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ABSTRACT
Background. Endometrial carcinoma (EC) and serous ovarian carcinoma (OvCa) are
both among the common cancer types in women. EC can be divided into two subtypes,
endometroid EC and serous-like EC, with distinct histological characterizations and
molecular phenotypes. There is an increasing awareness that serous-like EC resembles
serous OvCa in genetic landscape, but a clear relationship between them is still lacking.
Methods. Here, we took advantage of the large-scale molecular profiling of The Cancer
Genome Atlas(TCGA) to compare the two EC subtypes and serous OvCa. We used
bioinformatics data analytic methods to systematically examine the somatic mutation
(SM) and copy number alteration (SCNA), gene expression, pathway activities, survival
gene signatures and immune infiltration. Based on these quantifiable molecular
characterizations, we asked whether serous-like EC should be grouped more closely
to serous OvCa, based on the context of being serous-like; or if should be grouped
more closely to endometroid EC, based on the same organ origin.
Results. We found that although serous-like EC and serous OvCa share some common
genotypes, including mutation and copy number alteration, they differ in molecular
phenotypes such as gene expression and signaling pathway activity. Moreover, no
shared prognostic gene signature was found, indicating that they use unique genes
governing tumor progression. Finally, although the endometrioid EC and serous
OvCa are both highly immune infiltrated, the immune cell composition in serous
OvCa is mostly immune suppressive, whereas endometrioid EC has a higher level
of cytotoxic immune cells. Overall, our genetic aberration and molecular phenotype
characterizations indicated that serous-like EC and serous OvCa cannot be simply
treated as a simple ‘‘serous’’ cancer type. In particular, additional attention should be
paid to their unique gene activities and tumor microenvironments for novel targeted
therapy development.

Subjects Bioinformatics, Genomics, Gynecology and Obstetrics, Oncology, Women’s Health
Keywords Ovarian cancer, Endometrial Cancer, TCGA, Multiomics

INTRODUCTION
Endometrial carcinoma (EC) and ovarian carcinoma (OvCa) are two common female
cancers, accounting for 4th and 5th-leading causes of cancer death among women in
the United States (Siegel, Miller & Jemal, 2019). EC can be divided into two subgroups, a
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type I endometrioid tumors and a type II serous-like tumor (Getz et al., 2013). Compared
to type I EC, type II serous-like EC was characterized with a more advanced stage and
worse outcome. As for ovarian cancers, high grade OvCa serous tumors account for the
most cancer death (Matulonis et al., 2016). Previous studies have identified similar genetic
aberrations among serous-like EC and serous OvCa (Getz et al., 2013). For example, both
serous-like EC and serous OvCa have frequent TP53mutation, whereas type I endometroid
EC does not. Also, serous-like EC and serous OvCa are both featured with chromosome
instability and copy number alteration (CNA), compared to very few CNA events in
type I endometroid EC. These findings suggest that they might be caused by similar
oncogenic drivers and more importantly, share commonmolecular mechanisms for tumor
progression.

In recently years, an idea in understanding and targeting cancer for treatment has been
brought up that cancers need to be classified by genetic similarity rather than tissue or
organ origins (Heim et al., 0000; Margolin et al., 2014). The rationale of such classification
is that, cancer types sharing similar cancer genetic drivers and progression mechanisms are
more likely to be targeted using common drugs, regardless of their tissue- or organ-origin
(Aggarwal, 2010). Following this rule, there is a possibility that type II serous-like ECmight
be classified together with serous OvCa, instead of being classified with type I endometroid
cancer. The current treatment strategies also reflect such similarities: both serous-like EC
and serous OvCa are commonly treated with platinum- or taxane-based chemotherapies,
although the responsiveness varies (Moxley & McMeekin, 2010; Brasseur, Gévry & Asselin,
2017; Cortez et al., 2018). In comparison, type I endometroid cancer is more frequently
treated with adjuvant radiotherapy (Hopkins Hospital et al., 2017). Also, there is not a
single targeted therapy that works well for serous-like EC and serous OvCa, but type I
endometroid EC patients might be treated with immunotherapy (Piulats & Matias-Guiu,
2016). This is because some endometroid EC tumors are featured with microsatellite
instability (MSI) and genomic hypermutation, which can be translated into neoantigens
to attract cytotoxic immune infiltration. Therefore, it is extremely useful to have a deeper
understanding of serous-like EC and OvCa. In particular, whether these two cancer types
are similar enough to be categorized together (bypassing the different tissue origins) and
be treated by common anti-tumor drug target identification needs to be clearly defined.

The Cancer Genome Atlas (TCGA) has generated large-scale omics data for more than
32 cancer types (Wang, Jensen & Zenklusen, 2016). The high-throughput profiling effort
has led to unprecedent understanding of somatic mutation, copy number changes, gene
expression and other molecular phenotypes of each tumor type. Moreover, the TCGA data
also provide a unique chance to compare the genetic aberrations across different cancer
types and even allow for pan-cancer studies. For instance, a recent study used TCGA
large-scale data to compare gynecologic cancers and breast cancer (Berger et al., 2018). By
unsupervised analyses, this study revealed that a subset of EC samples, particularly those
belonging to serous-like EC, can be clustered together with OvCa in genetic aberration
and gene expression. One potential drawback for this type of ‘‘pan-cancer’’ analyses,
however, is that the involvement of too many cancer types might compromise the ability
to distinguish some subtle yet significant differences across some specific cancer types. To
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Table 1 The sample size (N) for each omics data type. Numbers in parentheses indicate the overlap of
each omics data size with the clinical data.

Cancer types Endometroid EC Serous-like EC Serous OvCa
Data type

Clinical data N = 411 N = 115 N = 587
Data type RNA expression N = 409 (409) N = 114 (114) N = 308 (303)
Somatic copy number alternation N = 391 (391) N = 110 (110) N = 436 (436)
Somatic mutation N = 293 (293) N = 65 (52) N = 549 (538)

our best knowledge, there has not been a study focusing on a ‘‘side-by-side’’ comparison
of the two types of EC and OvCa, which share very close cancer tissue origin and tissue
development (Mullen & Behringer, 2014; Hoadley et al., 2018a).

Here, we take advantage of the large-scale multi-omics data generated from TCGA
and perform a comprehensive comparison of molecular profiles among endometroid
EC (N = 411), serous-like EC (N = 115) and serous OvCa (N = 587) (see Table 1). We
found that although serous-like EC and serous OvCa share some common genetic drivers,
they differ in multiple biological processes, including pathway activity, prognostic gene
signature and immune cell infiltration. We conclude that serous-like EC and serous OvCa
use different molecular mechanisms to progress and therefore, targeted therapies based on
gene and pathway functions should be uniquely adapted to counter each of them.

MATERIALS & METHODS
Data download
The TCGA data were downloaded by the R package ‘‘TCGAbiolinks’’(Colaprico et al.,
2016), except that the pre-normalized RNA-seq (RSEM) data were downloaded from
Broad GDAC Firehose (https://gdac.broadinstitute.org/). All the data were formatted as
data matrices in R. The RNA-seq data were combined and re-normalized together using
upper-quantile normalization (Bullard et al., 2010). For missing values of RNA expression
( < 5% of all the RNA expression matrix entries), K-nearest neighbor (KNN) method
(implemented in the ‘‘DMwR’’ R package version 0.4.1) was used to impute them.

Somatic copy number alternation (SCNA) and somatic mutation (SM)
For SCNA analysis, all the segment-level log2 ratios were plotted out as a heatmap (Fig. 1A)
to reflect the genome-wide SCNA profiles for these three cancer types. To quantify the
chromosome instability, we used a previously published method (Vasaikar et al., 2019)
that sums up the absolute segment-level log2 ratios for all the segments located in the same
chromosome arm, while the segment lengths were weighted during the summation. The
arm-level SCNAs were used to reflect the chromosome instability for these three cancer
types.

