Honegger & Plückthun, 2001) was used by the authors to
enumerate the residues in variable domains. The clusters are regularly updated and are
made available through the PyIgClassify database (http://dunbrack2.fccc.edu/PyIgClassify/)
(Adolf-Bryfogle et al., 2015). All the CDRs except CDRH3 are included in the classification.
The classified CDR loop conformations are based on the (a) type of CDR, (b) length of the
CDR loop, and (c) affinity-propagation clustering method (Frey & Dueck, 2007), using a
dihedral angle distance function was used to group CDRs. The clusters are grouped into
three categories, (1) Type I, i.e., one cluster CDR-lengths, (2) Type II, i.e., predictable
CDR-lengths, and (3) Type III, i.e., unpredictable CDR-lengths. According to the authors,
CDR H1 (i.e., CDR1 for VHH) falls into the Type II category, where the CDR-length
combination has multiple possible structures. CDR H2 (i.e., CDR2 for VHH) falls under
Type I, the one-cluster CDR-length. Since Protein Blocks are descriptors of local backbone
conformations, they have also been used to analyse the conformations of dense clusters,
which include VHH.

RESULTS
Sequence datasets
Uniprot contains a limited number of VHH annotated sequences (only 9), while 245
are retrieved from Genbank. In the latter, the majority of VHH domains (233) are from
Camelids. In the PDB, 140 VHH structures were available at the time of dataset generation.
Sequences from PDB and Genbank were combined to constitute a master dataset of
373 sequences. After removing the redundant sequences at >95% sequence identity, 325
representative sequences were selected (see Dataset S1). It is the largest sequence dataset
ever used to analyse VHH domains. Our study focuses on VHH domains, since others have
compared a more limited number of sequences (90) and always compare with VH as a
priority (Mitchell & Colwell, 2018b).

Multiple sequence alignment
A first step in the analysis of a specific protein family is to look at amino acid sequence
characteristics using a multiple sequence alignment (MSA). Such an alignment was
generated with sequence dataset using Clustal Omega (see Fig. S1). Figure 2 shows the
analysis of this MSA represented as a sequence logo, where residue conservation at each
position was calculated as information content (bits). As expected, FR positions strikingly
appear as conserved sequence blocks evidenced by high bit scores. The interspersed CDRs,
on the other hand, have less information content in terms of bits. This is mainly due to
inherent sequence variability. Results are in good correspondence with the recent analyses
of Mitchell & Colwell (2018a), but show more information in terms of bits for the CDRs
than this study. This can be due to the use of an alignment tool that can provide less efficient
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Figure 2 Sequence conservation. Sequence logo representation of multiple sequence alignment of com-
plete dataset of VHH sequences. The relative frequency of amino acids at each position is shown here as
sequence logo. The residues are colour coded according to their chemical properties. The residue posi-
tions are not in accordance with the numbering systems, sequence alignment creates a longer length than
canonical VH.

Full-size DOI: 10.7717/peerj.8408/fig-2

alignment in variable regions, or simply to a larger number of analysed VHH domains,
since both free and complexed forms are studied. For the first time, this analysis was also
performed for each genus (see Fig. S2 for a summary and Figs. S4–S5 for complete sequence
profiles). Interestingly, even with the divergence of species, sequence conservation also
shows similar conservation for all the different regions with no significant differences.

VHH sequences have a median length value of 123 amino acids (aa) with minimal and
maximal length of 109 aa and 137 aa, respectively (see Fig. S6). The amino acid length
distribution in different regions of VHH (see Fig. S7) shows diversity in CDR lengths,
especially in CDR3. The median values for CDR lengths are 8 aa, 8 aa and 16 aa for
CDR1, CDR2 and CDR3, respectively. The average length of CDR3 in VHH is higher than
conventional human or mouse VH sequences (Muyldermans et al., 2009). However, an
important point is that FRs are not of absolute invariant length: FR1 is 25 aa in length, FR2
is 18 aa, and FR3 is 37 aa, but with some differences of 2–3 residues. These differences are
often forgotten, i.e., in the recent (Mitchell & Colwell, 2018a; Mitchell & Colwell, 2018b)
studies, but must be taken into account, or else the analyses could be biased.

The pairwise sequence identity between sequences in the dataset has a median value of
62% and is always above 35% (see Fig. S8A). Thus, it can be considered a relevant case for
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homology modelling. The variability of amino acids is not constant in these domains. FRs
are more conserved, with sequence identity 84, 72, 81 and 90% (median values) for FRs 1,
2, 3 and 4, respectively (see Figs. S8E–S8H). In the case of CDRs, low sequence identities
are observed (below 30%); CDR3 is the lowest with 18%, followed by CDR2 with 25% and
CDR1 with 28% (see Figs. S8B–S8D). These results also underline why it is so important to
keep a high sequence threshold for building of the dataset, since FRs are highly redundant.
Hence, a threshold of 30% would have selected only one VHH.

