Crowdsourcing visual perception experiments: A case of contrast threshold (#40944)

First submission

Guidance from your Editor

Please submit by 2 Oct 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data. Download from the location described by the author.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

1 Figure file(s)

Human participant/human tissue checks

- Have you checked the authors ethical approval statement?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Crowdsourcing visual perception experiments: A case of contrast threshold

Kyoshiro Sasaki 1, 2, 3, Yuki Yamada Corresp. 2

Corresponding Author: Yuki Yamada Email address: yy@artsci.kyushu-u.ac.jp

Crowdsourcing has commonly been used for psychological research but not for studies on sensory perception. This is because in online experiments, one cannot ensure that the rigorous settings required for the experimental environment are replicated. The present study examined the suitability of online experiments of basic visual perception, for example, the contrast threshold. We conducted similar visual experiments in the laboratory and online. Specifically, we employed three experimental conditions. The first was a laboratory experiment, where a small sample of participants (n = 24; laboratory condition) completed a task with 10 iterations. The other two conditions were online experiments: participants were either presented with a task without repetition of trials (n = 285; online non-repetition condition) or one with 10 iterations (n = 166; online repetition condition). The results showed that there was significant equivalence in the contrast thresholds between the laboratory and the online repetition conditions, although a high level of data exclusion was necessary in the online repetition condition. The contrast threshold was significantly higher in the online non-repetition condition than in the laboratory and online repetition conditions. To make crowdsourcing more suitable for investigating the contrast threshold, we should seek the way to reduce data wastage.

¹ Waseda University, Tokyo, Japan

² Kyushu University, Fukuoka, Japan

³ Japan Society for the Promotion of Science, Tokyo, Japan

1	
2	
3	Crowdsourcing visual perception experiments: A case of
4	contrast threshold
5	
6	Kyoshiro Sasaki ^{1, 2, 3} and Yuki Yamada ^{2*}
7	
8	¹ Faculty of Science and Engineering, Waseda University, Tokyo, Japan
9	² Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
10	³ Japan Society for the Promotion of Science, Tokyo, Japan
11	
12	Running head: Crowdsourcing meets Visual Perception
13	
14	*Correspondence:
15	Dr. Yuki Yamada
16	Faculty of Arts and Science, Kyushu University,
17	744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
18	E-mail: yamadayuk@gmail.com
19	TEL & FAX: +81-92-802-5837
20	
21	
22	

1	Abstract
1	Instruct

Crowdsourcing has commonly been used for psychological research but not for studies on
sensory perception. This is because in online experiments, one cannot ensure that the rigorous
settings required for the experimental environment are replicated. The present study
examined the suitability of online experiments of basic visual perception, for example, the
contrast threshold. We conducted similar visual experiments in the laboratory and online.
Specifically, we employed three experimental conditions. The first was a laboratory
experiment, where a small sample of participants ($n = 24$; laboratory condition) completed a
task with 10 iterations. The other two conditions were online experiments: participants were
either presented with a task without repetition of trials ($n = 285$; online non-repetition
condition) or one with 10 iterations ($n = 166$; online repetition condition). The results showed
that there was significant equivalence in the contrast thresholds between the laboratory and
the online repetition conditions, although a high level of data exclusion was necessary in the
online repetition condition. The contrast threshold was significantly higher in the online non-
repetition condition than in the laboratory and online repetition conditions. To make
crowdsourcing more suitable for investigating the contrast threshold, we should seek the way
to reduce data wastage.

Keywords: Online experiment, Perception, Vision, Contrast threshold

1	Introduction
1	111ti Uuuctioii

Over the past decade, experiments in psychological research have gone beyond the laboratory. The increasing diversity of research methods and technological advances have increased opportunities for researchers to use resources outside of the laboratory. For example, researchers are using outsourcing services to recruit experimental participants and, often, even commissioning research firms to conduct their surveys and experiments. In addition, "crowdsourcing," based on outstanding technological advances in the digital environment and mobile information devices (for a review, see Stewart, Chandler, & Paolacci, 2017), has become a powerful tool for psychological research.

Crowdsourcing is a method of recruiting large numbers of people and asking them to

crowdsourcing is a method of recruiting large numbers of people and asking them to participate in surveys or experiments via the Internet. Basically, service providers manage an experimenter's task and act as a payment agency. Using crowdsourcing has a number of advantages. The first is its very low cost—participants receive less than \$1 for responding to a simple questionnaire or engaging in an easy cognitive task. Second, large (more than 1,000 people) and diverse (in age, gender, and culture) samples can easily employed. The ease of collecting large amounts of diverse data is not only beneficial from the perspective of random sampling but is also helpful for planning experiments and estimating the effect size prior to conducting the experiment (Chrabaszcz, Tidwell, & Dougherty, 2017). Third, it enables researchers to use their time efficiently. With experiments running all hours of the day and night, data from 1,000 people can be obtained within a day or two, although this depends on how many active users are registered with the service. In brief, crowdsourcing enables us to conduct experiments more efficiently.