For the SM analysis, the genome-wide mutation burden was inferred by summing all
the recorded SM events (i.e., the sum of all the mutation sites across all genes) within the
TCGAMutation Annotation Format (MAF) files, regardless the location of the SM events.
This was essentially the same way used by the R package ‘‘maftools’’ (Mayakonda et al.,
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Figure 1 The somatic copy number alternation (SCNA) of the three cancer types. (A) Heatmap show-
ing the SCNA landscape. Each row corresponds to one TCGA sample while each column corresponds
to one chromosome. (B) PCA plot displaying the quantifications of all chromosome instabilities (i.e.,
summarized genome-wide total SCNAs) for these three cancer types. (C) Box plot comparing the arm-
level amplification and deletion for all the 22 autosomes. Note that for every arm, the SCNA strength is
weaker in endometroid EC compared to serous-like EC or serous OvCa. The star marks (*) denote the
arms whose SCNAs are stronger in serous OvCa compared to serous-like EC (adjusted p value < 0.05,
Student’s t -test). (D–E) The comparison of summarized genome-wide SCNA strengths (amplification and
deletion, respectively) across the three cancer types. P values were resulted from Student’s t -test.

Full-size DOI: 10.7717/peerj.8347/fig-1

2018), and has been similarly adopted in previous studies (Rooney et al., 2015; Li et al.,
2016). The most frequently mutated genes were also summarized from the MAF files.

To check the major genetic events (i.e., ‘‘copy-number driven’’ vs. ‘‘mutation-driven’’)
driving these three cancer types (Ciriello et al., 2013), we calculated the copy number
alteration rates andmutation rates for themost significant oncogenic and tumor suppressor
genes (∼200) identified in the previous pan-cancer study (Ciriello et al., 2013). One-side
Kolmogorov–Smirnov test (i.e., ‘‘greater’’ vs. ‘‘less’’) was performed to determine the
genetic event dominating the given cancer type.

RNA expression and Pathway activity inference
To investigate the gene expressional similarity between any two of the three cancer types, we
used sample-wise Spearman’s correlation to compute the correlation coefficents between
any sample pair across different tumor types. We used the tissue-specific (i.e., uterus
and ovary) genes that were summarized previously (Liu et al., 2008) to detect the tissue
specificity of these cancer types (Table S1). Single sample GSEA (ssGSEA) algorithm (Barbie
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et al., 2009) implemented in the R package ‘‘GSVA’’ (version 3.6) (Hanzelmann, Castelo
& Guinney, 2013) was used to summarize the overall tissue-specific gene expression and
calculate the pathway activity for the hallmark pathways (Liberzon et al., 2015). One-way
ANOVA was used to select variable pathways across the three cancer types (adjusted p
value < 0.01), and the Benjamini and Hochberg (BH) method (Benjamini & Hochberg,
1995) was used to adjust the multi-testing p values.

Survival analysis
Weused univariate Cox proportional-hazards (PH) regression (the ‘‘coxph’’ function in the
R package ‘‘survival’’, version 2.44) (Terry & Therneau, 2019) to quantify the contribution
of each gene expression to survival outcome for the three cancer types. To infer the pathways
that were enriched with prognostic genes, we extract the Cox PH regression coefficients
from the models and rank them from low (worst prognostic) to high (best prognostic)
and used GSEA (Subramanian et al., 2005) implemented in WebGestalt (Liao et al., 2019)
to identify the KEGG pathways enriched with bad prognostic or good prognostic genes
(FDR < 0.01). We used log-rank test to determine the significance of association between
a given gene and survival outcome. In this survival test, the samples were dichotomized to
‘‘low’’ and ‘‘high’’ expression groups based on the median expression of the gene.

Immune infiltration and composition inference
We used ESTIMATE (Yoshihara et al., 2013) to infer the overall immune and stromal
infiltration and CIBERSORT (Newman et al., 2015) to infer the detailed immune
composition for the three cancer types. Both of these two tools utilize the normalized
RNA expression. To simplify immune cell analysis and provide a more straightforward
results, we employed a similar strategy as the one used previously to combine all theNK cells
and macrophages from different NK cell subtypes and macrophage subtypes (Thorsson et
al., 2018). The prognostic value of CD8 T cells was inferred using log-rank test as described
above.

Statistics
The statistical approaches were described partially in the text and the Method sections
above. For any tests that have not been covered, the between-group difference was tested
by student-t test, and variability among three groups was tested by one-way ANOVA. The
pathway enrichment was tested by GSEA imputation. The survival association was tested by
log-rank test. A p value less than 0.01 (or adjusted p value in multi-testing) was considered
as statistically significant. All the data processing and statistical analysis were performed
under the R computing environment (R 3.6.0).

RESULTS
Copy number alteration
We first examined the somatic copy number alteration (SCNA), one of the major genetic
events driving tumorigenesis. Consistent with previous report (Getz et al., 2013; Berger
et al., 2018), we identified very similar SCNA patterns for EC and OvCa. While type I
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endometroid EC has few SCNA events, serous-like EC and OvCa are both featured by high
SCNA profiles. They both have obvious 3q, 5p, 8q and 20 p and 20q gain and 4q, 5q and 16q
loss (Fig. 1A). Type I endometroid EC samples, on the other hand, are only characterized by
1q gain and no obvious arm-level loss. We further quantified the chromosome instability
from all the arm level SCNAs (method) and found that serous-like EC and serous OvCa
are more similar to each other than endometroid EC (Fig. 1B).

Furthermore, we systematically compared copy number gain and loss across all the
autosomes and found that for all the quantifiable chromosome arms, both gain and loss are
significantly stronger in the two serous cancer types than endometroid EC (adjusted p value
< 0.05, Student’s t -test Fig. 1C). Interestingly, while the two serous cancer type have similar
levels of copy number gain, OvCa has even stronger copy number loss (Figs. 1C–1E) than
serous-like EC. Representative chromosome arms include chromosome 4p and 4q (adjusted
p value < 0.05, Student’s t -test). Chromosome 4 is enriched with tumor suppressor genes
and SCNA events related with this chromosome have been linked to several types of
cancer (Wang et al., 1999; Shivapurkar et al., 1999; Singh et al., 2007). Indeed, we identified
multiple tumor suppressor genes encoded in chromosome 4, including CASP3, FBXW7
and TET2 that were not only show differential loss comparing serous EC to endometroid
EC, but also show additional loss in serous OvCa (Fig. S1).

Somatic mutation
Next, we examined the somatic mutation (SM) profile in these three cancer types and also
the SM genes. The endometroid EC displayed a higher genome-wide somatic mutation
burden than serous-like EC and serous OvCa (Fig. 2A). This was expected, due to that
some of endometroid EC tumors have microsatellite instability, which causes large amount
of somatic mutation (Getz et al., 2013). As for gene-level SM, the frequently muted genes
for serous-like EC and OvCa both include TP53, MUC16, FLG and AHNAK. Notably,
except TP53, almost all other mutated genes have frequencies less than 25%, suggesting
that these two cancer types are belong to ‘‘copy number-driven’’ cancer (Ciriello et al.,
2013). In comparison, the top mutated genes in endometroid cancers have much higher
frequencies, including PTEN, ARID1A, PIK3CA, PIK3R1, MUC16 and KMT2D, but not
TP53 (Figs. 2B–2D). The high mutation burden and frequently mutated genes indicate
that at least some endometroid EC tumors belong to ‘‘mutation-driven’’ cancer (Ciriello et
al., 2013).

To further confirm our observation, we isolated the most significant somatic mutated
genes identified in the previous pan-cancer study (Ciriello et al., 2013). We further
compared the SCNA and somatic mutation frequencies for these genes within these
three cancer types (Figs. 2E–2G). As expected, while endometroid EC has substantial
number of these genes being more mutated than copy-number changed, the two serous
cancer types have dominantly copy-number events rather than mutations (P < 2.2e−16,
one-side Kolmogorov–Smirnov test).

