
Submitted 23 September 2019
Accepted 11 December 2019
Published 13 January 2020

Corresponding author
Nan Song, songnan@henau.edu.cn

Academic editor
Jia-Yong Zhang

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.8386

Copyright
2020 Song et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The mitochondrial genome of Apion
squamigerum (Coleoptera,
Curculionoidea, Brentidae) and the
phylogenetic implications
Nan Song1, Xinxin Li1, Xinming Yin1, Xinghao Li1, Shengjun Yin2 and
Mingsheng Yang3

1College of Plant Protection, Henan Agricultural University, Zhengzhou, China
2Department of Chinese Medicine, The Second Hospital of Tianjin Medical University, Tianjin, China
3College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China

ABSTRACT
In this article, we present the nearly complete mitochondrial genome (mitogenome)
of the weevil beetle Apion squamigerum (Curculionoidea, Brentidae), assembled using
data from Illumina next generation sequencing (NGS). This mitogenome was found to
be very large, with the total length of 18,562 bp. Two trnM genes were identified. A large
non-coding intergenic spacer spanning 1,949 bp occurred between trnI and trnM2.
Combined with 111 existing weevil mitogenomes, we conducted phylogenetic recon-
structions based on various datasets undermaximum likelihood andBayesian inference.
Firstly, phylogenetic analyses robustly supported a sister group of A. squamigerum and
Rhopalapion longirostre, namely, that two species of Apioninae (Brentidae) formed a
clade. Within the entire Curculionoidea, the Nemonychidae diverged firstly, following
the families Anthribidae and Attelabidae. In addition, a large clade comprising the sister
families Brentidae and Curculionidae was strongly supported in all trees.

Subjects Biodiversity, Entomology, Evolutionary Studies, Taxonomy
Keywords Mitogenome, Brentid beetle, Large intergenic spacer, Phylogeny

INTRODUCTION
Weevil beetles (Curculionoidea), with approximately 62,000 species in 5,800 described
genera, are one of the most diverse groups in the order Coleoptera (Oberprieler, Marvaldi
& Anderson, 2007). This group of beetles are characterized by a head extended into a
proboscis. They are all plant-feeders. Some species are considered as quarantine pests due
to their potential harms to the native plants. The other weevil species are perceived as
beneficial, or of no importance in plant production. The diversification of weevil beetles
has been often ascribed to co-radiation with the angiosperms (Farrell, 1998;McKenna et al.,
2009). However, the explanatory account of the diversification of Curculionoidea based on
the studies of combining higher-level phylogenies of weevils with host plant information
may be limited by inadequate taxon sampling (Franz & Engel, 2010). The ancient origin
of weevils (McKenna et al., 2009) and the extremely high species richness have made the
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phylogenetic reconstruction of this group challenging. In particular, the basal relationships
within Curculionoidea remain elusive.

Weevils (Curculionoidea) are conventionally classified into two groups: Orthoceri,
and Gonatoceri (Kuschel, 2003; Skuhrovec, 2007; Haran, Timmermans & Vogler, 2013).
The Orthoceri contained the relatively primitive weevil families (Kuschel, 2003), such
as Nemonychidae, Belidae, Anthribidae, Attelabidae and Brentidae. This set of families
have straight antennae, which separate them from the ‘‘true weevils’’ Curculionidae
that are characterized by geniculate antennae. The Gonatoceri included the advanced
weevils, of which the Curculionidae constitute the largest family of Curculionoidea,
containing 51,000 described species distributed over 4,600 genera (Oberprieler, Marvaldi
& Anderson, 2007; Bouchard et al., 2011; Oberprieler, 2014). In addition to the geniculate
antennae, most of true weevils also have the male genitalia with a fused pedon and tectum,
which distinguished from the orthocerous weevils. However, the characteristic male
genitalia associated with orthocerous weevils were also recognized in Rhynchophorinae
(Curculionidae) (Morimoto, 1962). Further investigations on the genitalia morphology
led to the establishment of some family-level groups, for example, the Brentidae
(including subfamilies of Brentinae, Apioninae, Ithycerinae, Microcerinae, Nanophyinae)
and Brachyceridae (with subfamilies Brachycerinae, Eririhininae, Cryptolarynginae,
Raymondionyminae, Ocladiinae) (Bouchard et al., 2011). The interrelationships of the
major groups of Curculionoidea are still controversial.