Sequence characteristics
At the time of their discovery, VHH sequences were known to have unique amino acid
substitutions in FR2 (Vu et al., 1997) compared to VH found in camelids at positions
V42F/Y, G49E/K, L50R/C, W52G/L (IMGT R© numbering scheme, see Fig. S1). It was
thought that there is a single type of VHH germline sequence, which has sequence similarity
to Clan III of VHgermline sequences from humans. However, the discovery of VHHwithout
this tetrad added exceptions to the former theory. These VHH domains are assumed to
be derived from a different clan similar to Clan II of VH of human germline sequences
(Deschacht et al., 2010), and represent 23 sequences (8 from PDB and 15 from NCBI
Genbank). Hence this new analysis underlines that the amino acid substitutions of VHH of
FR1 and FR2 are entirely non-specific: (a) V(F/Y) also has V at the alignment position 51
in Fig 2.3, in 20% of cases, (b) in G(E/K), E is majority, but K is not found in our dataset
and D can be also found (no G at all) at position 58, (c) in L(R), R is majority at position
59, but in a few cases L is found, like for classical VH, and finally (d) W(G/L) alignment
position 61 is explicit, since G and L represent 50% of the residues while F represents the
rest, with VH typically another aromatic W. It is the same thing with L11S, where S is found
in 1/3 of the cases and the rest is L –supposedly not typical.

A second kind of unique characteristics are those of the Cystine residues. The conserved
Cys23 (FR1)/Cys104 (FR3) disulphide bond is observed in all the variable regions
irrespective of the type of chain or species (highlighted in green in Figs. S1). Some of
the camelid VHH sequences are known to possess an additional disulphide bond between
CDR3 or CDR1, CDR3 or CDR2/FR2. In sequences from llamas and camels (see Figs. S3,
S4) the presence of an extra cysteine in CDR3 is compensated by another cysteine in CDR1
or CDR2 or CDR2/FR2 boundary. In case of VHH from llama, 8 out of 68 structures from
PDB show this signature, whereas in camels this number is slightly higher, with 15 out of
34 structures from PDB. In the case of VHH sequences from alpacas, this extra cysteine
bond is formed between cysteines of CDR3 and FR2/CDR2 boundary with 3 out of 11
structures from PDB (see Figs. S5).

Structural analysis of VHH domain
Asmentioned previously, VHHadopts the immunoglobulin fold formed by the anti-parallel
arrangement of 9 β-stands connected by loops. Each VHH domain has three CDR loops.
The fold is held together by the inter strand hydrogen bonds and disulphide bond(s).
The conserved disulphide bond is between Cys23 of FR1 and Cys104 of FR3 (IMGT
numbering). In few cases the presence of a second disulphide bond is also observed, which
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Figure 3 Secondary structural profile of the 105 VHH domains. The eight classes of DSSP elements are
colour coded in the Figure legend. The symbols are E for extended conformation, (b-strand from b-sheet,
T for hydrogen bond turn, S for bend, B for isolated b-bridge, G for 310-helix, H for a-helix, I for p-helix,
and ‘-.’ for coils. The different β-strands that form the FRs are indicated above in red: from left to right are
the β-strands A, A′, B, C, C′, C′′, D, E, and F. The X-axis represents the numbering in the alignment.

Full-size DOI: 10.7717/peerj.8408/fig-3

is known to increase the overall stability in the respective VHH structures (Zabetakis et
al., 2014). A non-redundant set of 105 VHH domains was assessed for structural domain
similarity, using RMSD. The median RMSD value for the whole domain was at 2.63 Å
(Figs. S9A–S9H), all the FRs showed a median value <0.8 Å (Figs. S9E to S9H), while they
rose to 2.01, 1.56 and 3.51 Å for CDR1, CDR2 and CDR3 respectively (see Figs. S9B to
S9D).

Secondary structure analysis of VHH domain
At a more local conformational level, Fig. 3 is a representation of the secondary structures
when aligned as per sequence-aligned positions. The nine conservedβ-strands (in alignment
positions 3–7, 10–13, 18–26, 44–50, 58–62, 85–90, 95–99, 109–119, 144–148) can easily
be observed. The CDR regions represented in the alignment at positions 29-41, 64-75 and
116-139, are mainly associated with turns, bends and coil secondary structure elements
(SSEs). Interestingly, the connecting loops between some β-strands, encompassed in FRs,
are composed of turns, bends and helical SSEs, i.e., positions 13–17 in FR1, 51–59 in FR2,
78–84, 91–94 and 100–108 in the FR3 region. This suggests some of them have different
backbone constraints compared to the rest. The middle region of FR4 is an interesting
region with almost all coils, which are the irregular SSEs for alignment positions 140–143.