Taken together, our data analysis suggests that serous-like EC and serous OvCa are
similar in the genotypical aberrations of SCNA and SM, whereas endometroid EC stands
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Figure 2 The comparison of somatic mutation (SM) among the three cancer types. (A) The overall SM
burdens. P values were resulted from student’s t -test. (B–D) The top 20 most frequently mutated genes
for endometroid EC (B), serous-like EC (C) and serous OvCa (D). The y-axis of the bar plots represents
the SM proportions of all available TCGA samples from each indicated cancer type. (E–G) Scatter plots
show the rates of gene mutation and gene copy number change for the most important cancer driver genes
within each of the three cancer types. P values listed below were resulted from Kolmogorov–Smirnovtest
comparing the cumulative patterns between gene mutation and gene copy number change.

Full-size DOI: 10.7717/peerj.8347/fig-2

out as an obvious different cancer type, even though endometroid EC and serous-like EC
are originated from the same organ.

Gene expression and pathway activity
We next checked the difference in gene expression among these three cancer types. Unlike
SCNA or SM, Serous-like EC tumors seemed to be in an intermediate status of gene
expression between endometroid EC and serous OvCa (Fig. 3A). A more quantitative
comparison using sample-wise correlation further showed that serous-like EC has modest
similarities to endometroid EC (mean Spearman’s correlation 0.270) and serous OvCa
(mean Spearman’s correlation 0.297), comparing to the low similarity between the latter two
(mean Spearman’s correlation 0.122) (Fig. 3B). We further speculated that endometroid
organ-intrinsic gene expression might be compromised in serous-like EC tumors. To this
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Full-size DOI: 10.7717/peerj.8347/fig-3

end, we examined the expression of normal uterus-specific (Fig. 3C) and ovary-specific
(Fig. 3D) genes in these cancer types. Intriguingly, while endometroid EC and serous OvCa
still maintain some organ-specific gene expression profile, serous-like EC seemed to lose
the organ-specific gene expression (Figs. 3C–3D).

To gain more biological information, we next summarized gene expression into
pathway activities using single sample GSEA (ssGSEA, see method) (Barbie et al., 2009)
and performed similar comparison. Figure 3E showed the variable hallmark pathways
(Liberzon et al., 2015) across these three cancer types. Consistent with gene expression,
serous-like OvCa has both common pathway activities to endometroid EC and serous
OvCa. For instance, some immune response related pathways, such as ‘‘inflammatory
response’’, ‘‘interferon gamma response’’, ‘‘complement’’, ‘‘IL6-JAK-STAT signaling’’ are
all lower in two ECs than in serous OvCa (cluster 1 in Fig. 3E) (adjusted p value < 0.05,
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Student’s t -test). On the other hand, the serous-like EC tumors also have similar activity
for some pathways to serous OvCa, especially those related to metabolism (cluster 2 in
Fig. 3E), including ‘‘glycolysis’’, ‘‘oxidative phosphorylation’’, ‘‘fatty acid metabolism’’
and ‘‘xenobotic metabolism’’. Together, serous-like EC displays an intermediate gene
expression and signaling pathway activity between the endometroid EC and serous OvCa.
In particular, the similarities in pathway activity between the two ECs argues the importance
of expression-level examination beyond the clustering based on genetic aberration.

Survival gene signatures
One unique advantage of cancer data analysis based on TCGA is that the patients’ clinical
data is available, thus allowing the association between molecular characterizations and
survival outcome.We downloaded all the available survival data for these three cancer types
and found that the serous OvCa has the worst survival outcome, while the endometroid
EC has the best (Fig. 4A). This observation is consistent to our understanding of these
three cancer types (Siegel, Miller & Jemal, 2019) and suggests that the TCGA survival data
are large enough to perform clinically related analyses.

We reasoned that if two cancer types share similar mechanisms for tumor growth, they
should also have common survival signature genes, which are related to cancer progression
and drug response. To this end, we compared the survival gene signature among these three
cancer types. First, we performed univariate Cox proportional-hazards (PH) regression
between each gene expression and survival outcome. To summarize the genes with good
or bad prognostic values, we extracted the Cox PH coefficients and used them for GSEA
analysis to identify pathways that are enriched with these genes. Notably, all three cancer
types have their unique signature genes being identified, and these genes are mostly
classified into different pathways (Figs. 4B–4D). Nonetheless, the two EC types shared
several common good or bad prognostic pathways. For instance, the expression of genes
related to ‘‘Aminoactyl-RNA biosynthesis’’ indicates bad prognosis, and immune related
genes, including ‘‘Allograte rejection’’ indicate good prognosis for both EC cancer types
(GSEA, FDR < 0.05) (Figs. 4B–4C). On the other hand, the serous OvCa has unique adverse
prognostic pathways, including ‘‘Endocytosis’’, ‘‘Focal adhesion’’, and cell proliferation and
growth-related pathways, such as ‘‘Ras signaling pathway’’, ‘‘Hippo signaling pathway’’,
‘‘Gastric cancer’’ and ‘‘Glioma’’ (Fig. 4D). Interestingly, genes involved in ‘‘Aminoactyl-
RNA biosynthesis’’ have generally good prognostic values for OvCa, in contrast to the EC
cancers (GSEA, FDR < 0.05). Our results of ‘‘Aminoactyl-RNA biosynthesis’’ is consistent
with a recent report that this pathway activity is only selectively upregulated and linked to
tumorigenesis in some cancer types, and one of them is endometrial cancer (Zhang et al.,
2018).

In terms of detailed survival signature genes, we found that most of them are unique
to each of the three cancer types, while the two ECs share several common bad and good
prognostic genes (Table S2). For instance, the expression PHKA1, one of the phosphorylase
kinase regulatory genes (Pallen, 2003), has a bad indication of survival outcome for both
ECs but not serous OvCa (Figs. 4E–4G) (log-rank test, p value < 0.05). Similarly, the
expression of CXCR5, an important chemokine receptor involved in multiple immune
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Figure 4 Survival signature pathways and genes for the three cancer types. (A) Kaplan-Meier curve
comparing the overall survival for the three cancer types. The P value was resulted from log-rank test. (B–
D) Signaling pathways related to survival outcome for endometroid EC (B), serous-like EC (C) and serous
OvCa (D). The blue pathways indicate adverse prognostic while the yellow pathways indicate favorable
prognostic. All the pathways on display have adjusted P-value less than 0.01 (based on GSEA permuta-
tion). (E–J) Kaplan-Meier curve showing two representative genes that have common prognostic values
for the two EC types but not serous OvCa. PHKA1 (E–G) is an adverse prognostic gene while CXCR5 (H–
J) is a favorable prognostic gene.

Full-size DOI: 10.7717/peerj.8347/fig-4
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cell infiltration (Murphy, 2012), has a good indication of survival outcome for both ECs
(log-rank test, p value < 0.05) but not serous OvCa (Figs. 4H–4J). In summary, our survival
analysis indicates a closer relationship between the two ECs, although the serous-like EC
and serous OvCa share common genetic aberrations.

Immune infiltration
Finally, we examined the immune infiltration for these three cancer types. Immunotherapy
holds great promise for cancer treatment, especially when conventional chemotherapy/ra-
diotherapy and other targeted therapy fail to achieve sufficient response. The efficacy
of immunotherapy largely depends on the overall immune infiltration and immune cell
composition within the tumor microenvironment (Alderton & Bordon, 2012).

We first infer the immune and stromal cell infiltration using RNA expression of
previously-established signature genes (Yoshihara et al., 2013). Both the serous OvCa and
endometroid EC have higher immune infiltration than serous-like EC (Fig. 5A); however,
serousOvCa also has high stromal cell infiltration (Fig. 5B, adjusted p value < 0.05, Student’s
t -test). Since the stromal cells can contribute to immune suppressive signals (Valkenburg,
De Groot & Pienta, 2018), there is a possibility that serous OvCa has more immune-
suppressive cells than endometroid EC. We thus run CIBERSORT (Newman et al., 2015)
to explore the detailed immune cell composition within the tumor microenvironment. To
our expectation, compared to the other two cancer types, endometroid EC has significantly
higher level of cytotoxic immune cells, including CD8 T cells and NK cells, and also
Treg cells, whose function is to constrain CD8T cells in tumor (Mougiakakos et al., 2010)
(adjusted p value < 0.05, Student’s t -test, Fig. 5C). In contrast, the serous OvCa has
significant amounts of macrophages and monocytes, which might together form an
immune-impressive tumor microenvironment.