So far, crowdsourcing has been used for various kinds of experiments and tasks. For example, there are many experimental studies based on self-report questionnaires (e.g.,

1	Crangle & Kart, 2015; Garcia, Kappas, Küster, & Schweitzer, 2016; Gottlieb & Lombrozo,
2	2018; Hurling, Murray, Tomlin et al., 2017; Sasaki, Ihaya, & Yamada, 2017), visual search
3	tasks (de Leeuw & Motz, 2015), reaction time tasks (e.g., Nosek, Banaji,
4	& Greenwald, 2002; Sasaki et al., 2017; Schubert, Murteira, Collins, & Lopes, 2013),
5	keystrokes tasks (Pinet et al., 2017), Stroop tasks (Barnhoorn, Haasnoot, Bocanegra, & van
6	Steenbergen, 2014; Crump, McDonnell, & Gureckis, 2013), the attentional blink task
7	(Barnhoorn et al., 2014; Brown et al., 2014), flanker tasks (Simcox & Fiez, 2014; Zwaan et
8	al., 2018), Simon tasks (Zwaan et al., 2018), lexical decision tasks (Simcox & Fiez, 2014),
9	category learning tasks (Crump et al., 2013), memory tasks (Brown et al., 2014; Zwaan et
10	al., 2018), priming tasks (Zwaan et al., 2018), and decision-making tasks (Berinsky, Huber,
11	& Lenz, 2012; Brown et al., 2014). Moreover, a recent study recruited infants aged five to
12	eight months via crowdsourcing and measured their looking time with webcams (Tran,
13	Cabral, Patel, & Cusack, 2017). These studies suggested that the effect size of the
14	performances in such tasks is comparable to that in laboratory experiments, although the
15	results for the subliminal priming effect (Barnhoorn et al., 2014; Crump et al., 2013) and the
16	cheerleader effect in facial attractiveness (Ojiro et al., 2015) were not consistent between in-
17	laboratory and online experiments. The high reliability of some experimental data was also
18	confirmed (Buhrmester, Kwang, & Gosling, 2011; Crump et al., 2013; de Leeuw & Motz,
19	2015; Ramsey, Thompson, McKenzie, & Rosenbaum, 2016). Therefore, crowdsourcing can
20	be used for diverse online experiments with publishable reliability.
21	However, conventional studies on sensory perception are completed in the laboratory.
22	Moreover, it is not unusual that only authors or their laboratory members, who should be
23	well experienced with psychophysical measurements, participate in experiments about
24	sensory perception. Indeed, at this stage, only a small number of studies have tried to run

sensory perceptual experiments via crowdsourcing. Previous studies investigated color
(Lafer-Sousa, Hermann, & Conway, 2015; Szafir, Stone, & Gleicher, 2014) and randomness
(Yamada, 2015) on the web but used one-time color-matching, color word selection, forced
choice (same or different), or magnitude estimation tasks. A few studies have measured the
point of subjective equality, sensitivity, or thresholds using psychophysical methods in
studies on color perception (Ware et al., 2018), volume perception (Pechey et al., 2015), size
perception (Brady & Alvarez, 2011) scene perception (Brady, Shafer-Skelton, & Alvarez,
2017), and stimulus visibility (Bang, Shekhar, & Rahnev, 2019). One reason why
experiments on sensory perception are rarely conducted online stems from the necessity for
rigorous control over the experimental environment. Online experiments depend a great deal
on the participant's own computing environment and experimenters cannot control the
display settings, visual distance (or the visual field), or the lighting conditions. Thus far,
online experiments seem inadequate for experimental studies that focus on the visual
functions of spatial and temporal resolutions such as contrast threshold. For example,
previous studies examined the issue of the temporal aspect of stimulus presentation and found
that stimuli were systematically presented for 20 ms longer than the programmed durations
(de Leeuw & Motz, 2015; Reimers & Stewart, 2014).
In the present study we focused on measuring low-level visual percention via online

In the present study, we focused on measuring low-level visual perception via online experiments. We examined the contrast threshold in vision via online crowdsourcing and the laboratory. The contrast threshold is a non-temporal visual capacity that is most susceptible to the influence of the display condition in measurement. This is because its measurement needs strict linearization of the outputs of the display with gamma correction; however, most displays of home PCs are not linearized. We believed that a comparison between web and lab measurements of visual contrast thresholds would provide tangible evidence of what

online experiments can and cannot test regarding non-temporal aspects of stimulus presentation. If the non-linearity of monitor displays were a negligible random effect, the contrast threshold online and in the laboratory would be similar. Moreover, the present study used two types of iteration for online experiments, that is, the repetition and non-repetition conditions. In the former, participants were presented with each trial 10 times per stimulus condition but in the latter condition, each trial was presented only once. In online experiments, boredom in participants substantially decreases data quality (Chandler, Mueller, & Paolacci, 2014) and many repetitions are likely to induce boredom. If we could control for measurement errors or individual differences by increasing the sample size, a single trial for a stimulus condition would be enough to lead to an appropriate conclusion, even in online experiments, without data deterioration. For this reason, the sample size of participants in the non-repetitive condition was about 10 times that of the repetitive condition.

