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Background . Recent studies have found that probenecid has neuroprotective and
repairing roles for central nervous system (CNS) injury. However, its effect on genome-
wide transcription in acute spinal cord injury (SCI) remains unknown. Therefore, in the
present study, RNA sequencing (RNA-Seq) was used to analyze the effect of probenecid on
the local expression of gene transcription 8 h following injury. Methods. An Infinite
Horizon impactor was used to perform contusive SCI in mice. The SCI model was made by
using a rod (1.3 mm diameter) with a force of 50 Kdynes. Sham-operated (sham) mice only
received a laminectomy without contusive injury. The spinal cord injured mice were
randomly assigned into the control (SCI_C) or probenecid injection (SCI_P) group. The drug
was intraperitoneal injected (0.5mg/kg, intraperitoneally) immediately following injury.
Eight hours after operation, the spinal cords were removed. The total RNAs were extracted
and purified for library preparation and transcriptomesequencing. Differential gene
expressions (DEGs) of three groups were analyzed using the DESeq. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were
performed using GOseq R package and KOBAS. Real-time quantitative reverse-
transcriptase polymerase chain reaction (RT-qPCR) was used to validate RNA-Seq results.
Results. RNA-Seq showed that, as compared with the SCI_C group, the number of DEGs
was 641 in the SCI_P group (286 upregulated and 355 downregulated). According to GO
analysis, DEGs were most enriched in extracellular matrix, collagen trimer, protein
bounding and sequence specific DNA binding. KEGG analysis showed that the most
enriched pathways included Cell adhesion molecules (CAMs), Leukocyte transendothelial
migration, ECM-receptor interaction, PI3K-Akt signaling pathway, Hematopoietic cell
lineage, Focal adhesion, Rap1 signaling pathway, etc. The sequence data have been
deposited into Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA554464).
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34 Abstract
35

36 Background. Recent studies have found that probenecid has neuroprotective and repairing roles 

37 for central nervous system (CNS) injury. However, its effect on genome-wide transcription in 

38 acute spinal cord injury (SCI) remains unknown. Therefore, in the present study, RNA 

39 sequencing (RNA-Seq) was used to analyze the effect of probenecid on the local expression of 

40 gene transcription 8 h following injury.

41 Methods. An Infinite Horizon impactor was used to perform contusive SCI in mice. The SCI 

42 model was made by using a rod (1.3 mm diameter) with a force of 50 Kdynes. Sham-operated 

43 (sham) mice only received a laminectomy without contusive injury. The spinal cord injured mice 

44 were randomly assigned into the control (SCI_C) or probenecid injection (SCI_P) group. The 

45 drug was intraperitoneal injected (0.5mg/kg, intraperitoneally) immediately following injury. 

46 Eight hours after operation, the spinal cords were removed. The total RNAs were extracted and 

47 purified for library preparation and transcriptome sequencing. Differential gene expressions 

48 (DEGs) of three groups were analyzed using the DESeq. Gene Ontology (GO) and Kyoto 

49 Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were performed 

50 using GOseq R package and KOBAS. Real-time quantitative reverse-transcriptase polymerase 

51 chain reaction (RT-qPCR) was used to validate RNA-Seq results.

52 Results. RNA-Seq showed that, as compared with the SCI_C group, the number of DEGs was 

53 641 in the SCI_P group (286 upregulated and 355 downregulated). According to GO analysis, 

54 DEGs were most enriched in extracellular matrix, collagen trimer, protein bounding and 

55 sequence specific DNA binding. KEGG analysis showed that the most enriched pathways 

56 included Cell adhesion molecules (CAMs), Leukocyte transendothelial migration, ECM-receptor 

57 interaction, PI3K-Akt signaling pathway, Hematopoietic cell lineage, Focal adhesion, Rap1 

58 signaling pathway, etc. The sequence data have been deposited into Sequence Read Archive 

59 (https://www.ncbi.nlm.nih.gov/sra/PRJNA554464).

60

61 Introduction
62 Spinal cord injury (SCI) is defined as a variety of injuries to the spinal cord. According to the 

63 severity of injury, the symptoms may vary, ranging from pain to complete loss of movement and 

64 sensory function. SCI affects millions of people worldwide and usually affects patients for life 

65 (Friedli et al. 2015). In the United States, the incidence of SCI ranges from 12,000 to 20,000 

66 cases a year, with more than 280,000 patients sitting in wheelchairs (Singh et al. 2014). In the 

67 past decade, the SCI cases in China have increased tenfold, and now 60,000 cases are increased 

68 every year (Qiu 2009). SCI has a high rate of disability and mortality, which brings heavy burden 

69 to patients, families and society (Krueger et al. 2013). Therefore, it is self-evident to explore the 

70 effective treatment methods for repairing SCI in order to improve the quality of life of patients 

71 and reduce the burden of social medical care.