The noteworthy point in the analysis of the different canonical β-strands that are in FRs
is that some are close to pure β-strands such as β-strand F (for which it is 99%), but formost
of them some positions supposed to be only β-strands are not. They are mainly N-terminus
first residue(s). For instance, the first position of β-strand A1 is only 70% for β-strand; it
is 80% for β-strand C or A2. The most striking case is the C-terminus of β-strand F for
which many residues are either β-strand or β-turns, i.e., clearly different types of local
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conformations. These results (i) are in concordance with previous analyses using PBs
(Noël, Malpertuy & de Brevern, 2016), and (ii) show that FRs are not as conserved in terms
of secondary structure, i.e., this finding can so have a direct impact on the proposition of
structural models.

Analysis of disulphide bond geometry in VHH domains
An additional disulphide bridge is present in some VHHdomains along with the conserved-
canonical disulphide bond between Cys 23 and Cys 104 (IMGT numbering system). These
additional disulphide bridges were observed between Cysteine residues found (i) CDR1
and CDR3, namely type 1, (ii) FR2 and CDR3, namely type 2 and (iii) both in CDR3 (see
Figs. S10 to S10C for schematic representation). In our initial dataset, 25 VHH domains
were observed to have the type 1 (12 VHH domains) and type 2 (13 VHH domains)
additional disulphide bridges. Figure 4 illustrates their position in VHH structure, with
both types involved in bending CDR3 onto the β-sheet surface.

Using a recent classification of disulphide bridges (Schmidt, Ho & Hogg, 2006) (see
Material andMethods section and Figs. S11 for schematic representation) we have analysed
the geometry of disulphide bonds in subset of VHH structures which contain two disulphide
bonds. The sign pattern of the canonical and the additional disulphide bonds of both types
have been characterized (see Table S3). The greater the number of negative values a dihedral
angle pattern has, the lower is the strain energy, suggestive of a stable disulphide bond.
Although, the canonical disulphide bond is conserved in terms of position of cysteines, the
sign pattern of the dihedral angles varies muchmore compared to the additional disulphide
bond which is surprising. Interestingly, most of the additional disulphide bonds all have
negative sign patterns, suggesting a lower energy bond which might increase stability.
Two VHH domains (PDB id 1YC8 from type 1 and 4Y7M from type 2 class in Table S3)
have the dihedral angle pattern characteristic of allosteric disulphide bonds according to
the classification. This analysis shows that both canonical and the additional disulphide
bridges do not play a simple structural role, as many are not favourable, and can be or are
associated to functional roles of VHH domains.

Analysis of local conformations of CDR1 and CDR2
The CDR1 region is defined between the first conserved cysteine (Cys 22) and the conserved
tryptophan (Trp 41). The recent PyIgClassify database has 30 clusters of CDRH1 and 19 of
these clusters have VHH structures. Out of the 19 clusters, 13 are very sparsely populated in
VHH structures (<10 structures). Clusters H1-13-1, H1-13-3, and H1-13-5 were analysed,
as they were associated to a correct number of occurrences (>20 structures). PB analyses of
these clusters show variations in PB assignment in the CDR1 region (see PB frequencymaps
in Figs. 5A to 4C). The residue region from 21 to 33 is the CDR1 according to PyIgClassify.
The PB motif includes 3 residues flanking the CDR1, representing the transition from
the β-strand region represented by PB d to loop and back to β-strand. The first cluster
(H1-13-1, see Fig. 5A) has 21 out of 37 (57%) structures sharing a strict common PB
signature ddddehiafklpccdddddd ; the remaining structures of this cluster are close to this
PB series as shown with low Neq (see Fig. 5G). The highest Neq value for H1-13-1 cluster is
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Figure 4 Disulphide bridges of VHH domains with additional disulphide bonds. (A) Conserved disul-
phide bond in type 1 VHH domains (B) Non conserved disulphide bonds in type 1 VHH domains, (C)
Conserved disulphide bond in type 2 VHH domains and (D) non-conserved disulphide bonds in type 2
VHH domains. The disulphide bridges are indicated in yellow connecting any two cysteines.