Furthermore, we asked whether the cytotoxic CD8 T cells can contribute to the favorable
patient survival. Log-rank test analysis found that the higher amount of CD8 T cell is
associated with a significantly better survival in endometroid EC (Fig. D) and a better (but
not significant) survival in serous-like EC (Fig. E, log-rank test, p value < 0.05). In contrast,
CD8 T cell infiltration does not show any prognostic value for serous OvCa (Fig. 5F). This
might be due to a possibility that the low amount of CD8 T cells is not sufficient to play the
anti-tumor role or that there are other immune-suppressive signals to block the function
of CD8 T cells.

Together, our results suggest that serous-like EC and serous OvCa have very different
immune infiltration profiles. Although serous OvCa and endometroid EC both have high
immune infiltration, their immune cell contents are very different from each other and
therefore, the potential immunotherapeutic strategy are also likely to be different.

DISCUSSION
The multi-omics comparison of three cancer types
Here, we performed detailed analyses based on the TCGA high throughput data to test
whether the serous-like EC should be grouped together with serous OvCa into a ‘‘serous
cancer’’ type or should stay with the endometroid EC as a typical ‘‘endometrial cancer’’
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Figure 5 Immune infiltration for the three cancer types. (A–B) Boxplots comparing the overall immune
infiltration (A) and stromal infiltration (B) of these three cancer types. Results were calculated using ESTI-
MATE. P values were calculated by student’s t -test. (C) Boxplots comparing interested immune cell abun-
dances, including CD8 T cell, Macrophage, Monocyte, NK cell and Treg Cell. Results were calculated us-
ing CIBERSORT. *: adjusted p value < 0.05; **: adjusted p value < 0.01. P values were resulted from Stu-
dent’s t -test (D–F) Kaplan-Meier curves comparing the prognostic values of CD8 T cell in endometroid
EC (D), serous-like EC (E) and serous OvCa (F). P values were calculated by log-rank test.

Full-size DOI: 10.7717/peerj.8347/fig-5

type. Our findings were summarized in Table 2. Although the similarity of SCNA and
SM (particularly SCNA) favors the grouping of serous-like EC and serous OvCa, the
gene expression and pathway activity, survival gene signature and immune infiltration all
point out obvious difference between these two cancer types. Specially, pathway activity
and survival gene signature both point to a close relationship between the two ECs than
between the two ‘‘serous’’ cancer types. For immune infiltration, the two ‘‘serous’’ cancer
types are also very different from each other, in terms of overall immune cell abundance
and immune cell composition. Although serous OvCa has high immune cell infiltration,
which is similar to endometroid EC, its immune cell composition is largely dominated
by immune-suppressive macrophage and monocyte. We noticed that our result about
CD8 T cell and serous OvCa was different from a recent clinical study (Goode et al., 2017),
whose immunohistological analyses showed that highCD8T cell infiltration favored a better
prognosis for serous OvCa.We reasoned that besides cohort difference, the techniques used
in these two studies (in silico inference based on whole bulk RNA-seq vs. immunohistology
focusing on epithelial components of tumor islets) might be detecting CD8 T cells located
in different tissue compartments. In particular, the whole-bulk RNA-seq reflects the CD8
T cells distributed across both tumor epithelial and stromal sites. This hypothesis can be
further tested by examining the association between stroma-located CD8 T cell infiltration
and the clinical outcome. Our results about the discrepancy between the two serous-like
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Table 2 Summarization of all the molecular genotype and phenotype comparisons. For each molecular event, one or two representative fea-
tures are shown. The last column of the table indicates the pair of cancer types that is most similar than any other pairs, see the Discussion section
for more details.

Cancer types Endometrioid EC Serous-like EC Serous OvCa Similar pair
Molecular events

Copy number alternation Weak (1q gain) Strong (Multiple SCNA
arms)

Strong (Multiple SCNA
arms)

Serous-like EC and
Serous OvCa

Somatic mutation High (Lead by non-TP53
genes)

Low (Lead by TP53) Low (Lead by TP53) Serous-like EC and
Serous OvCa

Overall gene expression
and pathway activity

Inflammation low and
metabolic high

Inflammation low and
metabolic low

Inflammation high and
metabolic low

None

Survival signatures Aminoacyl-RNA biosyn-
thesis (good)

Aminoacyl-RNA biosyn-
thesis (good)

Aminoacyl-RNA biosyn-
thesis (bad)

Serous-like EC and
Endometroid EC

Immune infiltration pro-
files

High (cytotoxic) Low High (macrophage and
monocyte)

None

cancer and the similarity between the two ECs are consistent with a recent report that the
tissue-origin largely impacts the cancer type classification (Hoadley et al., 2018b).

Implications for targeted therapy development
Unlike chemotherapy and radiotherapy, the targeted therapies target cancer’s specific
gene mutations, copy number alterations, proteins, signaling pathways or tumor
microenvironment components (Baudino, 2015). Detailed molecular profiling and
comparative characterizations would be very helpful to delineate tumor groups and develop
novel tumor treatment strategies (Aggarwal, 2010). For instance, the characterizations on
genetic aberration have proven to be important information resources for targeted therapy
development, with excellent examples including BRCA1 mutation, HER2 amplification
and microsatellite instabilities (MSI) (Tung & Garber, 2018; Havel, Chowell & Chan,
2019; Oh & Bang, 2019). In this regarding, serous-like EC and serous OvCa treatment
can be benefited from common targeted therapies. Indeed, there have been clinical
trials utilizing EGFR and HER2 amplification in these two cancer types (Wilken et al.,
2012; Makker et al., 2017). Based on our analysis, we can also propose that the frequent
mutation of PIK3CA (Fig. 2B) could be utilized to stratify patients for PIK3CA inhibitor-
based treatment. On the other hand, the gene expression, pathways activity and tumor
microenvironment characterizations are also too important to neglect. We propose that the
substantial differences on these molecular phenotypes are valuable to understand potential
responsiveness of targeted therapy and to identify novel therapeutic opportunities. For
instance, our observations on immune profiling (Fig. 5) suggest that the immunotherapy
should be targeted to inhibit the stromal signals in serous OvCa to first increase the
proportion of cytotoxic CD8 T cells or NK cells. In contrast, since there has been a large
amount of CD8 T cell in the endometroid cancer, the immunotherapy for this cancer type
might be focused on maximizing the function of CD8 T cells using immune checkpoint
inhibitors.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.8347


Limitations of this study
Although we strived to perform an unbiased and comprehensive bioinformatic analysis
to understand the genetic aberration and molecular phenotypes of endometroid EC,
serous-like EC and serous OvCa, we realized that there are several limitations that could
not be readily overcome by current datasets and analysis methods. First, the TCGA clinical
data do not have detailed records about different therapies (e.g., targeted therapies or
clinical trials) each patient received. Therefore, we could not exclude the possibility that
some survival results were impacted by the therapeutic difference, instead of intrinsic gene
expression. Secondly, there are several molecular phenotypes, such as pathway activity and
immune cell infiltration were inferred by in silico bioinformatic tools, rather than from
experimental tests. There are some controversies and pitfalls in using these tools (Li, Liu &
Liu, 2017;Newman et al., 2017; Schubert et al., 2018), although they have all been confirmed
by experimental benchmarked when they were originally published (Hemminki et al., 1998;
Hanzelmann, Castelo & Guinney, 2013; Yoshihara et al., 2013; Newman et al., 2017). Lastly,
we want to note that there might be potential batch effects for the gene expression datasets
profiled across different cohorts. Although there are several tools designed to adjust batch
effect (Oytam et al., 2016; Leek et al., 2018), it is very difficult to remove batch effect without
affecting the true biological signals (Nygaard, Rødland & Hovig, 2016; Bin, Wang & Wong,
2017; Newman et al., 2017). For this consideration, we chose to perform re-normalization
across the different cohorts rather than the explicit batch effect correction. Our strategy
was similar to several pan-cancer studies (Rooney et al., 2015; Berger et al., 2018; Ge et al.,
2018; Rosario et al., 2018). We would foresee that with better clinically annotated cohorts,
more advanced experimental techniques, such as single-cell multi-omics techniques and
more sophisticated data processing methods, these analyses would be largely improved.