72 According to the different stages, the pathological processes following traumatic SCI can be 

73 divided into primary injury and secondary injury (Geisler et al. 2002; McDonald & Sadowsky 

74 2002). Primary injury refers to the direct injury of the spinal cord by mechanical force, including 

75 compression, contusion, laceration and penetration. Secondary injury refers to edema, ischemia, 

76 local inflammation and electrolyte changes. These changes can cause accumulation of lipid 

77 peroxides and oxygen free radicals, release of inflammatory factors and proteases, and lead to a 

78 large number of cell apoptosis or necrosis, which further aggravates the damage of neurons and 

79 axons (Ahuja et al. 2017; Oyinbo 2011; Tran et al. 2018).
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80 Probenecid is an organic anion transport protein inhibitor, which has been widely used in clinic 

81 (Hagos et al. 2017; Tollner et al. 2015). For example, probenecid has been used as a synergist in 

82 the treatment of gout and antibiotics (Baranova et al. 2004; Papadopoulos & Verkman 2008). It 

83 can reduce the degree of cognitive impairment in rats with cognitive impairment (Mawhinney et 

84 al. 2011). It can also reverse cerebral ischemic injury and cellular inflammation (Wei et al. 2015; 

85 Xiong et al. 2014). The combination of probenecid and N-Acetylcysteine could produce additive 

86 effects by maintaining intracellular GSH concentrations and inhibiting neuronal death after 

87 traumatic stretch injury (Du et al. 2016). Some studies had reported that probenecid can also 

88 reduce neuropathic pain in the spinal cord (Bravo et al. 2014; Pineda-Farias et al. 2013). 

89 Therefore, these reports indicate that probenecid has neuroprotective and repairing roles for 

90 central nervous system (CNS) injury. However, whether the drug can play a role in SCI and 

91 whether it can affect the gene expression profiles in injured spinal cords remain unknown. 

92 Therefore, in the present study, probenecid was injected intraperitoneally into spinal cord injured 

93 mice immediately after injury. Eight hours after operation, the spinal cords were removed, and 

94 RNA-Seq was used to analyze the changes of transcriptome expression in the injured area, then 

95 the key molecules and signal pathways were screened and identified, and provided new 

96 theoretical and experimental basis for SCI clinical treatment.

97

98 Materials & Methods
99 Animals

100 A total of 27 healthy and clean C57BL/6 female mice (18-20g, 8 weeks old) were used to model 

101 SCI. The animal care and use committee of Bengbu Medical College provided full approval for 

102 this research (037/2017). Animal care following surgery was in compliance with the regulations 

103 for the management of experimental animals (revised by the Ministry of Science and Technology 

104 of China in June 2004), as well as the guidelines and policies on rodent survival surgery 

105 provided by the Animal Care and Use Committee of Bengbu Medical College.

106 Contusive SCI and drug injection

107 An Infinite Horizon impactor (Precision Systems & Instrumentation, Lexington, KY) was used 

108 to perform contusive SCI. The mice were firstly anesthetized with 50 mg/kg pentobarbitally, then 

109 the T9 lamina was excised, the SCI model was created using a rod (1.3 mm diameter) with a 

110 force of 50 Kdynes. Sham-operated (sham) mice only received a laminectomy without contusive 

111 injury.

112 The spinal cord injured mice were randomly assigned to the solvent control (SCI_C) or 

113 probenecid injection (SCI_P) group. The solvent or probenecid (0.5mg/kg) was intraperitoneally 

114 injection immediately following injury. The solution (pH 7.3) was prepared as previously 

115 described (Hainz et al. 2017).

116 RNA isolation, quantification and qualification

117 Eight hours after operation, the mice were anesthetized and perfused with 10 ml PBS, and then 

118 the spinal cords (0.5 cm including the injury center) were removed. The total RNAs from spinal 

119 cords were extracted and purified as previously described (Shi et al. 2017).

120 Library preparation and transcriptome sequencing

121 The sequencing libraries were produced by using NEBNext® Ultra™ RNA Library Prep Kit for 

122 Illumina® (NEB, USA) as previously described (Shi et al. 2017). Finally, the 125 bp/150 bp 

123 paired-end reads were obtained and sequenced on an Illumina Hiseq platform. 