Full-size DOI: 10.7717/peerj.8408/fig-4

not more than 2 for residue position 32, with PB p either changing to c or g. In the other
two clusters no strict common PB signature was observed. The third cluster (H1-13-5, see
Fig. 5C) has the highest Neq value. The PBs series of the first cluster dehiafkl is replaced
by dehjfklp — a striking difference. The observed structural words in the first cluster PBs
dehia, fklpc and cdddd are highly recurrent and reported to have an RMSD below 1 Å,
while in the third cluster, the transitions are from the most to the less frequent ones (see
the most frequent PB series in de Brevern et al., 2002). As seen in Figs. 5B and 5G, the
cluster H1-13-3 has the highestNeq values and does not show specific PB series like the two
other clusters. We can notice small tendencies towards α helical PBs like PB m. A similar
in-depth analysis was performed for three CDR2 clusters that also show heterogeneity in
the three clusters (see Figs. 5D to 5E and Data S1). In summary, the analyses of CDR1 and
CDR2 VHH in light of PyIgClassify clusters using PBs show a large diversity.
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Figure 5 Local conformational analysis of CDR clusters from PyIgClassify. PB maps of CDR H1 re-
gion from VHH sequences from CDR H1 clusters (A) H1-13-1, (B) H1-13-3, and (C) H1-13-5, CDR H2
region from VHH sequences from (D) H2-9-1, (E) H2-10-1, and (F) H2-10-2 cluster, and Neq of (G) three
CDR H1 clusters and (H) three CDR H2 clusters. The numbering of residues in each plot is according to
the IMGT numbering system.

Full-size DOI: 10.7717/peerj.8408/fig-5

Inter-cluster comparison
The previous analyses showed the variations within a cluster. Using 1 PB and 1Neq, it is
possible to compare the clusters directly (see ‘Materials and Methods’ section and Fig. S12
to S12D).1PB profile allows a detailed description of the conformational diversity between
any two sets of protein structural regions. For H1-13-1 and H1-13-5,1 PB is always higher
than 1.5, showing a completely different PB series occurrence. Hence, these two clusters
sample two different conformational spaces.

For H2-9-1, H2-10-1 and H2-10-2, 1PB shows that PB series are closely related in the
N-terminal regions between H2-9-1 and H2-10-2, and in C-ter for H2-10-1 and H2-10-2,
leading to the idea of composite series with a common PB at position 26 (all 1PB values
of 0.1), information that cannot be provided using RMSD quantification. This analysis
shows the relevancy of PBs to compare VHH structures and VHH structural models in
the following sections. It allows a precise comparison of VHH structures, which can be
considered as highly similar but are not identical, and which quantify this local distance.

VHH structure prediction survey
VHH structures are essential to understand binding with partners. Molecular modelling is
a simple idea to propose structural models. We performed a complete survey of the VHH
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structure prediction studies published so far (see Table 1). Two main methodologies have
been used. (i) generic homology modelling like Modeller and threading approaches like
i-TASSER, and (ii) hybrid modelling where FRs and CDRs are modelled separately and
then assembled together, like RosettaAntibody (Sircar, Kim & Gray, 2009), ABodyBuilder
(Dunbar et al., 2014; Leem et al., 2016), or BioLuminate from Schrödinger R© (Beard et al.,
2013; Zhu et al., 2014; Salam et al., 2014). Of the above-mentioned approaches, Modeller
was used in 50% of the cases in the literature.

All the different structure prediction studies are presented in brief in Table 1 and in
detail in Supplemental Information 2). We have presented and classified all the 22 studies
into three groups based on the method followed; the reader can, if he wishes, go directly to
the following section where we test critically an example of VHH structure prediction.

(a) VHH structure prediction using Modeller
Modeller is the most popular comparative modelling tool known to the community. It is
mainly used as a standalone algorithm, but also through specialised servers like Protein
Structure Prediction server, PS2V2 (Chen, Hwang & Yang, 2009) and EsyPred3D (Lambert
et al., 2002) or in commercial software like BIOVIATM (earlier Discovery studio). The
standalone Modeller version was used to propose structural models of VHH in studies
against DARC (Duffy antigen Receptor Chemokine) (Smolarek et al., 2010b), VEGFR2
(Vascular Endothelial Growth Factor Receptor 2) (Shahangian et al., 2015), TNFR1 α
(Tumour Necrosis Factor Receptor 1 α) (Steeland et al., 2015), PLA2 (Phospholipase
A2) (Chavanayarn et al., 2012), BMP4 (Bone morphogenic protein 4), MMP8 (Matrix
metalloproteinase 8) (Demeestere et al., 2016), PLA2 toxins B. jararacussu Bothropstoxin-I
(BthTX-I) and Bothropstoxin-II (BthTX-II) (Prado et al., 2016). A histone binding VHH
(Jullien et al., 2016) was proposed through BIOVIATM suite.

(b) Other generic 3D prediction approaches
The fold prediction software Phyre2 was used to model VHH against Urease (Hoseinpoor
et al., 2014). The popular i-TASSER web server was used for VHH designed against PrA
(ProteinA) (Fridy et al., 2015) and HCV Non-structural protein NS3/4A (Jittavisutthikul
et al., 2015). Raptor-X, another threading-based server, was used to model VHH against
adenylate cyclase-hemolysin toxin and the repeats in toxin (CyaA-RTX protein) (Malik et
al., 2016) subdomains (see Supplemental Information 1).

(c) Antibody specific modelling protocols
Rosetta (Rohl et al., 2004) is one of the twomost successful de novo approaches. A specialised
suite called RosettaAntibody (Sircar, Kim & Gray, 2009) by Gray’s group, was the first to
put forward a modelling protocol for VHH. The Rosetta Antibody suite was modified to
model single chain VHH.