CONCLUSIONS
In summary, our analysis identifies both similarities and discrepancies between serous-
like EC and serous OvCa and provides possible clinical contextualization for some of
the characterizations. On the genetic profiles, serous-like EC and serous OvCa share
very similar SCNA and SM profiles, which was the main reason that they were recently
considered to be a uniformed ‘‘serous’’ cancer type. However, there are several important
molecular phenotype differences, including gene expression and pathway activity, survival
signature genes and immune infiltration. Our analysis indicates that common targeted
therapies might be developed to treat serous-like EC and serous OvCa based on mutation
drivers, such as PIK3CA. Equal amount of considerations, if not more, should be paid to on
the gene expression, signal pathway activities and tumor microenvironment to investigate
drug responsiveness and to identify novel molecular targets for them individually.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.8347


Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Hui Zhong analyzed the data, conceived and designed the experiments, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Huiyu Chen, Huahong Qiu and Chen Huang analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.
• Zhihui Wu conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data matrices for the data analysis are available at GitHub:
https://github.com/ibphuangchen/endometrial_vs_ovarian_comparison.
The original data is available at the GDC data portal (https://portal.gdc.cancer.gov) and

using the R package TCGAbiolinks (http://bioconductor.org/packages/release/bioc/html/
TCGAbiolinks.html).

For the original data download from GDC or TCGAbiolinks, use the ‘‘TCGA-UCEC’’
and ‘‘TCGA-OV’’ as the project name, ‘‘RNA-Seq’’, ‘‘WXS’’ as the experimental strategy,
‘‘normalized results’’, ‘‘Simple somatic mutation’’ and ‘‘Copy Number Variation’’ for the
data type/category, and the TCGA sample barcode listed in the data matrices (accessible
via github).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8347#supplemental-information.

REFERENCES
Aggarwal S. 2010. Targeted cancer therapies. Nature Reviews Drug Discovery

DOI 10.1038/nrd3186.
Alderton GK, Bordon Y. 2012. Tumour immunotherapy-leukocytes take up the fight.

Nature Reviews Immunology 12:237 DOI 10.1038/nri3197.
Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy

P, Meylan E, Scholl C, Fröhling S, Chan EM, Sos ML, Michel K, Mermel C, Silver
SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB,Wadlow RC, Le H, Hoersch S,
Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM,MeyersonM, Thomas
RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, HahnWC. 2009.
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require
TBK1. Nature 462:108–112 DOI 10.1038/nature08460.

Baudino TA. 2015. Targeted cancer therapy: the next generation of cancer treatment.
Current Drug Discovery Technologies 12:3–20
DOI 10.2174/1570163812666150602144310.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 15/22

https://peerj.com
https://github.com/ibphuangchen/endometrial_vs_ovarian_comparison
https://portal.gdc.cancer.gov
http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
http://dx.doi.org/10.7717/peerj.8347#supplemental-information
http://dx.doi.org/10.7717/peerj.8347#supplemental-information
http://dx.doi.org/10.1038/nrd3186
http://dx.doi.org/10.1038/nri3197
http://dx.doi.org/10.1038/nature08460
http://dx.doi.org/10.2174/1570163812666150602144310
http://dx.doi.org/10.7717/peerj.8347


Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate—a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society Series B
(Methological) 57(1):289–300 DOI 10.2307/2346101.

Berger AC, Korkut A, Kanchi RS, Hegde AM, LenoirW, LiuW, Liu Y, Fan H, Shen
H, Ravikumar V, Rao A, Schultz A, Li X, Sumazin P,Williams C, Mestdagh P,
Gunaratne PH, Yau C, Bowlby R, Robertson AG, Tiezzi DG,Wang C, Cherniack
AD, Godwin AK, Kuderer NM, Rader JS, Zuna RE, Sood AK, Lazar AJ, Ojesina AI,
Adebamowo C, Adebamowo SN, Baggerly KA, Chen T-W, Chiu H-S, Lefever S, Liu
L, MacKenzie K, Orsulic S, Roszik J, Shelley CS, Song Q, Vellano CP,Wentzensen
N, Cancer Genome Atlas Research Network, Weinstein JN, Mills GB, Levine DA,
Akbani R. 2018. A comprehensive pan-cancer molecular study of gynecologic and
breast cancers. Cancer Cell 33:690–705 DOI 10.1016/j.ccell.2018.03.014.

Bin GOHWW,WangW,Wong L. 2017.Why batch effects matter in omics data, and
how to avoid them. Trends in Biotechnology 35:498–507
DOI 10.1016/j.tibtech.2017.02.012.

Brasseur K, Gévry N, Asselin E. 2017. Chemoresistance and targeted therapies in ovarian
and endometrial cancers. Oncotarget 8:4008–4042 DOI 10.18632/oncotarget.14021.

Bullard JH, Purdom E, Hansen KD, Dudoit S. 2010. Evaluation of statistical methods
for normalization and differential expression in mRNA-Seq experiments. BMC
Bioinformatics 11:94 DOI 10.1186/1471-2105-11-94.

Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. 2013. Emerg-
ing landscape of oncogenic signatures across human cancers. Nature Genetics
45:1127–1133 DOI 10.1038/ng.2762.

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta
TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H. 2016.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Research 44:e71 DOI 10.1093/nar/gkv1507.

Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. 2018. Advances in ovarian cancer
therapy. Cancer Chemotherapy and Pharmacology 81(1):17–38
DOI 10.1007/s00280-017-3501-8.

Ge Z, Leighton JS, Wang Y, Peng X, Chen Z, Chen H, Sun Y, Yao F, Li J, Zhang H, Liu
J, Shriver CD, HuH. 2018. Integrated genomic analysis of the ubiquitin pathway
across cancer types. Cell Reports 23:213–226 DOI 10.1016/j.celrep.2018.03.047.

Getz G, Gabriel SB, Cibulskis K, Lander E, Sivachenko A, Sougnez C, Lawrence M, Kan-
doth C, Dooling D, Fulton R, Fulton L, Kalicki-Veizer J, McLellanMD, O’Laughlin
M, Schmidt H,Wilson RK, Ye K, Li D, Ally A, BalasundaramM, Birol I, Butterfield
YSN, Carlsen R, Carter C, Chu A, Chuah E, Chun HJE, Dhalla N, Guin R, Hirst
C, Holt RA, Jones SJM, Lee D, Li HI, Marra MA, MayoM,Moore RA, Mungall
AJ, Plettner P, Schein JE, Sipahimalani P, Tam A, Varhol RJ, Gordon Robertson
A, Cherniack AD, Pashtan I, Saksena G, Onofrio RC, Schumacher SE, Tabak B,
Carter SL, Hernandez B, Gentry J, Salvesen HB, Ardlie K,WincklerW, Beroukhim
R, MeyersonM, Hadjipanayis A, Lee S, Mahadeshwar HS, Park P, Protopopov
A, Ren X, Seth S, Song X, Tang J, Xi R, Yang L, Dong Z, Kucherlapati R, Chin L,