In the system of Bouchard et al. (2011), the superfamily Curculionoidea is divided
into nine extant families: Nemonychidae, Anthribidae, Attelabidae, Belidae, Brentidae,
Caridae, Dryophthoridae, Brachyceridae, and Curculionidae. The more recent study by
Oberprieler (2014) recognized sevenmajor lineages of weevils (Nemonychidae, Anthribidae,
Attelabidae, Belidae, Brentidae, Caridae, and Curculionidae). In the latter, palm weevils
(Dryophthorinae) and brachycerid weevils (Brachycerinae) are considered as subfamilies in
Curculionidae. In addition, an eight-family system has been suggested by a phylogenomic
study of Shin et al. (2017). The Cimberidinae formerly as a subfamily of Nemonychidae was
elevated to the family rank (Shin et al., 2017). The study of Haran, Timmermans & Vogler
(2013) with mitogenomic data also recovered Cimberidinae as a sister group to all other
weevils. Within Curculionoidea, a stable sister group relationship between Brentidae and
Curculionidae has been indicated (Marvaldi & Morrone, 2000; Oberprieler, 2000; Marvaldi
et al., 2002; Shin et al., 2017).

Mitochondrial genome (mitogenome) sequences have been widely used to the
phylogenetic reconstructions of insects (Cameron, 2014a). As a class of molecular marker,
mitogenome has proved to be a useful source of information on the relationships at the
level of families and superfamilies in Coleoptera (Timmermans & Vogler, 2012;Gillett et al.,
2014; Crampton-Platt et al., 2015; Yuan et al., 2016). However, the number of mitogenome
sequences available for Brentidae is vary sparse, and only four partial mitogenomes
(10,629 bp∼12,664 bp) have been reported in GenBank to date (Haran, Timmermans &
Vogler, 2013; Gillett et al., 2014). Additional mitogenomic data are needed to elucidate the
phylogeny of Brentidae and to resolve the higher-level relationships in Curculionoidea.
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In this study, we determined a nearly complete mitogenome of Brentidae, Apion
squamigerum, with an NGS based approach. The detailed description of genome
organization is presented. Combined with published beetle mitogenome sequences, we
reconstructed the phylogenetic relationships in Curculionoidea, based on various datasets
under maximum likelihood and Bayesian inference.

MATERIALS AND METHODS
Specimen and DNA extraction
Adult specimen ofA. squamigerumwas collected 2015 in JigongMountain,HenanProvince,
China (the geospatial coordinates: 31.46◦N, 114.01◦E). No specific permits were required
for the insect sampled for this study. The sample was directly killed and preserved in
absolute ethanol. It was stored at −20 ◦C until DNA extraction. Specimen identification
was conducted by checking adult morphological characters (Kuschel, 2003; Fägerström,
2006), and blasting mitochondrial cox1 gene fragment in public databases BOLD (Barcode
Of Life Database: http://www.boldsystems.org - Identification section) and NCBI.

Total genomic DNA was extracted from a single specimen, wtih the TIANamp Micro
DNA kit (TIANGEN BIOTECH CO., LTD) according to the manufacturer’s protocol.
DNA concentration was determined using Nucleic acid-protein analyzer (QUAWELL
TECHNOLOGY INC., Sunnyvale, CA, United States). After DNA extraction, the specimen
parts have been deposited in Entomological Museum of Henan Agricultural University
(voucher number: EMHAU-2015-Zz091005).

Library preparation and sequencing
Genomic DNA were sent to Shanghai OE Biotech CO., LTD for library preparation and
high-throughput sequencing. Library was constructed by using the Illumina TruSeqTM
DNA Sample Prep Kit (Illumina, San Diego, CA, USA), with the insert size of 350 bp. The
genome sequencing was conducted on an Illumina HiSeq2500 platform, with a strategy of
150 paired-end sequencing.