Briefly, the templates for FR regions are selected using BLAST against antibody databank
containing structures from PDB, and for CDRs the templates are chosen from BLAST
bit scores. Once the FRs are modelled, the CDRs are grafted onto the FRs by optimal
superposition of the backbone atoms of two overlapping residues at each end of the loop.
This study highlights the difficulty in VHH modelling, and specifically the fact that an
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Table 1 Summary of structural modelling studies in chronological order. From left to right, the columns are the names of the authors, year of publication, algorithm of
choice for template selection, number of templates used per query, algorithm used for modelling, algorithm used for model validation, algorithm used for model refine-
ment, target/ antigen against which the VHH in the study is generated, name of the VHH used in the study, organism from which the respective VHH is synthesized and
PDB ID of the template(s) used in the study.

Authors Year Template selection Templates/query Modeling methods Antigen VHH (main study) Template(s)

Smolarek et al. 2010 PSI-BLAST against PDB one Modeller DARC- C terminus CA52 1OP9 and 1 JTO

Govaert et al. 2011 mutation studies not applicable Esypred3D,Robetta
for mutants

not applicable cAbAn33, cAbLys3,
and cAbPSA-N7

not mentioned

Sircar et al. 2011 BLAST one or many Rosetta Antibody VHH suite not applicable not applicable not applicable

Chavanayarn et al. 2012 BLAST one not mentioned Phospholipase 2 of
Naga koultia

P3-1, P3_3 1VHP and 1MVF

Thueng-in et al. 2012 BLAST one not mentioned NS5B(RNA dependent
RNA polymerase) of hcv

VHH6, VHH24
(clone names)

1VHP, 1F2X

Phalaphola et al. 2013 BLAST one not mentioned NS3-C ( HCV helicase) VH6,VHH9,VH59 1OHQ,1XFP,3BN9

Inoue et al. 2013 not mentioned one MOE (CCG) Hen Egg White Lysozyme cAb-CA05-(C-C-L),
cAb- CA05-(#16-#09-L),
cAb-CA05-(#16-#19-L)

1RI8

Hoseinpoor et al. 2014 PSI-BLAST ( Phyre2) one Phyre2 H.pylori Urease HMR23 not available

Steeland et al. 2015 not mentioned multiple swiss model server TNF receptor 1 Nb70 and Nb96 4FZE, 4JVP, 3P0G, and 2KH2

Shirin Shahangiana et al. 2015 BLAST against PDB one Modelller 9.13 VEGFR VEvhh1, VEvhh2, VEvhh3 1OP9-A , 1MVF-A and
2X6M-A respectively

Jittavisutthikul et al. 2015 i-TASSER not mentioned I-TASSER and ModRefiner NS3/4A VHH24, VHH28, VHH41 not mentioned

Unger et al. 2015 BioLuminate suite multi (different for frs
and cdrs of each vhh)

BioLuminate CDTa/b( clostridium
difficile toxin a/b)

1+8, 1-14, 1+18
(3 VHH clones)

numerous

Fridy et al. 2015 based of target-
IgG complex PrA1-Fab

one I-TASSER not mentioned LaP-1 to 4 not mentioned

Calpe et al. 2015 BLAST one Modeller Bone Morphogenic
factor 4 (BMP)

C4, E7, C8 4BSE, 1SJX

Prado et al. 2016 BLAST against PDB one Modeller 9.10 BthTX-I and BthTX-II KF498607, KF498608,
KC329715 and KC329718

4KRP-B, 4DKA-A,
3EZJ-B, 4KRP-B

Jullien et al. 2016 Discovery studio one Modeller 9.10 from
Accelrys Discovery
Studio v. 3.1 (DS 3.1)

Histones 2A and 2B nabobody against
chromatin (Chromatibody)

4IDL

Demeestere et al. 2016 Swiss model web server multiple Modeller Matrix metallo proteinases 8 Nb14 4LAJ, 3EZJ, 3TPK and 4M3J

Se et al. 2016 PS2V2 server one Modeller through PS2V2 server Bap protein
Acinetobacter baumanii

VHH1 1MVF

Leem et al. 2016 BLAST many Modeller and FREAD
(for CDR loop prediction)

not applicable not applicable not applicable

Soler et al. 2016 Pre existing knowledge many Swiss Model server lysozyme NbHuL6, cAbLys, cAbCII10 NbHuL6-3EBA and 3DWT,
cAbLys and
cAbCII10 1ZMY, 1JTP

Malik et al. 2016 ’’best fit structures’’ one Raptorx CyaA-RTX Segment VHH2,VH5,VH18,VHH37 1F2K,4O9H,2KH2,4HEP
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approach for IgG is not optimal for VHH. The scripts specific for VHH are not available
anymore in the newer version of RosettaAntibody, but as suggested by the group, it is
possible to model VHH by submitting a dummy light chain in the protocol and then
deleting it from the models once they are modelled (Sircar et al., 2011).