15 Methods

Participants. We used G*power to determine the sample sizes needed for the repetition condition ($\alpha = .05, 1-\beta = .80$). In the laboratory condition, we used a moderate effect size (f = .25) in the calculation of the required sample size. The required and maximum sample size was 24. In the online repetition condition, we used a small effect size (f = .10) in the calculation of the required sample size, because of the potential for noise in the data of online experiments. The required sample size was 138. Considering potential satisficers (Chandler et al., 2014; Oppenheimer, Meyvis, & Davidenko, 2009), 200 people was set as the maximum sample size and participants were recruited through a crowdsourcing service (Yahoo! Crowdsourcing: http://crowdsourcing.yahoo.co.jp/). We considered that the required sample

size in the online non-repetition condition should be at the least 10 times number of that in
the laboratory condition (240 people) according to the differences in the number of
repetitions. Similarly, in the online repetition condition, we recruited 300 people as the
maximum sample size to account for the potential influence of satisficers. The participants
in the laboratory conditions undertook several experiments, including the present experiment,
for 3 hours and received 4000 JPY. The participants in the online repetition and non-
repetition conditions got 50 and 20 T-points (1 T-point = 1 JPY) ¹ . Participants were not made
aware of the purpose of the study. The experiment was conducted according to the principles
laid down in the Helsinki Declaration. The protocol was approved by the ethics committees
of Waseda University (approval number: 2015-033) and Kyushu University (approval
number: 2016-017). We obtained written informed consent from all the participants in the
laboratory condition. On the other hand, it was difficult to obtain written informed consent
in the online conditions. Thus, according to the protocol (approval number: 2016-017), we
explained the details of the online experiments by the instruction beforehand, and then asked
the participants to take part in the experiments only when they agreed to the instruction.
Apparatus. In the laboratory condition, stimuli were presented on a 23.5-inch LCD display
(FG2421; EIZO, Japan). The resolution of the display was 1920×1080 pixels and the refresh
rate was 100 Hz. We performed gamma correction for the luminance emitted from the
monitor. The presentation of stimuli and the collection of data were computer-controlled
(Mac mini, Apple, USA). We used MATLAB with the Psychtoolbox extension (Brainard,
1997; Pelli, 1997) to generate the stimuli. The observer's visual field was fixed using a chin-
head rest at a viewing distance of 57 cm. The size information at the visual angle described
for the laboratory condition was based on this viewing distance. In the online conditions, the
experiment was conducted on a web browser with a JavaScript application (jsPsych; de

17

18

19

20

21

22

23

24

1	Leeuw,	2015).

2 Stimuli and Procedure. Stimuli consisted of a fixation circle (diameter was 0.24 degrees) and 3 Gabor patches, the diameter of which was 42 pixels (2 degrees in the laboratory conditions). 4 The SD of a gaussian function was 6 pixels (0.29 degrees). There were four spatial 5 frequencies of the carrier: 0.02, 0.05, 0.09, and 0.38 cycles per pixel (cpp; 0.5, 1, 2, and 8 6 cycles per degree [cpd] in the laboratory conditions). We set seven contrast levels (the 7 Michelson contrast) varying across the spatial frequencies. The contrasts in the 0.02 cpp (0.5 8 cpd) trials were 3, 8, 13, 18, 23, 28, and 33%. The contrasts in the 0.05 and 0.09 cpp (1 and 9 2 cpd) trials were 1, 6, 11, 16, 21, 26, and 31%. The contrasts in the 0.38 cpp (8 cpd) trials 10 were 5, 10, 15, 20, 25, 30, and 35%. The Gabor patches were tilted 45° clockwise or 11 counterclockwise. We took screenshots of the stimuli on the monitor at the laboratory and 12 used them for the online conditions. 13 In the laboratory condition, the experiment was conducted in a dark room. The 14 participants initiated each trial by pressing the space key. The fixation circle was presented 15 for 500 ms. After the fixation circle disappeared, the Gabor patch was presented for 50 ms,

participants initiated each trial by pressing the space key. The fixation circle was presented for 500 ms. After the fixation circle disappeared, the Gabor patch was presented for 50 ms, Then, we presented a blank screen for 300 ms, followed by the prompt: "In which direction was the stimulus tilted?" The method of constant stimuli was used. The participants were asked whether the stimulus was tilted clockwise or counterclockwise. Participants responded without time limits or feedback. Each of the spatial frequency conditions was conducted in a separate session; thus, the experiment consisted of 4 sessions. The session order was randomized across participants. In each session, trials were conducted for 7 contrasts in 2 orientations. In the repetition condition, each combination of contrast and orientation was presented 10 times per session. Thus, participants in the repetition condition completed 560 trials in total, whilst those in the non-repetition condition completed 56. The order of the

1	trials was also randomized across participants. Before the first session, we conducted a
2	practice session, where the participants completed 4 trials. The spatial frequency of the
3	practice session was identical to that of the first session, and the contrast was 100%. Both of
4	the orientations appeared twice. The trial order of each session was randomized across the
5	participants.
6	In the online conditions, the procedures were identical to that of the laboratory
7	conditions except for the added insertion of attention check questions (ACQs). This is
8	because online participants are often distracted (Chandler et al., 2014) or are satisficers
9	(Oppenheimer et al., 2009), and previous studies have found that ACQs can reduce low-
10	quality responses (Aust, Diedenhofen, Ullrich, & Musch, 2012; Oppenheimer et al., 2009).
11	The ACQs were easy calculations based on the four basic arithmetic operations (e.g., 20 +
12	15 = ?) and participants selected the correct answer from five options, ACQs appeared
13	halfway through the total number of trials in each session.
14	Data Analysis. We excluded participants who gave incorrect answers to one or more ACQs.
15	In the laboratory and online repetition conditions, we calculated the contrast threshold of
16	each spatial frequency for each participant, at which the proportion of "correct" responses
17	was 0.82 (Cameron, Tai, & Carrasco, 2002; Lee, Baek, Lu, & Mather, 2014), using a probit
18	analysis (i.e., fitting a cumulative Gaussian function to the proportion of "correct" responses
19	as a function of the contrast level). We used the "glm" function in R (3. 4. 4). The probit
20	analysis provided the means and standard deviations (SDs) of the distributions. Then, we
21	calculated the contrast thresholds using the means, SDs, and the "qnorm" function in R. We
22	excluded participant data when $\boldsymbol{\beta}$ calculated by the probit analysis was a negative value. This
23	was because the negative value indicated a reduction in correct responses as the contrast level
24	increased, and in this case, the participants could not perform the task precisely. As a result,