124 Analysis of differentially expressed gene (DEG) 

PeerJ reviewing PDF | (2019:07:39856:1:1:REVIEW 21 Oct 2019)

Manuscript to be reviewed



125 Prior to DEG analysis,, the gene expression statistics were analyzed by using RSEM software 

126 (http://deweylab.biostat.wisc.edu/rsem/) to convert the read count numbers to Fragments Per 

127 Kilobase of transcript per Million fragments mapped (FPKM), and Principal Component 

128 Analysis (PCA) analysis was made to determine the similarity and difference of data. DEGs of 

129 three groups were analyzed as previously described (Shi et al. 2017) by using the DESeq 

130 software (http://www.bioconductor.org/). Benjamini and Hochberg’s approach was used to 

131 control the false discovery rate and adjust the P-values. The adjusted P-value < 0.05 was defined 

132 as a standard for significant differences in gene expression. In addition to FPKM hierarchical 

133 clustering analysis of DEGs, we further analyzed the subclusters based on log2 (ratios) of the 

134 gene expression level relative to that of sham group. The log2 (ratios) in SCI_C group ≥ 1 or ≤ -1 

135 was used as a cut-off for subcluster analysis. The clustering algorithm divided the DEGs which 

136 have similar expression trends into several subclusters. 

137 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 

138 analysis of DEGs

139 The GO and KEGG analysis were performed by using GOseq R package and KOBAS software 

140 as previously described (Shi et al. 2017). In GO analysis, DEGs were implemented by the GOseq 

141 R package, in which gene length bias was corrected. GO terms with corrected P value ≤ 0.05 

142 were considered significantly enriched by DEGs. KEGG is a database resource for understanding 

143 high-level functions and utilities of the biological system (http://www.genome.jp/kegg/). In this 

144 study, we used KOBAS software to test the statistical enrichment of DEGs in KEGG pathways.

145 Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR)

146 To validate RNA-Seq results, 9 DEGs were randomly selected and verified by RT-qPCR 

147 according to our previous methods (Shi et al. 2017). The analysis was performed in 6 samples, 

148 which included 3 independent samples and the 3 same samples used for the RNA-seq analysis. 

149 PCR primer sequences are listed in Table 1. The relative quantitative results of each group of 

150 genes were calculated according to the formula of ΔΔCt (Livak & Schmittgen 2001). The 

151 statistical values (n=6/group) were presented as mean ± standard deviation (SD). The data were 

152 analyzed using one-way ANOVA followed by Student–Newman–Keuls tests. Statistical 

153 differences were considered significant at P < 0.05.

154

155 Results
156 Identification of expressed transcripts the mice spinal cords

157 For the quality assessment of sequencing data, nine cDNA libraries were established, including 

158 sham (sham_1, sham_2 and sham_3), SCI_C (SCI_C1, SCI_C2 and SCI_C3) and SCI_P 

159 (SCI_P1, SCI_P2 and SCI_P3). RNA-Seq produced 48,848,744 - 61,037,096 raw reads for each 

160 sample. After filtering out the low-quality reads, the clean reads were 48,226,002 - 60,037,772, 

161 with the Q30 (%) 93.67 - 94.31 (Table 2).

162 In order to identify the source of variation in the original data, PCA analysis was conducted. As 

163 shown in Fig.1, PC1, PC2 and PC3 were 54.51, 12.33 and 7.09%, respectively. The distance 

164 between SCI_C (or SCI_P) and sham was obvious. Although the distance between SCI_P and 

165 sham is not too far, it is sufficient for the analysis. These demonstrated that the data could be 

166 used for the next analysis.

167 Effect of SCI and probenecid treatment on gene expression

168 RPKM and DEGSeq were used to analyze the gene expression level and differential expression 

169 profiles, respectively. The results showed that, as compared with the sham group, there were 

170 4,617 DEGs inthe SCI_C group, including 2,904 upregulated and 1,713 downregulated genes 
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171 (Fig.2A and Table S1). As compared with the SCI_C group, there were 641 different genes in 

172 the SCI_P group, 286 were upregulated and 355 were downregulated (Fig.2B and Table S1). The 

173 sequence data have been deposited into Sequence Read Archive 

174 (https://www.ncbi.nlm.nih.gov/sra/PRJNA554464). 