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 16/22

https://peerj.com
http://dx.doi.org/10.2307/2346101
http://dx.doi.org/10.1016/j.ccell.2018.03.014
http://dx.doi.org/10.1016/j.tibtech.2017.02.012
http://dx.doi.org/10.18632/oncotarget.14021
http://dx.doi.org/10.1186/1471-2105-11-94
http://dx.doi.org/10.1038/ng.2762
http://dx.doi.org/10.1093/nar/gkv1507
http://dx.doi.org/10.1007/s00280-017-3501-8
http://dx.doi.org/10.1016/j.celrep.2018.03.047
http://dx.doi.org/10.7717/peerj.8347


Zhang J, Todd Auman J, Balu S, Bodenheimer T, Buda E, Neil Hayes D, Hoyle
AP, Jefferys SR, Jones CD, Meng S, Mieczkowski PA, Mose LE, Parker JS, Perou
CM, Roach J, Yan S, Simons JV, SolowayMG, Tan D, Topal MD,Waring S, Wu
J, Hoadley KA, Baylin SB, Bootwalla MS, Lai PH, Triche TJ, Van Den Berg DJ,
Weisenberger DJ, Laird PW, Shen H, Cho J, Dicara D, Frazer S, Heiman D, Jing
R, Lin P, MallardW, Stojanov P, Voet D, Zhang H, Zou L, Noble M, Reynolds SM,
Shmulevich I, Arman Aksoy B, Antipin Y, Ciriello G, Dresdner G, Gao J, Gross
B, Jacobsen A, Ladanyi M, Reva B, Sander C, Sinha R, Onur Sumer S, Taylor BS,
Cerami E,Weinhold N, Schultz N, Shen R, Benz S, Goldstein T, Haussler D, Ng S,
Szeto C, Stuart J, Benz CC, Yau C, ZhangW, Annala M, Broom BM, Casasent TD,
Ju Z, Liang H, Liu G, Lu Y, Unruh AK,Wakefield C,Weinstein JN, Zhang N, Liu Y,
Broaddus R, Akbani R, Mills GB, Adams C, Barr T, Black AD, Bowen J, Deardurff
J, Frick J, Gastier-Foster JM, Grossman T, Harper HA, Hart-Kothari M, Helsel C,
Hobensack A, Kuck H, Kneile K, Leraas KM, Lichtenberg TM,McAllister C, Pyatt
RE, Ramirez NC, Tabler TR, Vanhoose N,White P, Wise L, Zmuda E, Barnabas N,
Berry-Green C, Blanc V, Boice L, ButtonM, Farkas A, Green A, MacKenzie J. 2013.
Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73
DOI 10.1038/nature12113.

Goode EL, BlockMS, Kalli KR, Vierkant RA, ChenW, Fogarty ZC, Gentry-Maharaj
A, Tołoczko A, Hein A, Bouligny AL, Jensen A, Osorio A, Hartkopf A, Ryan A,
Chudecka-Głaz A, Magliocco AM, Hartmann A, Jung AY, Gao B, Hernandez BY,
Fridley BL, McCauley BM, Kennedy CJ, Wang C, Karpinskyj C, De Sousa CB,
Tiezzi DG,Wachter DL, Herpel E, Taran FA, Modugno F, Nelson G, Lubiński
J, Menkiszak J, Alsop J, Lester J, García-Donas J, Nation J, Hung J, Palacios J,
Rothstein JH, Kelley JL, De Andrade JM, Robles-Díaz L, IntermaggioMP,Wid-
schwendter M, BeckmannMW, Ruebner M, Jimenez-LinanM, Singh N, Oszurek
O, Harnett PR, Rambau PF, Sinn P,Wagner P, Ghatage P, Sharma R, Edwards RP,
Ness RB, Orsulic S, Brucker SY, Johnatty SE, Longacre TA, Ursula E, McGuire V,
SiehW, Natanzon Y, Li Z, Whittemore AS, Anna de F, Staebler A, Karlan BY, Gilks
B, Bowtell DD, Høgdall E, Candido dos Reis FJ, Steed H, Campbell IG, Gronwald
J, Benítez J, Koziak JM, Chang-Claude J, Moysich KB, Kelemen LE, Cook LS,
GoodmanMT, García MJ, Fasching PA, Kommoss S, Deen S, Kjaer SK, Menon
U, Brenton JD, Pharoah PDP, Chenevix-Trench G, Huntsman DG,Winham SJ,
Köbel M, Ramus SJ. 2017. Dose-response association of CD8+ tumor-infiltrating
lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncology
3:e173290 DOI 10.1001/jamaoncol.2017.3290.

Hanzelmann S, Castelo R, Guinney J. 2013. GSVA: gene set variation analysis for mi-
croarray and RNA-seq data. BMC Bioinformatics 14:7 DOI 10.1186/1471-2105-14-7.

Havel JJ, Chowell D, Chan TA. 2019. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nature Reviews Cancer 19:133–150
DOI 10.1038/s41568-019-0116-x.

HeimD, Budczies J, Stenzinger A, Treue D, Hufnagl P, Denkert C, Dietel M, Klauschen
F. Cancer beyond organ and tissue specificity: next-generation-sequencing

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 17/22

https://peerj.com
http://dx.doi.org/10.1038/nature12113
http://dx.doi.org/10.1001/jamaoncol.2017.3290
http://dx.doi.org/10.1186/1471-2105-14-7
http://dx.doi.org/10.1038/s41568-019-0116-x
http://dx.doi.org/10.7717/peerj.8347


gene mutation data reveal complex genetic similarities across major cancers.
DOI 10.1002/ijc.28882.

Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G,
WarrenW, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, RidanpaaM,
Salovaara R, Toro T, BodmerW, Olschwang S, Olsen AS, StrattonMR, De la
Chapelle A, Aaltonen LA. 1998. A serine/threonine kinase gene defective in Peutz-
Jeghers syndrome. Nature 391:184–187 DOI 10.1038/34432.

Hoadley KA, Yau C, Hinoue T,Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM,
Cherniack AD, Thorsson V, Akbani R, Bowlby R,Wong CK,Wiznerowicz M,
Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H,
Malta TM, Cancer Genome Atlas Network, Stuart JM, Benz CC, Laird PW. 2018a.
Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from
33 types of cancer. Cell 173:291–304 DOI 10.1016/j.cell.2018.03.022.

Hoadley KA, Yau C, Stuart JM, Benz CC, Correspondence PWL. 2018b. Cell-of-origin
patterns dominate the molecular classification of 10,000 tumors from 33 types of
cancer. Cell 173:291–304 DOI 10.1016/j.cell.2018.03.022.

Hopkins Hospital, Edward Tanner J, Santin A, Tran A-Q, Gehrig P. 2017. Open Peer
review recent advances in endometrial cancer (version 1; referees: 2 approved).
F1000 Faculty Reviews 6:81 DOI 10.12688/f1000research.10020.1.

Leek JT, Johnson EW, Parker HS, Fertig EJ, Jaffe AE, Storey JD, Zhang Y, Torres
LC. 2018. Bioconductor—sva: surrogate variable analysis. Available at https://
bioconductor.org/packages/ release/bioc/html/ sva.html .

Li B, Liu JS, Liu XS. 2017. Revisit linear regression-based deconvolution methods for tu-
mor gene expression data. Genome Biology 18:127 DOI 10.1186/s13059-017-1256-5.

Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC,
Rodig S, Signoretti S, Liu JS, Liu XS. 2016. Comprehensive analyses of tumor
immunity: implications for cancer immunotherapy. Genome Biology 17:174
DOI 10.1186/s13059-016-1028-7.

Liao Y,Wang J, Jaehnig EJ, Shi Z, Zhang B. 2019.WebGestalt 2019: gene set analysis
toolkit with revamped UIs and APIs. Nucleic Acids Research 47(W1):W199–W205
DOI 10.1093/nar/gkz401.

Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. 2015. The
molecular signatures database (MSigDB) hallmark gene set collection. Cell Systems
1:417–425 DOI 10.1016/j.cels.2015.12.004.