NGS QC toolkit (Patel & Jain, 2012) was used to filter raw data for quality control.
The high-quality reads (avg. Q20 >90%, and avg. Q30 >80%) were used to assemble the
mitochondrial contig, with the software Mitobim v1.9 (Hahn, Bachmann & Chevreux,
2013). In prior, the mitochondrial cox1 gene fragment (5′-end, about 500 bp sequence)
was sequenced as a starting reference. Both the PCR and Sanger sequencing reactions were
conducted using the primers of Song et al. (2016). We employed Geneious R11 (Kearse
et al., 2012) to perform read mapping to check the quality of the mitogenome sequences
assembled.

We also usedARC (Hunter et al., 2015) andGeneiousR11 (Kearse et al., 2012) to perform
the reference-guided assemblies. The reference sequence was the mitogenome from the
closely related brentid beetle species (Rhopalapion longirostre: Haran, Timmermans &
Vogler, 2013). For the assembler of ARC, the configure input file was made with default
settings. The parameter settings for assembly with Geneious R11 were identical to those in
Yang et al. (2018).
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Figure 1 The structure of the mitochondrial genome of Apion squamigerum.
Full-size DOI: 10.7717/peerj.8386/fig-1

Mitogenome assembly and annotation
The initial mitogenome annotation was conducted in MITOS web (Bernt et al., 2013). The
start codon, stop codon and length of each protein-coding gene weremanually checked and
adjusted by alignment to the published brentid beetle mitogenome sequences (see details in
Table S1). The secondary structures of 22 tRNA genes were predicted by MITOS. The gene
boundaries of two rRNA genes were refined by aligning against the published sequences.
The corresponding secondary structures were predicted with reference to Gonocephalum
outreyi (Coleoptera, Tenebrionidae) (Song et al., 2018). The genome structure images
were generated using Mtviz (http://pacosy.informatik.uni-leipzig.de/mtviz) (Fig. 1) and
OGDRAW (Greiner, Lehwark & Bock, 2019) (Fig. S1). The newly determined mitogenome
sequence (File S1) of A. squamigerum has been submitted to GenBank under the accession
number MN459662.

Sequence alignment
Each protein-coding gene was aligned individually using TranslatorX (Abascal,
Zardoya & Telford, 2010), with the following parameters: Genetic code = ‘‘invertebrate
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mitochondrial’’, Protein alignment = ‘‘MAFFT’’, and the stop codons excluded. The
22 mitochondrial tRNA genes and two rRNA genes were separately aligned using the
program MAFFT under iterative refinement method incorporating the most accurate
local (E-INS-i) pairwise alignment information (Katoh & Standley, 2013). The alignments
were checked in MEGA 7 (Kumar, Stecher & Tamura, 2016). Poorly aligned sections were
eliminated by Gblocks (Talavera & Castresana, 2007). Finally, the individual alignments
were concatenated to make the datasets of PCG (nucleotide alignment including 13
protein-coding genes), PCG_AA (amino acid alignment including 13 protein-coding
genes) and PCGRNA (nucleotide alignment including 13 protein-coding genes, two rRNA
genes and 22 tRNA genes), with the Perl script FASconCAT_v1.0 (Kuck & Meusemann,
2010). The relative synonymous codon usages of protein-coding genes of A. squamigerum
were examined by MEGA 7 (Kumar, Stecher & Tamura, 2016). The sequence alignments
supporting the phylogenetic results of this article are presented in the File S2.

Phylogenetic inference
In the phylogenetic analyses, our taxon sample included 112 weevil species representing five
families of Curculionoidea, namely Nemonychidae, Anthribidae, Attelabidae, Brentidae,
and Curculionidae. Following the classification of Oberprieler (2014), the families Belidae
and Caridae are missing due to unavailability of mitogenomic data. In addition, five
mitogenome sequences from Chrysomeloidea were selected as outgroups (Kastally &
Mardulyn, 2017).