175 RT-qPCR identification of DEGs

176 In order to verify the RNA-Seq results, nine DEGs were randomly selected from the SCI_P 

177 group, as compared with the SCI_C group, namely Itga1, Lamb1, Cldn5, Lama2, CD34, Esam, 

178 Setdb2, Agrn and Ccnt2. The RNA-Seq and RT-qPCR results indicated that the expression 

179 patterns of these DEGs were similar (Fig.3).

180 Cluster Analysis of DEGs

181 The DEGs from different groups were analyzed using FPKM hierarchical cluster analysis. As 

182 shown in Fig. 4, DEGs were classified into different expression clusters by hierarchical 

183 clustering. These clusters contained upregulated or downregulated DEGs. Most upregulated 

184 DEGs in the SCI_C group as compared with the sham group, were in the middle and upper 

185 clusters, while downregulated DEGs were observed in the lower cluster. As compared with the 

186 sham group, most upregulated DEGs in the SCI_P group were in the upper cluster, while 

187 downregulated DEGs were mainly observed in the lower cluster. As compared withthe SCI_C 

188 group, some upregulated DEGs in the SCI_P group were observed in upper cluster, while 

189 downregulated DEGs were observed in the middle cluster; there were also some clusters with no 

190 significant differences.

191 In addition to FPKM hierarchical clustering analysis of DEGs, the subclusters which have 

192 similar expression trends were further analyzed. The log2 (ratios) in SCI_C group ≥ 1 or ≤ -1 

193 was used as a cut-off for subcluster analysis. As shown in Fig. 5, we found several subclusters 

194 with similar expression trends. Based on log2 (ratios) of the gene expression level relative to that 

195 of sham group, the log2 (ratios) of all gene expression levels in sham group were zero. Fig. 5 A 

196 and B showed that the two subclusters were strongly upregulated following SCI, and then 

197 downregulated upon probenecid treatment. Fig. 5 C and D showed that the two subclusters were 

198 strongly downregulated following SCI, and then upregulated upon probenecid treatment. In Fig. 

199 5A, six genes (Cybb, Esam, Itgam, Itgb2, Msn and Ncf2) were involved in the leukocyte 

200 transendothelial migration signaling pathway; six genes (Col4a1, Erbb2, Flt4, Nos3, Syk and 

201 Thbs4) were involved in the PI3K-Akt signaling pathway. In Fig. 5B, three genes (Cyba, Ncf1 

202 and Rac2) were involved in the NADPH oxidases; two genes (Cflar and Tnfrsf10b) were 

203 involved in the TRAIL signaling pathway; eight genes (Cd63, Cyba, Ddx58, Fcer1g, Lyn, Myh9, 

204 Ncf1 and Psmb8) were involved in the innate immune system. In Fig. 5C and D, no gene can be 

205 clustered into valuable signaling pathways.

206 Go enrichment analysis of DEGs

207 As compared with the sham group, there were seventy-eight GO terms in upregulated DEGs 

208 (Fig.6A, Table S2) and nine GO terms in downregulated DEGs (Fig.6B, Table S2) in the SCI_C 

209 group. The upregulated DEGs were most enriched in binding, protein binding, chemokine 

210 activity, chemokine receptor binding, G-protein coupled receptor binding, anion binding, small 

211 GTPase mediated signal transduction, immune system process, immune response, etc. The 

212 downregulated DEGs were most enriched in protein binding, binding, extracellular-glutamate-

213 gated ion channel activity, acid phosphatase activity, transporter activity, mannose metabolic 

214 process, excitatory extracellular ligand-gated ion channel activity, transmembrane transporter 

215 activity, anion transmembrane and transporter activity. In SCI_P group, we observed three GO 

216 terms in downregulated DEGs (Fig.6C, Table S3) and no valuable terms in upregulated DEGs 

PeerJ reviewing PDF | (2019:07:39856:1:1:REVIEW 21 Oct 2019)

Manuscript to be reviewed



217 (Table S3) as compared with the SCI_C group.  The downregulated DEGs were protein binding, 

218 binding and sequence-specific DNA binding.

219 KEGG enrichment analysis of DEGs

220 Scatter plot were used to express the KEGG enrichment analysis results for the DEGs. As 

221 compared with the sham group, the upregulated DEGs in the SCI_C group were most enriched in 

222 TNF, NF-kappa B, cytokine-cytokine receptor interaction, Toll-like receptor, Leukocyte 

223 transendothelial migration, PI3K-Akt, Focal adhesion, apoptosis, etc. (Fig.7A, Table S4); the 

224 downregulated DEGs were most enriched in glutamatergic synapse, basal cell carcinoma, axon 

225 guidance, other glycan degradation and nicotine addiction (Fig.7B, Table S4). In the SCI_P 

226 group vs SCI_C group, only “ECM-receptor interaction” was enriched in the upregulated DEGs 

227 (Fig.7C, Table S5); the downregulated DEGs were enriched in cell adhesion molecules (CAMs), 

228 malaria, leukocyte transendothelial migration, ECM-receptor interaction, PI3K-Akt signaling 

229 pathway, hematopoietic cell lineage, focal adhesion, Rap1 signaling pathway and amoebiasis 

230 (Fig.7D, Table S5).