Liu X, Yu X, Zack DJ, Zhu H, Qian J. 2008. TiGER: a database for tissue-specific gene
expression and regulation. BMC Bioinformatics 9:271 DOI 10.1186/1471-2105-9-271.

Makker V, Green AK,Wenham RM,Mutch D, Davidson B, Miller DS. 2017. New
therapies for advanced, recurrent, and metastatic endometrial cancers. Gynecologic
Oncology Research and Practice 4:19 DOI 10.1186/s40661-017-0056-7.

Margolin AA, Mills GB, Stuart JM,Weinstein JN, Yau C, Niu B, Akbani R,Wolf DM,
Benz CC, Tamborero D, Perou CM, Shen H, Collisson EA, Kandoth C, Ng S, Zhang
J, Byers LA, Cherniack AD, LeisersonMDM, Laird PW, Raphael BJ, Hoadley KA,
Lopez-Bigas N, McLellanMD, VanWaes C, Chen Z, Omberg L, Robertson AG,

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 18/22

https://peerj.com
http://dx.doi.org/10.1002/ijc.28882
http://dx.doi.org/10.1038/34432
http://dx.doi.org/10.1016/j.cell.2018.03.022
http://dx.doi.org/10.1016/j.cell.2018.03.022
http://dx.doi.org/10.12688/f1000research.10020.1
 https://bioconductor.org/packages/release/bioc/html/sva.html
 https://bioconductor.org/packages/release/bioc/html/sva.html
http://dx.doi.org/10.1186/s13059-017-1256-5
http://dx.doi.org/10.1186/s13059-016-1028-7
http://dx.doi.org/10.1093/nar/gkz401
http://dx.doi.org/10.1016/j.cels.2015.12.004
http://dx.doi.org/10.1186/1471-2105-9-271
http://dx.doi.org/10.1186/s40661-017-0056-7
http://dx.doi.org/10.7717/peerj.8347


Van’t Veer LJ, Chu A, Ding L, Uzunangelov V. 2014.Multiplatform analysis of 12
cancer types reveals molecular classification within and across tissues of origin. Cell
158(4):929–944 DOI 10.1016/j.cell.2014.06.049.

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. 2016. Ovarian
cancer. Nature Reviews Disease Primers 2:16061 DOI 10.1038/nrdp.2016.61.

Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. 2018.Maftools: efficient
and comprehensive analysis of somatic variants in cancer. Genome Research
28:1747–1756 DOI 10.1101/gr.239244.118.

Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. 2010. Regulatory
T cells in cancer. Advances in Cancer Research 107:57–117
DOI 10.1016/S0065-230X(10)07003-X.

Moxley KM,McMeekin DS. 2010. Endometrial carcinoma: a review of chemotherapy,
drug resistance, and the search for new agents. The Oncologist 15(10):1026–1033
DOI 10.1634/theoncologist.2010-0087.

Mullen RD, Behringer RR. 2014.Molecular genetics of Müllerian duct formation,
regression and differentiation. Sexual Development: Genetics, Molecular Biology,
Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and
Differentiation 8:281–296 DOI 10.1159/000364935.

Murphy PM. 2012. Chemokines and chemokine receptors. In: Clinical immunol-
ogy: principles and practice. Fourth Edition. New York: Elsevier Inc, 136–148
DOI 10.1016/B978-0-7234-3691-1.00034-9.

Newman AM, Gentles AJ, Liu CL, DiehnM, Alizadeh AA. 2017. Data normal-
ization considerations for digital tumor dissection. Genome Biology 18:128
DOI 10.1186/s13059-017-1257-4.

Newman AM, Liu CL, GreenMR, Gentles AJ, FengW, Xu Y, Hoang CD, DiehnM,
Alizadeh AA. 2015. Robust enumeration of cell subsets from tissue expression
profiles. Nature Methods 12:453–457 DOI 10.1038/nmeth.3337.

Nygaard V, Rødland EA, Hovig E. 2016.Methods that remove batch effects while
retaining group differences may lead to exaggerated confidence in downstream
analyses. Biostatistics 17:29–39 DOI 10.1093/biostatistics/kxv027.

OhD-Y, Bang Y-J. 2019.HER2-targeted therapies—a role beyond breast cancer. Nature
Reviews. Clinical Oncology 17:33–48 DOI 10.1038/s41571-019-0268-3.

Oytam Y, Sobhanmanesh F, Duesing K, Bowden JC, Osmond-McLeodM, Ross
J. 2016. Risk-conscious correction of batch effects: maximising information
extraction from high-throughput genomic datasets. BMC Bioinformatics 17:332
DOI 10.1186/s12859-016-1212-5.

PallenMJ. 2003. Glucoamylase-like domains in the alpha- and beta-subunits of phos-
phorylase kinase. Protein Science: a Publication of the Protein Society 12:1804–1807
DOI 10.1110/ps.0371103.

Piulats JM, Matias-Guiu X. 2016. Immunotherapy in endometrial cancer: in the nick of
time. Clinical Cancer Research 22(23):5623–5625
DOI 10.1158/1078-0432.CCR-16-1820.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 19/22

https://peerj.com
http://dx.doi.org/10.1016/j.cell.2014.06.049
http://dx.doi.org/10.1038/nrdp.2016.61
http://dx.doi.org/10.1101/gr.239244.118
http://dx.doi.org/10.1016/S0065-230X(10)07003-X
http://dx.doi.org/10.1634/theoncologist.2010-0087
http://dx.doi.org/10.1159/000364935
http://dx.doi.org/10.1016/B978-0-7234-3691-1.00034-9
http://dx.doi.org/10.1186/s13059-017-1257-4
http://dx.doi.org/10.1038/nmeth.3337
http://dx.doi.org/10.1093/biostatistics/kxv027
http://dx.doi.org/10.1038/s41571-019-0268-3
http://dx.doi.org/10.1186/s12859-016-1212-5
http://dx.doi.org/10.1110/ps.0371103
http://dx.doi.org/10.1158/1078-0432.CCR-16-1820
http://dx.doi.org/10.7717/peerj.8347


RooneyMS, Shukla SA,Wu CJ, Getz G, Hacohen N. 2015.Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell 160:48–61
DOI 10.1016/j.cell.2014.12.033.

Rosario SR, LongMD, Affronti HC, Rowsam AM, Eng KH, Smiraglia DJ. 2018. Pan-
cancer analysis of transcriptional metabolic dysregulation using the cancer genome
atlas. Nature Communications 9:5330 DOI 10.1038/s41467-018-07232-8.

Schubert M, Klinger B, KlünemannM, Sieber A, Uhlitz F, Sauer S, Garnett MJ,
Blüthgen N, Saez-Rodriguez J. 2018. Perturbation-response genes reveal sig-
naling footprints in cancer gene expression. Nature Communications 9:20
DOI 10.1038/s41467-017-02391-6.

Shivapurkar N, Virmani AK,Wistuba II, Milchgrub S, Mackay B, Minna JD, Gazdar
AF. 1999. Deletions of chromosome 4 at multiple sites are frequent in malignant
mesothelioma and small cell lung carcinoma. Clinical Cancer Research 5:17–23.

Siegel RL, Miller KD, Jemal A. 2019. Cancer statistics, 2019. CA: A Cancer Journal for
Clinicians 69:7–34 DOI 10.3322/caac.21551.

Singh RK, Indra D, Mitra S, Mondal RK, Basu PS, Roy A, Roychowdhury S, Panda CK.
2007. Deletions in chromosome 4 differentially associated with the development
of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Human
Genetics 122:71–81 DOI 10.1007/s00439-007-0375-6.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences of the United
States of America 102:15545–15550 DOI 10.1073/pnas.0506580102.

Terry M, TherneauM. 2019. Survival package for R. Available at https:// github.com/
therneau/ survival .