Phylogenetic trees were calculated using IQ-TREE (Nguyen et al., 2015) for maximum
likelihood (ML) analyses and MrBayes 3.2.6 (Ronquist et al., 2012) for Bayesian inferences.
PartitionFinder 2 (Lanfear et al., 2016) was used to select the optimal sets of partitions.
Data blocks were predefined by genes for each dataset. The PartitionFinder analyses were
run using a greedy search scheme (Lanfear et al., 2012), with all models considered under
the Akaike information criteria.

ML searches were performed using IQ-TREE implemented in the Cipres Science
Gateway (Miller, Pfeiffer & Schwartz, 2010). Data partition schemes pre-determined by
PartitionFinder were used as inputs (Table S2), and substitution models were estimated
de novo across all available models by ModelFinder (Kalyaanamoorthy et al., 2017)
implemented in IQTREE. Allowing partitions to have different speeds (-spp) was selected
for each ML analysis. Nodal support values (BP) were evaluated through an ultrafast
bootstrap approach (Minh, Nguyen & Von Haeseler, 2013), with 10,000 replicates.

Bayesian analyses using MrBayes 3.2.6 (Ronquist et al., 2012) were conducted in the
CIPRES Science Gateway (Miller, Pfeiffer & Schwartz, 2010). We applied the MrBayes
blocks for partition definitions generated from PartitionFinder, which include the partition
schemes (same as ML analyses) and the best-fitting models (nst = 6 rates = invgamma
and/or nst = 6 rates = gamma for DNA, or Mtrev for protein). All model parameters
were set as unlinked across partitions. Each analysis involved two independent runs, and
started from random topology. Each run implemented four Markov chain Monte Carlo
chains in parallel for at least 5,000,000 generations, and sampled every 1,000 generations.
The program Tracer 1.7 (Rambaut et al., 2018) was used to analyze the trace files from
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two Bayesian MCMC runs. Sufficient sampling was believed to occur when the ESS value
was above 100. In addition, we checked the raw trace plot to see if the chain was long
enough for convergence. The first 25% of sampled trees were discarded as burn-in, and the
remaining trees were used to calculate a 50%majority-rule consensus tree. Branch support
was assessed by clade posterior probabilities (PP).

RESULTS
Next-generation sequencing output and mitochondrial genome
organization
As for the new mitogenome sequence of A. squamigerum, a total of 4,412,164 bases (about
29,416 mitochondrial reads) were mapped to the original 18,562 bp mitochondrial contig.
The mean base coverage of the mitochondrial contig was 238-fold. The distribution of
reads along the mitogenome was basically uniform. However, there were sharp decline at
both ends. This may lead to the failure of assembling the complete control region.

With the reference mitogenome of R. longirostre, Geneious and ARC yielded the shorter
mitogenome contig lengths, 11,355 bp and 12,507 bp, respectively. The reference sequence
of R. longirostre is a partial mitogenome, with only 11,152 bp. The incomplete reference
mitogenome led to a short mapping assembly. Both Mitobim and Geneious successfully
assembled in a single mitochondrial contig. Whereas ARC produced three mitochondrial
contigs, with lengths of 7,594 bp, 3,681 bp and 1,232 bp, respectively. The 7,594 bp contig
had five nucleotides overlapping with 3,681 bp contig. There were 12 bp missing gap
between 3,681 bp contig and 1,232 bp contig. Alignments showed that the sequences
assembled from Geneious and ARC were identical to that obtained from Mitobim.

The nearly complete mitogenome of A. squamigerum consists of the 13 protein-coding
genes, 23 tRNA genes, two rRNA genes and a putative control region (Fig. 1). There are
24 genes encoded on the heavy strand, while the remaining 14 genes encoded on the light
strand. On the heavy strand, the second trnM gene (trnM2) is located adjacent to the 5′end
of the trnQ. The typical trnM1 occurs between trnQ and nad2. Four mismatched bases are
detected between trnM2 and trnM1. The nucleotide composition of the whole mitogenome
of A. squamigerum is 39.1% A, 37.7% T, 13.2% C, 10.0% G. This result shows a strong bias
towards A+T content (76.8%). AT skew is calculated by AT-skew = (A − T)/(A + T) and
GC-skew is defined by GC-skew = (G − C)/(G + C). As a result, the AT-skew is 0.018,
while the GC-skew is −0.138.