The most recent class of antibody-specific modelling approaches is ABodyBuilder.
Templates are selected using the sequence identity of the FR regions as a criterion against
SAbDab (Structural Antibody Database) (Dunbar et al., 2014). Modeller then models FR
regions. Next, CDRs are modelled using FREAD, a loop prediction developed by the
same group using database search. FREAD basically searches against the CDR database
created for each CDR (six in total). The SAbDab is the first database to have text search
for querying VHH; however, the text search also lists modified VH/VL which exist as single
domain antibodies (Dunbar et al., 2014; Leem et al., 2016).

Case study
In case of antibodies, the acceptable range of RMSD is different for CDRs and FRs, often
leading to global RMSD<3Å, but itmay not be the only near-native structure/conformation
possible (Kufareva & Abagyan, 2012). Improvement of model quality was detailed by using
multiple templates (Chakravarty et al., 2004; Larsson et al., 2008). Here, we decided to
reproduce the study of Steeland and co-workers (Steeland et al., 2015) to assess the interest
and impact of such an approach. They predicted structural models of VHH domains
(named Nb70 and Nb96) against Tumour Necrosis Factor receptor 1α using multiple
templates: (i) Single chain variable fragment (ScFv) from mouse against Interleukin 1 β
(PDBID 2KH2 (Wilkinson et al., 2009)), named temp-m), (ii) a llama VHHused to stabilize
β2 adrenoceptor (PDBID: 3P0G (Rasmussen et al., 2011), referred to as temp-l), (iii) an
alpaca VHH against Hepatitis C virus (HCV) glycoprotein E2 (PDBID: 4JVP (Tarr et al.,
2013), temp-a), and (iv) a VH from human Fab which is Antibody-dependent cell-mediated
cytotoxicity anti-HIV 1 antibody (PDBID: 4FZE (Tolbert, Wu & Pazgier, 0000), henceforth
referred to as temp-h). In the following four sections we will present (a) the analysis of
sequence relationship, (b) analysis of the structures, (c) the modelling results and finally
(d) how the different structural templates have different impacts on the proposition of
structural models.

Sequence and structure analysis of templates and query
The query sequence (Nb70) shared a high percent sequence identity (76–70%) with temp-l,
temp-m and temp-a (70.6%) and aweak sequence identity (45%)with temp-h (45.3%) (See
Table S1A). Hence, three of the structural templates can be considered as good ‘classical’
templates. Amongst them, the first three templates have 67–61% sequence identity, and
only 46–37% with temp-h (see Table S1A).

Analysis of FRs and CDRs provided a slightly different view (see Table S1B). Indeed,
temp-h still has the worst sequence identity with Nb70 for all FRs and CDRs, except CDR1
(50% sequence identity) and CDR3 (with a sequence identity of only 16%). For the FRs
of the others templates, sequence identity reached 96% for FR1, 77% for FR2, 94% for
FR3 and even 100% for FR4. For the CDRs, it is lower but remains good, with 50%, 75%
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and 58%, respectively. Another important point is that CDRs 1 and CDR 2 are of same
length in all the sequences (see Fig. S13). The CDR3 region of query is 12 residues long,
while temp-a and temp-h are longer, with 20 and 18 aa respectively. These results lead us
to conclude that comparative modelling is probably the right choice.

Structure analysis of templates
Sequence similarity from the above analysis suggests good conservation, but structural
similarity between the templates provides a different view (see Table S1C). Temp-m is the
closest to all three templates, with RMSD values mainly from 1.9 to 2.4 Å, while temp-a is
further away with a RMSD value of 3.7 Å with temp-l and of 4.5 Å with temp-h. A large
difference between structural templates is observed and does not correspond directly to
the information seen in the previous section (see Figs. 6A & 6B). The most conspicuous
region in the superposed structures is CDR3 for temp-a and temp-h; in the structure of
temp-a, the torso of the CDR3 is bent towards the FR2 region due to the presence of
additional disulphide bond. Whereas in the case of temp-h, the CDR3 loop, though long,
has a protruding tip (upwards). The RMSD values range from 0.7 to 1.5 Å for FR1, 1.7 to
3.1 Å for CDR1, 0.4 to 0.9 Å for FR2, 0.3 to 2.2 Å for CDR2, 0.8 to 1.3 Å for FR3, and 0.4 to
1.0 Å for FR4, while CDR3 had segmented values due to difficulty in superimposition. As
expected, the general trend of high RMSD in CDRs compared to FRs is observed in all the
pairwise comparisons (see Table S2). It is interesting to note the deviations in FR regions
between temp-l, temp-a and temp-h, that might be unexpected.