231

232 Discussion
233 Recent studies have shown that probenecid has neuroprotective and repairing effects in the 

234 process of brain disorders (Wei et al. 2015; Xiong et al. 2014). However, its effect on genome-

235 wide transcription in acute spinal cord injury (SCI) is still unknown.  Therefore, in this study, 

236 RNA-Seq was used to analyze the effect of probenecid on the local expression of gene 

237 transcription eight hours after SCI. The results showed that, as compared with the sham group, 

238 there were 4,617 DEGs in the SCI_C group, including 2,904 upregulated and 1,713 

239 downregulated genes. As compared with the SCI_C group, there were 641 DEGs in the SCI_P 

240 group, 286 were upregulated and 355 were downregulated. These are consistent with others and 

241 our previous reports (Chen et al. 2013; Shi et al. 2017). It also shows that the results of this 

242 experiment are reliable. As compared with the SCI_C, there were 641 DEGs in theSCI_P group, 

243 286 were upregulated and 355 were downregulated. To further verify the RNA-seq results, we 

244 randomly selected 9 DEGs (Itga1, Lamb1, Cldn5, Lama2, CD34, Esam, Setdb2, Agrn and 

245 Ccnt2) for RT-qPCR. The results showed that the expression patterns of these genes detected by 

246 these two methods were similar, indicating that our RNA-seq results are reliable and can be used 

247 for subsequent analysis. These also confirmed that probenecid can alter gene transcription after 

248 SCI. 

249 In order to further analyze the DEGs effected by probenecid, we used GO enrichment which can 

250 reflect the distribution of DEGs on GO term enriched in cell components, molecular functions 

251 and biological processes (Huang et al. 2013). In the SCI_P vs SCI_C group, the analysis showed 

252 that there were 3 GO terms in downregulated DEGs (protein binding, binding and sequence-

253 specific DNA binding) and no valuable terms in upregulated DEGs. KEGG analysis showed that 

254 the valuable signaling pathways associated with these DEGs included CAMs, leukocyte 

255 transendothelial migration, ECM-receptor interaction, PI3K-Akt signaling pathway, 

256 hematopoietic cell lineage, focal adhesion, Rap1 signaling pathway, etc.

257 Among these signal pathways, some have been reported to be related to SCI, such as CAMs 

258 (Brook et al. 2000; Zhang et al. 2008), ECM-receptor interaction (Zhou et al. 2017), PI3K-Akt 

259 signaling pathway (Li et al. 2019a; Li et al. 2019b; Zhang et al. 2017) and focal adhesion 

260 (Chuang et al. 2018; Graham et al. 2016; Hao et al. 2018). 

261 Following SCI, probenecid treatment could downregulate some genes, subclusters and signaling 

262 pathways. Leukocyte transendothelial migration from the blood into tissues is vital for immune 
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263 surveillance and inflammation (Cook-Mills 2006).There is a large amount of leukocyte 

264 infiltration in the pathological process of SCI. The infiltration of leukocytes need bind to 

265 endothelial cell adhesion molecules and then migrate between vascular endothelial cells (Wang 

266 et al. 2011). Therefore, the inhibition of leukocyte transendothelial migration and CAMs induced 

267 by probenecid may play a role in inhibiting inflammation by weakening the infiltration of white 

268 blood cells in the injured area. In this study, we clustered six genes (Cybb, Esam, Itgam, Itgb2, 

269 Msn and Ncf2) involved in this pathway. Their expression is strongly downregulated following 

270 SCI, and then upregulated upon probenecid treatment. This just proves that probenecid treatment 

271 following SCI can play an anti-inflammatory role by inhibiting the infiltration of inflammatory 

272 cells.