Protein-coding genes and codon usage
The protein-coding genes excluding stop codons have a total length of 11,061 bp, which
encodes 3,687 amino acid residues. All protein-coding genes started with the typical ATN
codons, such as ATT for nad2, cox1, cox2, nad3, nad5, nad6, ATG for atp6, cox3, nad4,
nad4l, cob, ATC for atp8, and ATA for nad1. Except for nad5 and nad4, the remaining 11
protein-coding genes were inferred to terminate with the complete stop codon (TAA or
TAG). Both nad5 and nad4 used TA as the stop codon.

The codon usage pattern of A. squamigerum mitogenome is shown in Table S3. In A.
squamigerum mtDNA protein-coding genes, Ile (I), Asn (N), Leu2 (L2), Phe (F), Lys (K)
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and Met (M) are among the most frequently found amino acids with the frequency of
AUU (7.5%) and AUC (1.6%) for Ile, AAU (6.7%) and AAC (2.1%) for Asn, UUA (7.7%)
and UUG (0.9%) for Leu2, UUU (6.1%) and UUC (1.8%) for Phe, AAA (6.3%) and
AAG (1.3%) for Lys, and AUA (6.6%) and AUG (0.7%) for Met, respectively. The relative
synonymous codon usage (RSCU) values also indicated that all the frequently used codons
are A/T-rich (Fig. 2). The A+T content of protein-coding genes was 73.0%, and the third
codon positions had the highest A+T content (84.1%).

Transfer RNAs and Ribosomal RNAs
Twenty-three tRNA genes were identified in the mitogenome of A. squamigerum and
ranged in length from 58 bp to 70 bp. As mentioned above, the trnM with 69 bp in length
occurs twice in the mitogenome. The inferred secondary structures for tRNA genes are
provided in Fig. 3. All tRNA genes can be folded into the cloverleaf secondary structure,
with the exception of trnS1. The trnS1 lack a dihydrouridine (DHU) arm, which was
replaced by a simple loop.

The large ribosomal gene (rrnL) is 1,270 bp in length, which was found between trnL
(CUN) and trn V. The small ribosomal gene (rrnS) is 758 bp, and positioned between
trnV and the control region. The secondary structures of both rrnL and rrnS are shown in
Figs. S2 and S3. The secondary structure of rrnL contained five domains (labeled I, II, IV,
V and VI) and 50 helices. Domain III was absent. The rrnS gene was composed of three
domains (labeled I, II, III) and 27 helices.

Control region
In the assumed position corresponding to the control region (i.e., between rrnS and
trnI ), two prominent non-coding regions were assembled at both ends of the original
mitochondrial contig. There were no overlapping regions found between two sequences.
The A+T contents of two fragments corresponding to the control region are 86.3% (153
bp in length) and 82.8% (1,768 bp in length), respectively. That is obviously higher than
the A+T content of the entire mitogenome (76.8%). Although there is no obvious tandem
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Figure 3 The inferred secondary structures of the 23 tRNA genes from Apion squamigerum (A–W).
Full-size DOI: 10.7717/peerj.8386/fig-3

repeat unites identified, the [TA(A)]n-like sequence occurs many times in the partial
control region assembled.

Phylogenetic analyses
The superfamily Curculionoidea and five of its family-level lineages (Nemonychidae,
Anthribidae, Attelabidae, Brentidae and Curculionidae) were strongly supported (BP ≥
99, PP = 1.0) across all of our analyses (Figs. 4 and 5 and Figs. S4–S7). The Nemonychidae,
represented by a single species of Doydirhynchus austriacus, was placed as a sister group to
all other weevils. In the nucleotide analyses (Figs. 4 and 5 and Figs. S4–S5), the Anthribidae
formed the second splitting group, and followed by the Attelabidae. By contrast, the
Attelabidae branched before Anthribidae in the amino acid trees (Figs. S6–S7). The
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Brentidae was consistently placed as a sister group to Curculionidae in all analyses (BP ≥
98, PP = 1.0).