we could not calculate the thresholds. We also excluded the data of participants whose
contrast thresholds were under 0 or over 100% because the contrast threshold should be
within this range. In the online non-repetition conditions, we used the pooled data from al
the participants and calculated the contrast threshold for each spatial frequency by the same
procedures of the repetition conditions.

First, to confirm whether the contrast threshold depended on the spatial frequency, we conducted a one-way analysis of variance (ANOVA) on the contrast thresholds with spatial frequency as a within-participant factor, for the laboratory and online repetition conditions. We set the alpha level as .05 and calculated η_p^2 . When the main effects were significant, we conducted multiple comparison tests using Holm's method (Holm, 1979). We had to conduct the *t*-tests six times. Therefore, we increased α from .008 to .05 based on Holm's correction (Holm, 1979).

Moreover, our purpose was to examine whether the contrast thresholds were different or equivalent between experimental environments in each spatial frequency. Thus, we conducted two-tailed Welch's t-tests for the contrast thresholds for each spatial frequency. After the t-tests, we conducted equivalence tests for the pairs in which the contrast thresholds were not significantly different. For the equivalence tests, we used the TOSTER package in R (Lakens, Scheel, & Isager, 2018) and set Cohen's d to 0.5. We compared the contrast threshold of the laboratory condition and the online repetition and non-repetition conditions, and thus we had to conduct t-tests and equivalence test three times at most. Therefore, we set α from .017 to .05 based on Holm's correction (Holm, 1979).

23 Results

The results are shown in Figure 1. We collected the data from 24 people in the laboratory

1 condition. In the online repetition condition, of the 200 people recruited, only 80 participated. 2 As this number did not reach the required sample size, we recruited another 200 people and 3 subsequently collected data from 166 participants. For the online non-repetition condition, 4 of the 300 people recruited, only 156 participated. Therefore, we recruited another 250 people 5 and subsequently collected data from 285 participants. We excluded the data of 2, 84, and 19 6 participants in the laboratory, online repetition, and online non-repetition conditions, 7 respectively, based on the rules detailed in the Data Analysis section. 8 Online repetition and Laboratory Conditions. The results of the ANOVA on the contrast 9 thresholds in the laboratory condition revealed that the main effect was significant, F(3, 63)= 7.63, p < .001, $\eta_p^2 = .27$. The multiple comparison tests showed that the threshold was 10 11 significantly higher in the 0.5 cpd trials than in the 1 and 2 cpd trials, ts(21) > 6.25, ps < .001, 12 Cohen's dzs > 1.33. Moreover, the threshold was significantly higher in the 4 cpd trials than 13 in the 2 cpd trials, t(21) = 2.88, p = .009, Cohen's dz = 0.61. The results of the ANOVA on 14 the contrast thresholds in the online repetition condition revealed that the main effect was 15 significant, F(3, 243) = 26.23, p < .001, $\eta_p^2 = .24$. The multiple comparison tests showed that 16 the threshold was significantly higher in the 4 cpd trials than in the 1 and 2 cpd trials, ts(81) 17 > 6.77, ps < .001, Cohen's dzs > 0.74. The threshold was also significantly higher in the 0.5 18 cpd trials than in the 1 and 2 cpd trials, ts(81) > 4.98, ps < .001, Cohen's dzs > 0.64. 19 Online non-repetition, Online repetition, and Laboratory Conditions. For the 0.5 cpd trials, 20 the threshold was significantly higher in the online non-repetition condition than in the online 21 repetition, t(332.97) = 6.14, p < .001, Cohen's d = 0.51, and laboratory, t(159.41) = 5.95, p 22 < .001, Cohen's d = 0.45, conditions, while there was no significant difference between the 23 online repetition and laboratory conditions, t(68.92) = 0.31, p = .76, Cohen's d = 0.05. The 24 equivalence test showed significant equivalence between the online repetition and laboratory