273 The ECM plays an important role in tissue and organ morphogenesis (Bonnans et al. 2014; 

274 Rabelink et al. 2017) and control of cellular activities such as adhesion, migration, 

275 differentiation, proliferation and apoptosis (Yue 2014). Focal adhesions are specialized 

276 intracellular sites in which aggregated integrin receptors interact with extracellular matrices, 

277 while extracellular matrices interact with intracellular actin cytoskeleton (Burridge 2017; 

278 LaFlamme et al. 2018). At the same time, focal adhesions are the result of cell-extracellular 

279 matrix (ECM) interactions (Burridge 2017; De Pascalis & Etienne-Manneville 2017). ECM and 

280 Focal adhesions are downregulated after probenecid treatment, indicating that probenecid might 

281 improve SCI by inhibiting adhesion, migration, differentiation, proliferation and apoptosis.

282 It has been reported that PI3K-Akt signaling fuses a variety of extracellular and intracellular 

283 signal transduction pathways that regulate macrophage biology, including the production of pro-

284 inflammatory cytokines, phagocytosis, autophagy and homeostasis (Vergadi et al. 2017). PI3K-

285 Akt signal pathway is downregulated in SCI after probenecid treatment, and there are six genes 

286 (Col4a1, Erbb2, Flt4, Nos3, Syk and Thbs4) being clustered into this pathway, indicating that 

287 probenecid might improve SCI by regulating macrophages and inhibiting inflammatory 

288 pathways. This is likely to provide important clues into the mechanism of action of probenecid.

289 The relationship between hematopoietic cell lineage pathway and SCI was found in a report on 

290 the bioinformatics analysis of SCI (Zhu et al. 2017). Its specific role has not been reported yet, 

291 and deserves further discussion.

292 Rap1 signal pathway plays an important role in regulating cell-cell and cell-matrix interactions 

293 by regulating the function of adhesion molecules (Kim et al. 2011; Pollan et al. 2018). In our 

294 study, Rap1 signaling pathway was enriched in downregulated DEGs of SCI after probenecid 

295 treatment, suggesting that probenecid may inhibit cell adhesion and polarization by inhibiting the 

296 Rap1 signaling pathway, thereby inhibiting inflammation.

297 In addition, three genes (Cyba, Ncf1 and Rac2) related to the NADPH oxidases, two genes (Cflar 

298 and Tnfrsf10b) related to the TRAIL signaling pathway and eight genes (Cd63, Cyba, Ddx58, 

299 Fcer1g, Lyn, Myh9, Ncf1 and Psmb8) related to the innate immune system were also strongly 

300 downregulated following probenecid treatment. We know that NADPH oxidases is involved in 

301 oxidative stress, TRALL signaling pathway mediates inflammation and apoptosis, and the 

302 immune system is involved in almost all pathological processes of injury (Chyuan et al. 2018; 

303 Ewald 2018; Tisato et al. 2018). Therefore, probenecid treatment can play a neuroprotective role 

304 by inhibiting immune response, oxidative stress, anti-inflammation and anti-apoptosis after SCI.

305 Conclusions
306 Acute SCI can lead to changes of mRNAs in injured spinal cords. These mRNAs and their 

307 related pathways could provide some explanations for the pathological mechanism of acute SCI. 

308 More interestingly, we also demonstrated that probenecid can lead to gene expression inhibitions 
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309 in the acute injured spinal cord. These downregulated DEGs and their associated signaling 

310 pathways, such as focal adhesion, leukocyte transendothelial migration, ECM-receptor 

311 interaction, PI3K-Akt, Rap1, are mainly related to inflammatory response, local hypoxia, 

312 macrophage differentiation, adhesion migration and apoptosis of local cells. This suggests that 

313 the application of probenecid in acute phase can improve the local microenvironment of SCI. 

314 However, whether probenecid can be used as a therapeutic drug for SCI still needs to be further 

315 explored. Next, the detailed research on this subject will be conducted by combining animal 

316 models and clinical practice.

317
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464 Figure 1 PCA analysis
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466 PCA analysis was performed using three principal components (PC1, 2, and 3) to demonstrate the 

467 source of variance (n=3).
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469 Figure 2 Volcano map of DEGs

470

471 Red, green and blue dots represent significantly upregulated, downregulated and no changed gene 

472 expressions, respectively. (A) SCI_C vs Sham; (B) SCI_P vs SCI_C.
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474 Figure 3 RT-qPCR verification of DEGs characterized by RNA-Seq

475

476 A: The longitudinal coordinates in RNA-Seq were the mRNA expression level (read counts, n = 

477 3). B: The longitudinal coordinates in RT-qPCR were the mRNA expression level calculated using 

478 the ΔΔCt method and expressed relative to the value in the sham group (designated as 1). All data 

479 were calculated with mean ± standard deviation (n = 6, which included 3 independent samples and 

480 the 3 same samples used for the RNA-seq analysis). **P < 0.01 (ANOVA).