Within Brentidae, the newly sequenced A. squamigerum was robustly supported
as a sister group to another species of Apioninae (Rhopalapion longirostre). Among the
rest of brentid beetles, two representatives of Nanophyinae formed a sister group. The
classification of the exemplar of Brentidae sp. GENSP01 was ambiguous. The current
taxon sampling was limited to draw conclusions regarding the subfamily relationships in
Brentidae.

Within the family Curculionidae, the Brachycerinae, Platypodinae and Dryophthorinae
were recovered as the basal lineages. The relationships among the remaining curculionid
subfamilies were different across analyses. Most of the curculionid subfamilies represented
by multiple exemplars (Entiminae, Scolytinae, Cryptorhynchinae, Curculioninae and
Cyclominae) were retrieved as non-monophyletic.

DISCUSSION
General features of A. squamigerum mitogenome
For the mitogenome of A. squamigerum, the positions and orientations of protein-coding
genes, ribosomal RNA genes, tRNA genes, and the putative control region are consistent
with the hypothesized ancestral insect (Cameron, 2014a), except for the presence of the
second trnM gene and a ‘supernumerary’ large non-coding region. The analyses of AT-skew
and GC -skew values show that the mitogenome of A. squamigerum has roughly equal A
and T composition. There is a strand asymmetry in the distribution of G and C. The
heavy strand is skewed toward C content. These data are congruent with the usual strand
bias of metazoan mtDNA (positive AT-skew and negative GC-skew for the heavy strand,
(Dermauw et al., 2009).

Two protein-coding genes of nad5 and nad4 end at incomplete (i.e., TA) codons., which
can be completed via posttranscriptional polyadenylation (Ojala, Montoya & Attardi,
1981). The trnS1 gene has an unpaired stretch of 11 nucleotides leading to the absence of
the DHU arm (Fig. 3N). For the rrnL gene, Domain III is missing in the inferred secondary
structure. These patterns are also found in most of other published insect mitogenomes
(Cannone et al., 2002; Cameron, 2014a; Cameron, 2014b).

The only gap in themitogenomeofA. squamigerum occurs in the control region.We tried
to close this gap region using PCR amplification and Sanger sequencing. Unfortunately,
amplification and sequencing failed due to the degeneracy of primers and the poor DNA
quality. Cameron (2014b) suggested that it is often impossible to determine the complete
sequence of the insect control region by PCR amplification and Sanger sequencing. Because
this region has some characteristic structural properties, such as the significantly high A+T
content, the stretch of poly A or poly T, and tandem repeats (Cameron, 2014b). These
characteristics make it difficult to design useful primers for sequencing. Even with NGS
methods, it is still a challenge to reconstruct the control region under both mapping and
assembly softwares (Crampton-Platt et al., 2015).
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The ‘supernumerary’ large non-coding region
The animal mitogenome is typical very small in size, with length of 15–17 kb and few
non-coding nucleotides (Wolstenholme, 1992). Variation in mitochondrial size is generally
a consequence of variation in the length of the non-coding region (Thao, Baumann &
Baumann, 2004). In this paper, the nearly complete mitogenome of A. squamigerum has a
genome length of 18,562 kb, which is larger than average insect mitogenomes. Besides the
control region described above, the presence of a 1,949 bp ‘supernumerary’ non-coding
region between trnI and trnM2 (namely the IGS in Fig. 1) contributes to the larger size of
A. squamigerum mitogenome.