- conditions, t(68.92) = 2.26, p = .013.
- For the 1 cpd trials, the threshold was significantly higher in the online non-repetition
- 3 condition than in the online repetition, t(314.58) = 7.54, p < .001, Cohen's d = 0.55, and
- 4 laboratory, t(285.95) = 7.43, p < .001, Cohen's d = 0.71, conditions, while there was no
- 5 significant difference between the online repetition and laboratory conditions, t(82.43) =
- 6 0.56, p = .580, Cohen's d = 0.09. The equivalence test showed significant equivalence
- between the online repetition and laboratory conditions, t(82.43) = 2.13, p = .018.
- 8 For the 2 cpd trials, the threshold was significantly higher in the online non-repetition
- 9 condition than in the online repetition, t(319.24) = 7.06, p < .001, Cohen's d = 0.52, and
- laboratory, t(268.92) = 7.11, p < .001, Cohen's d = 0.72, conditions, while there was no
- significant difference between the online repetition and laboratory conditions, t(57.31) =
- 12 0.33, p = .742, Cohen's d = 0.06. The equivalence test showed significant equivalence
- between the online repetition and laboratory conditions, t(57.31) = 2.12, p = .019.
- For the 4 cpd trials, the threshold was significantly higher in the online non-repetition
- 15 condition than in the online repetition, t(344.97) = 6.23, p < .001, Cohen's d = 0.50, and
- laboratory, t(56.41) = 5.06, p < .001, Cohen's d = 0.51, conditions, while there was no
- significant difference between the online repetition and laboratory conditions, t(31.40) =
- 18 .564, p = .577, Cohen's d = 0.14. The equivalence test showed that the equivalence between
- the online repetition and laboratory conditions was marginally significant, t(31.40) = 1.48, p
- = .075.

- 22 Discussion
- In the present study, we examined whether the contrast threshold was properly
- 24 measured in an online experiment with two conditions: a condition with repetition of trials

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

and one without repetition. The results showed that there were equivalences in the contrast thresholds of the online repetition and laboratory conditions. On the other hand, at high spatial frequencies, the contrast threshold in the online non-repetition condition was higher than that in the online repetition and laboratory conditions. Thus, online experiments seem to be able to measure the contrast threshold as adequately as laboratory experiments, provided there are enough repetitions; it is difficult to measure the contrast thresholds without repetitions. Additionally, we have to discuss several points to improve the suitability of crowdsourcing for online perceptual experiments.

Is crowdsourcing suitable for investigating the contrast threshold? The present study excluded 51% of the data in the online repetition condition. These exclusions mainly stemmed from the fact that the correct response decreased as the contrast level increased or the thresholds were under zero. That is, in the online repetition condition, it was rare to precisely calculate the contrast threshold. One possibility is that the experimental environment of 49% of the participants in the online repetition condition might be similar to that of the laboratory condition. As a result, we were able to calculate the thresholds of these participants and we found significant equivalences between the laboratory and online repetition conditions. On the other hand, the contrast thresholds were much higher in the online non-repetition condition. Although it is difficult to interpret this result, the results of the online repetition condition may inform our understanding. A large amount of the data was excluded in the online repetition condition. Based on this, we can expect the data obtained via online experiments to be noisy. This noisy data should be included in the online non-repetition condition and mediate in the results of the online non-repetition condition. Considering the exclusion of data in the online repetition condition and the results of the online non-repetition condition, we cannot conclude that online experiments are adequate for

1	measuring the contrast threshold; in fact, it will be difficult to measure the contrast threshold
2	via crowdsourcing unless we are able measure and calibrate the lighting conditions of each
3	online participant via camera.

There may be some solutions for improving the situation of online measurements of the contrast threshold. One solution would be to control the experimental environments of each participants in the online experiments and make them similar to that of a laboratory experiment. A previous study proposed beneficial tips for controlling the size of stimuli, distance from the monitor, sound volume, and brightness (Woods, Velasco, Levitan, Wan, & Spence, 2015). Woods et al. also provided a possible way to adjust color, which seems to be difficult to control across online participants, using the psychophysical method (To, Woods, Goldstein, & Peli, 2013). At this time, these methods seem to require much effort from the participants and thus might not be effective. The growth of ways to control experimental environments should lead to a reduction in low-quality data, leading to a decreased in the exclusion of data.

The other way is related to participant negligence. In the online experiment, it was difficult for participants to maintain their motivation while performing tasks, because they were not prepared to participate in psychological experiments and did not face experimenters. In such situations, participants often do not devote enough effort to the tasks and, hence, cursory responses increase (Satisficing: e.g., Berinsky, Margolis, & Sances, 2016; Maniaci & Rogge, 2014; Miura & Kobayashi, 2016; Oppenheimer et al., 2009). ACQs, which we set during the online condition sessions, are beneficial for protecting the quality of the data from satisficing. It is easy for participants to correctly answer ACQs when they perform the tasks carefully. Generally, it is important to exclude the data of those who wrongly answer ACQs because of inattention and/or cursory responses in order to improve the quality of the data.