481

482 Figure 4 Hierarchical cluster analysis of DEGs

483

484 The DEGs in different groups were analyzed using FPKM hierarchical cluster analysis. The read 

485 count numbers of FPKM were converted by RSEM software. DEGs were classified into different 

486 expression cluster by hierarchical clustering. The colour scheme (red to blue) represents the up to 

487 down of the gene expression. sham: sham group; SCI_C: SCI (solvent control) group; SCI_P: SCI 

488 (probenecid) group.
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491 The subclusters of DEGs which have similar expression trends were further analyzed. The log2 

492 (ratios) in SCI_C group ≥ 1 or ≤ -1 was used as a cut-off. Based on log2 (ratios) of the gene 

493 expression level relative to that of sham group, the log2 (ratios) of all gene expression levels in 

494 sham group were zero. A and B: the two subclusters which were strongly upregulated following 

495 SCI, and then downregulated upon probenecid treatment. C and D: the two subclusters which 

496 were strongly downregulated following SCI, and then upregulated upon probenecid treatment.
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498 Figure 6 GO enrichment analysis of DEGs
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500 DEGs were implemented by the GOseq R package, in which gene length bias was corrected. GO 

501 terms with corrected P value ≤ 0.05 were considered significantly enriched by DEGs. The asterisk 

502 (*) represent significant enrichment terms (P ≤ 0.05). A: GO analysis of upregulated DEGs in 

503 SCI_C vs sham group; B: GO analysis of downregulated DEGs in SCI_C vs sham group; C: GO 

504 analysis of downregulated DEGs in SCI_P vs SCI_C group.
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506 Figure 7 KEGG enrichment analyses of DEGs
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508 KOBAS software was used to test the statistical enrichment of DEGs in KEGG pathways. In this 

509 figure, KEGG enrichment is measured by Rich factor, Qvalue and the number of genes enriched 

510 in the related pathway. Rich factor refers to the ratio of the number of differentiated genes 

511 (sample number) enriched in the pathway to the number of annotated genes (background 

512 number). The larger the Rich factor, the greater the degree of enrichment. Qvalue is the Pvalue 

513 after multiple hypothesis test correction. The range of Qvalue is between 0 and 1. The closer the 

514 Qvalue is to 0, the more significant the enrichment is. The KEGG pathways were shown in A: 

515 upregulated DEGs (SCI_C vs sham); B: downregulated DEGs; C: upregulated DEGs (SCI_P vs 
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Figure 1
Figure 1 PCA analysis

PCA analysis was performed using three principal components (PC1, 2, and 3) to demonstrate
the source of variance (n=3).
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Figure 2
Figure 2 Volcano map of DEGs

Red, green and blue dots represent significantly upregulated, downregulated and no changed
gene expressions, respectively. (A) SCI_C vs Sham; (B) SCI_P vs SCI_C.
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Figure 3
Figure 3 RT-qPCR verification of DEGs characterized by RNA-Seq

A: The longitudinal coordinates in RNA-Seq were the mRNA expression level (read counts, n
= 3). B: The longitudinal coordinates in RT-qPCR were the mRNA expression level calculated

using the ΔΔCt method and expressed relative to the value in the sham group (designated as
1). All data were calculated with mean ± standard deviation (n = 6, which included 3
independent samples and the 3 same samples used for the RNA-seq analysis). **P < 0.01
(ANOVA).
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Figure 4
Figure 4 Hierarchical cluster analysis of DEGs

The DEGs in different groups were analyzed using FPKM hierarchical cluster analysis. The
read count numbers of FPKM were converted by RSEM software. DEGs were classified into
different expression cluster by hierarchical clustering. The colour scheme (red to blue)
represents the up to down of the gene expression. sham: sham group; SCI_C: SCI (solvent
control) group; SCI_P: SCI (probenecid) group.
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Figure 5
Figure 5 Subcluster analysis of DEGs

The subclusters of DEGs which have similar expression trends were further analyzed. The
log2 (ratios) in SCI_C group ≥ 1 or ≤ -1 was used as a cut-off. Based on log2 (ratios) of the
gene expression level relative to that of sham group, the log2 (ratios) of all gene expression
levels in sham group were zero. A and B: the two subclusters which were strongly
upregulated following SCI, and then downregulated upon probenecid treatment. C and D: the
two subclusters which were strongly downregulated following SCI, and then upregulated
upon probenecid treatment.
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Figure 6
Figure 6 GO enrichment analysis of DEGs