Comparison across weevil mitogenomes published, several species in the family
Curculionidae also have a genome length than 18 kb. Moreover, a ‘supernumerary’
large non-coding region occurred in the mitogenomes of Eucryptorrhynchus scrobiculatus
(Cryptorhynchinae), Curculio sp. SZ-2019 (Curculioninae), Sitophilus zeamais
(Dryophthorinae), Pantoxystus rubricollis (Molytinae), Ips sexdentatus and Pityogenes
bidentatus (Scolytinae) (Fig. S1). The large non-coding region (except the control region)
was also found in other beetle lineages, for example, the families Cerambycidae (Wang et
al., 2019) and Coccinellidae (Song et al., in press). The possible evolutionary mechanisms
behind the ‘supernumerary’ large non-coding region include the slipped-strand mispairing
and random loss model and the duplication/random loss model (Wang et al., 2019).

Higher-level relationships of weevils
At the family level, theNemonychidaewas found to be a sister group to all otherweevils. This
arrangement was congruent with previous studies (Haran, Timmermans & Vogler, 2013;
Timmermans et al., 2015; Shin et al., 2017). The Anthribidae and Attelabidae were placed
in an intermediate position between the Nemonychidae and a large assemblage comprising
Brentidae and Curculionidae. However, the relative position of Anthribidae to Attelabidae
varied depending on the dataset used. Both Brentidae and Curculionidae are angiosperm-
associated groups (Shin et al., 2017), which indicates a close relationship between them.
The analyses based on the mitogenome data consistently supported Brentidae as a sister
group to Curculionidae. This result corroborates previous molecular studies (Marvaldi
et al., 2009; Haran, Timmermans & Vogler, 2013; Gillett et al., 2014; Shin et al., 2017). The
significantly statistical support for the major nodes in Curculionoidea demonstrates that
mitogenome sequences may be useful in resolving deep divergences of weevil beetles.

The classification schemes for the family Curculionidae have been unstable (Haran,
Timmermans & Vogler, 2013; Gillett et al., 2014; Gunter, Oberprieler & Cameron, 2016;
Shin et al., 2017). Definitions of some subfamilies are considered as tentative (Shin et
al., 2017). The Brachycerinae, represented by the sole species of Brachycerus muricatus,
was retrieved as sister to the remaining Curculionidae in the trees inferred from the
nucleotide dataset of PCGRNA (Figs. 4 and 5). This result supported the brachycerid clade
as a distinct family-level lineage (namely Brachyceridae) (Gillett et al., 2014; Mckenna et
al., 2015). In addition, PCGRNA dataset consistently recovered Platypodinae as a sister
group to Dryophthorinae, with the significantly statistical support (BP = 90, PP = 1.0).
This result are consistent with previous analyses based on morphological characters
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(Marvaldi, 1997) or molecular evidence (McKenna et al., 2009; Haran, Timmermans &
Vogler, 2013; Shin et al., 2017; Mugu, Pistone & Jordal, 2018). The analyses of datasets of
PCG and PCG_AA resolved the relationships differently, with Brachycerinae as the sister
group to Platypodinae. Both Brachycerinae and Platypodinae were sister toDryophthorinae
(Figs. S4–S7). Considering the conflicting results between analyses and the non-monophyly
of most subfamilies, additional data are needed to elucidate the positions of the brachycerid
beetles and the subfamily relationships within Curculionidae.

CONCLUSIONS
In the present study,we utilizedNGSdata to reconstruct the nearly completemitogenomeof
the weevil beetleA. squamigerum (Brentidae). The current mitogenome sequences available
for Brentidae are very limited. A. squamigerum mtDNA was only the fifth mitogenome
annotated within 4,000 described species of Brentidae. This mitogenome is very large
(18,562 bp), given the presence of the non-coding intergenic spacers spanning 1,949 bp.
In addition, two trnM genes were identified. The presence of a large intergenic region
and two trnM genes is interesting, further studies are needed to investigate the underlying
mechanisms of the mitochondrial arrangements. The newly determined mitogenome is
also expected to contribute to a better understanding of the phylogenetic relationships and
evolutionary history of weevil beetles. The superfamily Curculionoidea and five families
within it are consistently recovered. The major nodes received the significantly statistical
support. These results suggest that the analysis of mitogenome sequences holds promise
for the resolution of deep divergences of Curculionoidea.
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