1	However, in the present study, the data exclusion due to incorrect ACQ responses accounted
2	for 6% of the total data in each of the online conditions. Thus, the ACQ might not be working
3	as intended in the present study. The type of ACQ was extremely different from that of the
4	main task (i.e., judging the orientation of the Gabor patch). Given this, perhaps we should
5	improve the ACQ so that participants are not easily caught out, or we should use another
6	method; an instructional manipulation check (IMC) is also helpful for detecting satisficers
7	(Oppenheimer et al., 2009). An IMC checks whether the participants carefully read the
8	instructions for the tasks. Specifically, they can incorporate the instruction not to answer the
9	questions into some methods commonly used in psychological research (e.g., Likert scales);
10	thus, if the participants do not carefully read the instructions, they mistakenly answer the
11	questions. The data of such participants should be excluded because they improperly dealt
12	with the tasks. Additionally, a recent study showed that alerting satisficers to their
13	inattentiveness by a repeated IMC was helpful for improving their information processing
14	(Miura & Kobayashi, 2016). In general, ACQs and IMCs are valid tools for the detection and
15	exclusion of data from satisficers. However, it is difficult to prevent satisficers from
16	participating in experiments. To keep from losing data owing to satisficers, blacklisting them
17	might be more effective in the long term.
18	In addition, there may be other ways to maintain the quality of psychophysical online
19	data. One possibility is developing a platform designed for scientific research.
20	Crowdsourcing services such as Yahoo! Crowdsourcing and Amazon Mechanical Turk have
21	some advantages for conducting psychological research. However, they were not developed
22	as research tools and have some inconveniences as well. Recently, a platform for scientific
23	research was designed (TurkPrime: Litman, Robinson, & Abberbock, 2017) and integrated

with Amazon Mechanical Turk. Some helpful systems for improving the quality of online

1	data were provided, including: excluding participants based on previous participation,
2	communicating with participants, monitoring dropout and engagement rates. Elevating these
3	platforms should be helpful for improving the quality of the data in the online experiments.

Crowdsourcing enables us to obtain large amounts of data from various people. This
is advantageous for examining individual differences in perceptual and cognitive processing.
In classic laboratory experiments, most participants are university or graduate students. It is
also difficult to collect large amounts of data in classic laboratory experiments. Thus, the
personal traits of the participants do not vary enough to examine the relation between
individual differences in perceptual and cognitive processing. Crowdsourcing, however,
allows researchers to recruit participants from around the world, and hence we can collect
mass data from participants with various personality traits. Indeed, we and others have
already shown the relationship between individual differences in personality traits and
perceived eeriness using crowdsourcing (Chaya et al., 2015; Sasaki et al., 2017). Moreover,
we previously conducted a perceptual study indicating the individual differences in the
perception of pattern randomness (Yamada, 2015). If the environment in the online
experiments is improved and crowdsourcing becomes suitable, to some extent, for
investigating visual perception, online experiments will be helpful for addressing individual
differences in visual perception.

1	Footnote
2	¹ We paid 82 and 37 JPY to Yahoo! Crowdsourcing for every participant in the online
3	repetition and non-repetition conditions, respectively. Yahoo! Crowdsourcing received the
4	difference between the participant's reward and our payment as a profit margin.
5	

ı	References
2	Aust, F., Diedenhofen, B., Ullrich, S., & Musch, J. (2012). Seriousness checks are useful to
3	improve data validity in online research. Behavior Research Methods, 45(2), 527-
4	535. doi: 10.3758/s13428-012-0265-2
5	Bang, J. W., Shekhar, M., & Rahnev, D. (2019). Sensory noise increases metacognitive
6	efficiency. Journal of Experimental Psychology: General, 148, 437-452. doi:
7	10.1037/xge0000511
8	Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, H. (2014). QRTEngine:
9	An easy solution for running online reaction time experiments using Qualtrics.
10	Behavior Research Methods, 1–12. doi: 10.3758/s13428-014-0530-7
11	Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for
12	experimental research: Amazon.com's Mechanical Turk. Political Analysis, 20,
13	351–368. doi: 10.1093/pan/mpr057
14	Berinsky, A. J., Margolis, M. F., & Sances, M. W. (2016). Can we turn shirkers into workers?
15	Journal of Experimental Social Psychology, 66, 20–28. doi:
16	10.1016/j.jesp.2015.09.010
17	Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory:
18	Ensemble statistics bias memory for individual items. Psychological Science, 22,
19	384–392.
20	Brady, T. F., Shafer-Skelton, A., & Alvarez, G. A. (2017). Global ensemble texture
21	representations are critical to rapid scene perception. Journal of Experimental
22	Psychology: Human Perception and Performance, 43, 1160–1176.
23	Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436. doi:
24	10.1163/156856897X00357

1 Brown, H. R., Zeidman, P., Smittenaar, P., Adams, R. A., McNab, F., Rutledge, R. B., & 2 Dolan, R. J. (2014). Crowdsourcing for cognitive science - The utility of 3 smartphones. *PLoS ONE*, 9 (7), e100662. doi: 10.1371/journal.pone.0100662 4 Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon's Mechanical Turk: A new 5 source of inexpensive, yet high-quality, data? Perspectives on Psychological 6 Science, 6 (1), 3–5. doi: 10.1177/1745691610393980 7 Cameron, E. L., Tai, J. C., & Carrasco, M. (2002). Covert attention affects the psychometric 8 function of contrast sensitivity. Vision Research, 42, 949–967. 9 Chandler, J., Mueller, P., & Paolacci, G. (2014). Nonnaïveté among Amazon Mechanical 10 Turk workers: consequences and solutions for behavioral researchers. Behavior 11 Research Methods, 46 (1), 112–130. doi: 10.3758/s13428-013-0365-7 12 Chaya, K., Xue, Y., Uto, Y., Yao, Q., & Yamada, Y. (2016). Fear of eyes: Triadic relation 13 among social anxiety, trypophobia, and discomfort for eye cluster. *PeerJ*, 4:e1942. 14 doi: 10.7717/peerj.1942 15 Chrabaszcz, J. S., Tidwell, J. W., & Dougherty, M. R. (2017). Crowdsourcing prior 16 information to improve study design and data analysis. PLOS ONE, 12: e0188246. 17 doi: 10.1371/journal.pone.0188246 18 Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, 19 NJ: Lawrence Erlbaum. 20 Crangle, C. E., & Kart, J. B. (2015). A questions-based investigation of consumer mental-21 health information. *PeerJ*, 3:e867. doi: 10.7717/peerj.867 22 Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon's 23 Mechanical Turk as a tool for experimental behavioral research. *PloS ONE*, 8 (3), 24 e57410. doi: 10.1371/journal.pone.0057410