DEGs were implemented by the GOseq R package, in which gene length bias was corrected.
GO terms with corrected P value ≤ 0.05 were considered significantly enriched by DEGs. The
asterisk (*) represent significant enrichment terms (P ≤ 0.05). A: GO analysis of upregulated
DEGs in SCI_C vs sham group; B: GO analysis of downregulated DEGs in SCI_C vs sham
group; C: GO analysis of downregulated DEGs in SCI_P vs SCI_C group.
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Figure 7
Figure 7 KEGG enrichment analyses of DEGs

KOBAS software was used to test the statistical enrichment of DEGs in KEGG pathways. In
this figure, KEGG enrichment is measured by Rich factor, Qvalue and the number of genes
enriched in the related pathway. Rich factor refers to the ratio of the number of differentiated
genes (sample number) enriched in the pathway to the number of annotated genes
(background number). The larger the Rich factor, the greater the degree of enrichment.
Qvalue is the Pvalue after multiple hypothesis test correction. The range of Qvalue is
between 0 and 1. The closer the Qvalue is to 0, the more significant the enrichment is. The
KEGG pathways were shown in A: upregulated DEGs (SCI_C vs sham); B: downregulated
DEGs; C: upregulated DEGs (SCI_P vs SCP_C); D: downregulated DEGs (SCI_C vs sham).
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Table 1(on next page)

Table 1 PCR primersused in the study
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1 Table 1 Real-time PCR primers used in the study 

2
Gene Forward primer 5' - 3' Reverse primer 5' - 3'

Itga1 TCAGTGGAGAGCAGATCGGA CCTCGTCTGATTCACAGCGT

lamb1 TGCCTTTTCTCCCCGCTACC CCATGTCCAGTCCTCGCAGA

Cldn5 TTCTATGATCCGACGGTGCC CTTGACCGGGAAGCTGAACT

CD34 ACCACAGACTTCCCCAACTG CATATGGCTCGGTGGGTGAT

lama2 GCATTAGTGAGCCGCCCTAT TCTTTCAGGTCTCGTGTGGC

Esam AGACTCTGGGACTTACCGCT GGTCACATTGGTCCCGACAT

Setdb2 CCACAAATGGAGATCATACACCT GCAGTGGGGCTTCCTTTTTC

Agrn CTCTGCCACTGGAACACAGA GGAAAAGCAGCACCGCAAAG

Ccnt2 AGCAAGGATTTGGCACAGAC CTCTAGGGTAACCGTGGGGT

beta-actin AGAAGCTGTGCTATGTTGCTCTA ACCCAAGAAGGAAGGCTGGAAAA
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Table 2(on next page)

Table 2 Summary of sequence assembly after Illumina sequencing

Sham: Sham_1, Sham_2, Sham_3; SCI (solvent control): SCI_C1, SCI_C2, SCI_C3; SCI
(probenecid): SCI_P1, SCI_P2, SCI_P3; Q20: The percentage of bases with a Phred value > 20;
Q30: The percentage of bases with a Phred value > 30.
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1 Table 2 Summary of sequence assembly after Illumina sequencing

2

Sample 

name
Raw reads Clean reads

clean 

bases

Error 

rate (%)

Q20 

(%)

Q30 

(%)

GC content 

(%)

Sham_1 56509230 55796658 8.37G 0.03 97.73 93.95 51.23

Sham_2 48848744 48226002 7.23G 0.03 97.6 93.67 51.71

Sham_3 58228350 57459748 8.62G 0.03 97.67 93.78 51.42

SCI_C1 58862872 58126844 8.72G 0.03 97.88 94.31 51.39

SCI_C2 56980070 56166058 8.42G 0.03 97.74 94.03 51.42

SCI_C3 59804518 58798224 8.82G 0.03 97.63 93.74 51.02

SCI_P1 54853344 53996254 8.1G 0.03 97.72 93.91 50.93

SCI_P2 56322736 55540308 8.33G 0.03 97.87 94.27 50.94

SCI_P3 61037096 60037772 9.01G 0.03 97.71 93.89 50.92

3 Sham: Sham_1, Sham_2, Sham_3; SCI (solvent control): SCI_C1, SCI_C2, SCI_C3; SCI (probenecid): SCI_P1, SCI_P2, 

4 SCI_P3; 

5 Q20: The percentage of bases with a Phred value > 20;

6 Q30: The percentage of bases with a Phred value > 30.

7
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