(c) Analysis of the structural models
The structural similarity between the best-selectedmodel frommultiple templatemodelling
(the reference) and the models generated from single template is shown in Figs. 6C to 6F.
The best model constructed using temp-m adopts the conformations similar to that of the
best model using multi-templates, especially in the CDR3 region. This is surprising, since
it shares a higher sequence identity with temp-l in this region, but CDR3 lengths are the
same in both the query and temp-m.

Using residue-wise RMSD comparison as quantification (see Fig. S11), the model
generated from temp-m is close to the best model generated from multiple templates, even
in the CDR3 region (only the CDR2 region has a significantly higher value). The other best
models display much higher residue-wise RMSD in all the CDR regions, even ranging 15 Å
in CDR3 for the model generated with temp-a.

Interestingly, one of the structural templates provided a major contribution to the final
models, although (i) it does not have a stronger sequence identity than the rest, and even,
(ii) the only region for which it had the best sequence identity, CDR2, is the only region
that is far from the selected model. Thus, the multi-template approach for VHH appears
somewhat complex.

(d) Analysis of local conformational sampling by Modeller
Analyses of best models only provided information for best DOPE score selected models;
it does not provide information about potential sampling proposed by the comparative
modelling approach. Using PBxplore, Protein Blocks were assigned to each of the models

Melarkode Vattekatte et al. (2020), PeerJ, DOI 10.7717/peerj.8408 16/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.8408#supp-14
http://dx.doi.org/10.7717/peerj.8408#supp-20
http://dx.doi.org/10.7717/peerj.8408#supp-19
http://dx.doi.org/10.7717/peerj.8408#supp-12
http://dx.doi.org/10.7717/peerj.8408


Figure 6 Analyses of structural template and best structural models. First, the four templates Temp -m,
Temp -l, Temp -a and Temp -h are superimposed. The colour coded regions in teal, pink, green and vio-
let respectively are the CDRs. (A) Lateral view and (B) top view. Then, best models selected using DOPE
score are superimposed. Four templates Temp-m, Temp-l, Temp-a, Temp-h and best structural model
colour coded regions in teal, pink, green, violet and orange respectively are shown with different orien-
tations. (A) Global view, (B) zoom on CDR1, FR1 and FR2, (C) on CDR2, FR2, and FR3, and (D) CDR3
with FR3 and FR4.

Full-size DOI: 10.7717/peerj.8408/fig-6

and Neq entropy computed at each position. A summary of Neq values >1 is provided in
Table 2; in all the cases, modelling with multiple templates is the one with the highest
number of residue positions with Neq>1 (49 residue positions), suggesting the largest
conformational diversity. The least number of residue positions with Neq>1 is for models
generated using temp-m (23 residue positions). Notably, models generated from temp-h
had two residue positions with high Neq values in the CDR3 region. Figure 7A is a
position-wise distribution of Neq values in each case. The interesting results are that (i) the
Neq of template temp-m is most often low compared to the multi-template case, and, (ii)
the models from multiple templates case show maximum Neq in the CDR2 region (see also
Supplemental Information 2).

Analysis of PB distribution (see Fig. S15) shows preferred PB ‘d ‘for most residues of
FRs in β-sheets in all the cases. The three preceding and succeeding residues of CDRs were
considered anchor residues in each loop. Surprisingly, no PB variability was observed for
CDR1 anchors. In the case of CDR2, only the position 51 from models generated from
temp-l showed a slight variation of Neq to 1.22. For CDR3, the preceding anchors showed
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Table 2 Distribution ofNeq in each modelling scenario.

N eq Temp-m Temp-l Temp-a Temp-h All
templates

1–2 19 34 35 23 39
2–3 4 1 3 4 6
3–4 3 2 3
4–5 1
5–6 1 1
6–7 1

Figure 7 Positional PB entropy Neq and1PB. (A) All five scenarios of modelling are represented in
separate colours. X-axis represents residue positions and Y -axis represents Neq. (B)1PB between multi-
template scenario and each mono template scenario.

Full-size DOI: 10.7717/peerj.8408/fig-7
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no PB variation; however, the succeeding anchor positions in the modelling scenario of
temp-h and temp-a showed variations.

CDRs (aa regions 26–34, 52–58, 97–108), as expected, have more diverse conformations
than FRs. Amongst the five scenarios, the most PB diversity in CDR3 is seen in 11 out of
12 residue positions from models generated from temp-a, followed by models generated
from temp-l (9/12 residues positions), multiple templates (8/12 residue positions), temp-h
(7/12 residue positions) and temp-m (1/12 residue position). This observation suggests
that adding more information in the case of multiple templates, and poor template target
alignments can cause unexpected conformational diversity.