1 de Leeuw, J. R. (2015), jsPsych: A JavaScript library for creating behavioral experiments in 2 a web browser. Behavior Research Methods, 47, 1-12. 3 Garcia, D., Kappas, A., Küster, D., & Schweitzer, F. (2016). The dynamics of emotions in 4 online interaction. Royal Society Open Science, 3:8. doi: 10.1098/rsos.160059 5 Gottlieb, S., & Lombrozo, T. (2018). Can Science Explain the Human Mind? Intuitive 6 Judgments About the Limits of Science. Psychological Science, 29, 121–130. doi: 7 10.1177/0956797617722609 8 Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian 9 Journal of Statistics, 6, 65–70. doi: 10.2307/4615733 10 Hurling, R., Murray, P., Tomlin, C., Warner, A., Wilkinson, J., York, G., Linley, P. A., 11 Dovey, H., Hogan, R. A., Maltby, J., & So, T. T. (2017). Short Tips Delivered "in 12 the Moment" Can Boost Positive Emotion. International Journal of Psychological 13 Studies, 9, 88–106. doi: 10.5539/ijps.v9n1p88 14 Lafer-Sousa, R., Hermann, K. L., & Conway, B. R. (2015). Striking individual differences 15 in color perception uncovered by "the dress" photograph. Current Biology, 25, R1-16 R2. doi: 10.1016/j.cub.2015.04.053 17 Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for *Psychological* 18 Research: A Tutorial. Advances in Methods and Practices in Psychological Science, 19 *1*, 259–269. 20 Lee, T. H., Baek, J., Lu, Z. L., & Mather, M. (2014). How arousal modulates the visual 21 contrast sensitivity function. *Emotion*, 14, 978–984. 22 Litman, L., Robinson, J., & Abberbock, T. (2017). TurkPrime. com: A versatile 23 crowdsourcing data acquisition platform for the behavioral sciences. Behavior 24 Research Methods, 49, 433–442. doi: 10.3758/s13428-016-0727-z

1	Maniaci, M. R., & Rogge, R. D. (2014). Caring about carelessness: Participant inattention
2	and its effects on research. Journal of Research in Personality, 48, 61-83. doi:
3	10.1016/j.jrp.2013.09.008
4	Miura, A., & Kobayashi, T. (2016). Survey satisficing inflates stereotypical responses in
5	online experiment: The case of immigration study. Frontiers in Psychology, 7:1563.
6	doi: 10.3389/fpsyg.2016.01563
7	Nosek, B. A., Banaji, M., & Greenwald, A. G. (2002). Harvesting implicit group attitudes
8	and beliefs from a demonstration web site. Group Dynamics: Theory, 6 (1), 101-
9	115. doi: 10.1037/1089-2699.6.1.101
10	Ojiro, Y., Gobara, A., Nam, G., Sasaki, K., Kishimoto, R., Yamada, Y., & Miura, K. (2015).
11	Two replications of "Hierarchical encoding makes individuals in a group seem more
12	attractive (2014; Experiment 4)". The Quantitative Methods for Psychology, 11, r8-
13	r11. doi: 10.20982/tqmp.11.2.r008
14	Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation
15	checks: Detecting satisficing to increase statistical power. Journal of Experimental
16	Social Psychology, 45 (4), 867–872. doi: 10.1016/j.jesp.2009.03.009
17	Pechey, R., Attwood, A. S., Couturier, D. L., Munafò, M. R., Scott-Samuel, N. E., Woods,
18	A., & Marteau, T. M. (2015). Does glass size and shape influence judgements of the
19	volume of wine? PLOS ONE, 10: e0144536.
20	Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming
21	numbers into movies. Spatial Vision, 10, 437-442. doi: 10.1163/156856897X00366
22	Pinet, S., Zielinski, C., Mathot, S., Dufau, S., Alario, F. X., & Longcamp, M. (2017).
23	Measuring sequences of keystrokes with jsPsych: Reliability of response times and
24	inter-keystroke intervals. Behavior Research Methods, 49, 1163–1176.