Thorsson V, Gibbs DL, Brown SD,Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo
E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA,
Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS,
Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack
AD, Anastassiou D, Bedognetti D, Rao A, Chen K, Krasnitz A, HuH,Malta TM,
Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, ZhouW, Shen
H, Choueiri TK,Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CE, Caesar-
Johnson SJ, Demchok JA, Felau I, Kasapi M, FergusonML, Hutter CM, Sofia
HJ, Tarnuzzer R,Wang Z, Yang L, Zenklusen JC, Zhang J, Chudamani S, Liu
J, Lolla L, Naresh R, Pihl T, Sun Q,Wan Y,Wu Y, Cho J, DeFreitas T, Frazer S,
Gehlenborg N, Getz G, Heiman DI, Kim J, Lawrence MS, Lin P, Meier S, Noble MS,
Saksena G, Voet D, Zhang H, Bernard B, Chambwe N, Dhankani V, Knijnenburg
T, Kramer R, Leinonen K, Liu Y, Miller M, Reynolds S, Shmulevich I, Thorsson
V, ZhangW, Akbani R, Broom BM, Hegde AM, Ju Z, Kanchi RS, Korkut A, Li J,
Liang H, Ling S, LiuW, Lu Y, Mills GB, Ng KS, Rao A, RyanM,Wang J, Weinstein
JN, Zhang J, Abeshouse A, Armenia J, Chakravarty D, ChatilaWK, De Bruijn
I, Gao J, Gross BE, Heins ZJ, Kundra R, La K, Ladanyi M, Luna A, NissanMG,

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 20/22

https://peerj.com
http://dx.doi.org/10.1016/j.cell.2014.12.033
http://dx.doi.org/10.1038/s41467-018-07232-8
http://dx.doi.org/10.1038/s41467-017-02391-6
http://dx.doi.org/10.3322/caac.21551
http://dx.doi.org/10.1007/s00439-007-0375-6
http://dx.doi.org/10.1073/pnas.0506580102
 https://github.com/therneau/survival
 https://github.com/therneau/survival
http://dx.doi.org/10.7717/peerj.8347


Ochoa A, Phillips SM, Reznik E, Sanchez-Vega F, Sander C, Schultz N, Sheridan
R, Sumer SO, Sun Y, Taylor BS,Wang J, Zhang H, Anur P, PetoM, Spellman P,
Benz C, Stuart JM,Wong CK, Yau C, Hayes DN, Parker JS, WilkersonMD, Ally
A, BalasundaramM, Bowlby R, Brooks D, Carlsen R, Chuah E, Dhalla N, Holt
R, Jones SJM, Kasaian K, Lee D, Ma Y, Marra MA, MayoM,Moore RA, Mungall
AJ, Mungall K, Robertson AG, Sadeghi S, Schein JE, Sipahimalani P, Tam A,
Thiessen N, Tse K,Wong T, Berger AC, Beroukhim R, Cherniack AD, Cibulskis C,
Gabriel SB, Gao GF, Ha G, MeyersonM, Schumacher SE, Shih J, Kucherlapati MH,
Kucherlapati RS, Baylin S, Cope L, Danilova L, Bootwalla MS, Lai PH, Maglinte
DT, Van Den Berg DJ, Weisenberger DJ, Auman JT, Balu S, Bodenheimer T,
Fan C, Hoadley KA, Hoyle AP, Jefferys SR, Jones CD, Meng S, Mieczkowski PA,
Mose LE, Perou AH, Perou CM, Roach J, Shi Y, Simons JV, Skelly T, Soloway
MG, Tan D, Veluvolu U, Fan H, Hinoue T, Laird PW, Shen H, ZhouW, Bellair M,
Chang K, Covington K, Creighton CJ, Dinh H, Doddapaneni HV, Donehower LA,
Drummond J. 2018. The immune landscape of cancer. Immunity 48(4):812–830
DOI 10.1016/j.immuni.2018.03.023.

Tung NM, Garber JE. 2018. BRCA1/2 testing: therapeutic implications for breast cancer
management. British Journal of Cancer 119:141–152 DOI 10.1038/s41416-018-0127-5.

Valkenburg KC, De Groot AE, Pienta KJ. 2018. Targeting the tumour stroma
to improve cancer therapy. Nature Reviews Clinical Oncology 15:366–381
DOI 10.1038/s41571-018-0007-1.

Vasaikar S, Huang C,Wang X, Petyuk VA, Savage SR,Wen B, Dou Y, Zhang Y, Shi Z,
Arshad OA, GritsenkoMA, Zimmerman LJ, McDermott JE, Clauss TR, Moore RJ,
Zhao R, MonroeME,Wang YT, Chambers MC, Slebos RJC, Lau KS, Mo Q, Ding
L, Ellis M, ThiagarajanM, Kinsinger CR, Rodriguez H, Smith RD, Rodland KD,
Liebler DC, Liu T, Zhang B, Ellis MJC, Bavarva J, Borucki M, Elburn K, Hannick L,
Vatanian N, Payne SH, Carr SA, Clauser KR, Gillette MA, Kuhn E, Mani DR, Cai
S, KetchumKA, Thangudu RR,Whiteley GA, Paulovich A,Whiteaker J, Edward
NJ, Madhavan S, McGarvey PB, Chan DW, Shih IM, Zhang H, Zhang Z, Zhu H,
Skates SJ, White FM,Mertins P, Pandey A, Slebos RJC, Boja E, Hiltke T, Mesri
M, Rivers RC, Stein SE, Fenyo D, Ruggles K, Levine DA, Oberti M, Rudnick PA,
Snyder M, Tabb DL, Zhao Y, Chen X, Ransohoff DF, Hoofnagle A, Sanders ME,
Wang Y, Davies SR, Townsend RR,WatsonM. 2019. Proteogenomic analysis of
human colon cancer reveals new therapeutic opportunities. Cell 177(4):1035–1049
DOI 10.1016/j.cell.2019.03.030.

Wang X-L, Uzawa K, Imai FL, Tanzawa H. 1999. Localization of a novel tumor sup-
pressor gene associated with human oral cancer on chromosome 4q25. Oncogene
18(3):823–825 DOI 10.1038/sj.onc.1202318.

Wang Z, JensenMA, Zenklusen JC. 2016. A practical guide to The Cancer Genome
Atlas (TCGA). In:Methods in molecular biology. New York: Humana Press
DOI 10.1007/978-1-4939-3578-9_6.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 21/22

https://peerj.com
http://dx.doi.org/10.1016/j.immuni.2018.03.023
http://dx.doi.org/10.1038/s41416-018-0127-5
http://dx.doi.org/10.1038/s41571-018-0007-1
http://dx.doi.org/10.1016/j.cell.2019.03.030
http://dx.doi.org/10.1038/sj.onc.1202318
http://dx.doi.org/10.1007/978-1-4939-3578-9_6
http://dx.doi.org/10.7717/peerj.8347


Wilken JA, Badri T, Cross S, Raji R, Santin AD, Schwartz P, Branscum AJ, Baron AT,
Sakhitab AI, Maihle NJ. 2012. EGFR/HER-targeted therapeutics in ovarian cancer.
Future Medicinal Chemistry 4:447–469 DOI 10.4155/fmc.12.11.

Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, KimH, Torres-Garcia
W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale
K, Mills GB, Verhaak RGW. 2013. Inferring tumour purity and stromal and
immune cell admixture from expression data. Nature Communications 4:2612
DOI 10.1038/ncomms3612.

Zhang Z, Ye Y, Gong J, Ruan H, Liu C-J, Xiang Y, Cai C, Guo A-Y, Ling J, Diao L,
Weinstein JN, Han L. 2018. Global analysis of tRNA and translation factor ex-
pression reveals a dynamic landscape of translational regulation in human cancers.
Communications Biology 1:234 DOI 10.1038/s42003-018-0239-8.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8347 22/22

https://peerj.com
http://dx.doi.org/10.4155/fmc.12.11
http://dx.doi.org/10.1038/ncomms3612
http://dx.doi.org/10.1038/s42003-018-0239-8
http://dx.doi.org/10.7717/peerj.8347