The local conformational diversity in terms of PBs between mono template(s) and
multi-template structural models can be understood by analysing the differences in PBs,
quantified by 1PB. Figure 7B shows 1PB calculated between multi-template models and
each individual template model. Among all four cases of comparison, the case of modelling
with temp-m and multi-template shows the least change in PBs at each residue. The
differences in local conformations are expected in the CDRs, while the changes in FRs are
the ones least expected. These comparisons may also suggest that in case of multi-template
modelling, temp-m mostly influenced model conformations due to better alignment
quality in CDR regions, and a shared second-best sequence identity with the query. Please
note that Nb96 produced roughly the same results, while CDR3 is longer and so more
complex to analyse.

DISCUSSION
Analysis and prediction of simple VHH fold seems a trivial task at first sight. Analysis of the
sequence content of FRs and CDRs correlates partially with the recent study of Mitchell
and Colwell (Mitchell & Colwell, 2018a). They have focused their study on a dataset of
VHH domain in complex with respective antigens and compared to IgGs. At present, it
appears obvious that the expected specific amino acid signature of VHH is not a universal
feature in these domains and only depends on the germline; few unmodified VHH domains
lack them. Analysis of VHH structures also showed that the fold is far from conserved in
terms of local protein conformation. Assignment of secondary structures showed some
important deviations, irrespective of the bound or unbound state of the VHH. Similarly,
analysis of CDRs in light of PBs showed (i) that actual CDR classification is difficult to
apply to VHH, (ii) use of a global measure in CDR classification tends to associate different
types of local protein conformations, i.e., PB series and (iii) in fact, some common PB series
can be found in different CDR clusters. Interestingly, the additional disulphide bridges of
whatever type are often not strongly favourable, which is slightly counterintuitive at first
sight.

A survey of structure prediction studies of VHH showed that most studies resorted
to generic template-based modelling approaches. Analysis of the impact of template
conformations on the model(s) generated, with the example of VHHmodelled by Steeland
and co-workers (Steeland et al., 2015), underlined the difficulty of choosing the template(s).
Indeed, three of the four templates have roughly common sequence identity measured
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at around 74%, each being slightly more identical depending on the CDRs and FRs, i.e.,
none can be selected as the best of the best. Nonetheless, each of them had a unique 3D
conformation and proposed (a) a different best model, but also (b) sampled different
conformations. It is, in fact, surprising that the more dissimilar template (45% sequence
identity) does not produce VHH models distinct from models predicted using other
templates. These results clearly indicate the need for more detailed study and approaches
to propose optimized methodology for VHH structure prediction (see also Supplemental
Information 3).

Additionally, we have performed a similar analysis with solved VHH structure to
confirm our hypothesis. A VHH domain (PDBID: 1QD0 (Spinelli et al., 2000) was selected
as the query and four other VHH sharing sequence identities between 73.9% and 67.5%,
representing a real world case. The four templates’ RMSD to the query ranged from 2.01 Å
to 4.41 Å. The best structural model obtained using the structural template with highest
sequence identity had a 2.1 Å RMSD value. The addition of other templates provided a
clear increase to 2.2 Å with two templates, a further increase to 2.6 Å for 4 templates (see
Supplementary Analysis 1 and Fig. S16 for more details). The findings corroborate results
previously shown in the case study of Nb70 VHH domain modelling. These examples taken
from the literature are case studies and show how the authors proceeded. They could be
improved by a better control of structural templates, or additional constraints such as
secondary structures, distances or even Protein Blocks. We underlined that one must pay
attention to details of templates such as structural similarity between templates when using
multiple templates, and the length of CDRs in addition to sequence identity

CONCLUSION
Our paper in addition to reaffirming the sequences-structure characteristics of VHH
domains reported in the recent literature, also makes unique observations regarding (i) the
variation in the amino acid signature in the FR2 region, (ii) conservation of β-strands and
presence of other kinds of secondary structures, (iii) sheds light on conformations of di
sulphide bridges and (iv) inter and intra cluster variations from PyIgclassify CDR clusters
in terms of local conformations using Protein Blocks. All the above analyses might help
the community to appreciate the topological enigma of these domains. As Protein Blocks
were able to identify many fine variations in the well accepted CDR classification and FRs
in our previous paper, we used it to analyse local conformations of modelled structures of
VHH domain from a study. The variations in local conformations in models are influenced
template quality and conformations. In most cases of variable domain comparative
modelling, the templates for modelling FRs are selected based only on sequence identity.
In the specific case study that we chose, more complexity arose due to the usage of multiple
templates which were chosen based on BLAST searches. We intend to draw the attention
of the research community by a precise analysis of the models from this exercise to the
influences of template in terms of CDR3 length and sequence identity and Protein Blocks
sequences. The latter is an innovative approach developed in our lab to shed light on local
conformational changes. This exercise suggests that the selected templates might not be
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the best possible templates when chosen using FR sequence identity. Finally, the use of
multiple templates when the templates are overlapping more restraints that may not be
desirable.
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