1	Plant, R. R., & Turner, G. (2009). Millisecond precision psychological research in a world
2	of commodity computers: new hardware, new problems? Behavior Research
3	Methods, 41 (3), 598-614. doi: 10.3758/s13428-016-0776-3
4	Ramsey, S. R., Thompson, K. L., McKenzie, M., & Rosenbaum, A. (2016). Psychological
5	research in the internet age: The quality of web-based data. Computers in Human
6	Behavior, 58, 354–360.
7	Reimers, S., & Stewart, N. (2014). Presentation and response timing accuracy in Adobe Flash
8	and HTML5/JavaScript Web experiments. Behavior Research Methods, 1-19. doi:
9	10.1016/j.chb.2015.12.049
10	Sasaki, K., Ihaya, K., & Yamada, Y. (2017). Avoidance of novelty contributes to the uncanny
11	valley. Frontiers in Psychology, 8: 1792. doi: 10.3389/fpsyg.2017.01792
12	Schubert, T. W., Murteira, C., Collins, E. C., & Lopes, D. (2013). ScriptingRT: A Software
13	Library for Collecting Response Latencies in Online Studies of Cognition. PLOS
14	ONE, 8 (6), e67769. doi: 10.1371/journal.pone.0067769
15	Simcox, T., & Fiez, J. A. (2014). Collecting response times using Amazon Mechanical Turk
16	and Adobe Flash. Behavior Research Methods, 46, 95-111. doi: 10.3758/s13428-
17	013-0345-у
18	Stewart, N., Chandler, J., & Paolacci, G. (2017). Crowdsourcing Samples in Cognitive
19	Science. Trends in Cognitive Sciences, 21, 736–748. doi: 10.1016/j.tics.2017.06.007
20	Szafir, D. A., Stone, M., & Gleicher, M. (2014). Adapting color difference for design.
21	Proceedings of Color and Imaging Conference, 2014, 228–233.
22	To, L., Woods, R. L., Goldstein, R. B., & Peli, E. (2013). Psychophysical contrast calibration.
23	Vision Research, 90, 15-24. doi: 10.1016/j.visres.2013.04.011
24	Tran, M., Cabral, L., Patel, R., & Cusack, R. (2017). Online recruitment and testing of infants

1	with Mechanical Turk. Journal of Experimental Child Psychology, 156, 168–178.
2	doi: 10.1016/j.jecp.2016.12.003
3	Turpin, A., Lawson, D. J., & McKendrick, A. M. (2014). PsyPad: a platform for visual
4	psychophysics on the iPad. Journal of Vision, 14 (3):16, 1–7. doi: 10.1167/14.3.16
5	Ware, C., Turton, T. L., Bujack, R., Samsel, F., Shrivastava, P., & Rogers, D. H. (2018).
6	Measuring and Modeling the Feature Detection Threshold Functions of Colormaps.
7	IEEE transactions on visualization and computer graphics. doi:
8	10.1109/TVCG.2018.2855742
9	Woods, A. T., Velasco, C., Levitan, C. A., Wan, X., & Spence, C. (2015). Conducting
10	perception research over the internet: A tutorial review. PeerJ, 3:e1058. doi:
11	10.7717/peerj.1058
12	Yamada, Y. (2015). Gender and age differences in visual perception of pattern randomness.
13	Science Postprint, 1 (2): e00041. doi: 10.14340/spp.2015.01A0002
14	Zwaan, R. A., Pecher, D., Paolacci, G., Bouwmeester, S., Verkoeijen, P., Dijkstra, K., &
15	Zeelenberg, R. (2018). Participant nonnaiveté and the reproducibility of cognitive
16	psychology. Psychonomic Bulletin & Review, 25, 1968–1972. doi: 10.3758/s13423-
17	017-1348-y
18	
19	

1	Acknowledgments
2	We would like to thank Dr. Daiichiro Kuroki for developing the program of the online
3	experiment. This research was supported by JSPS KAKENHI #17J05236 to K.S. and
4	#15H05709, #16H03079, #16H01866, #17H00875, #18H04199, and #18K12015 to Y.Y.
5	

PeerJ

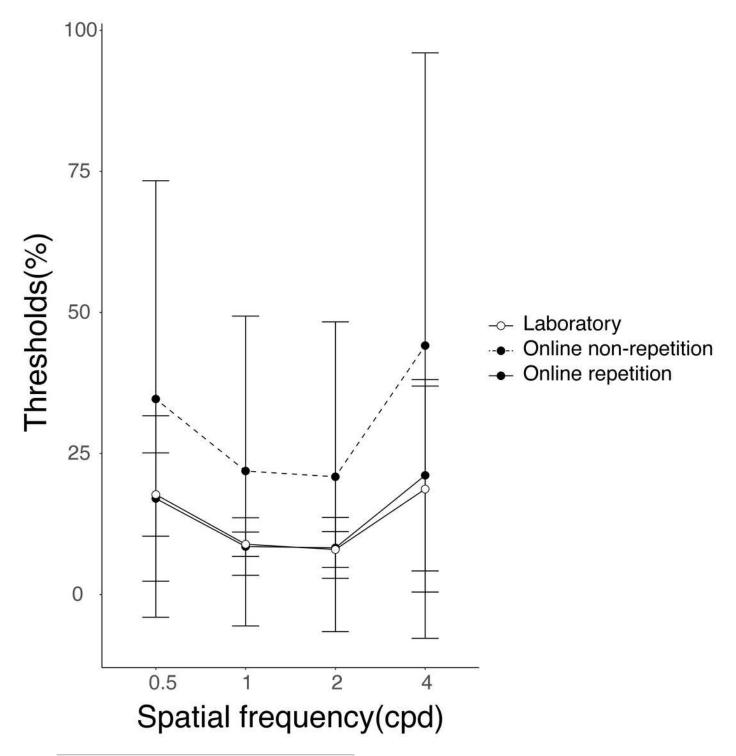
4	~
7	Competing interests
•	Competing meetests

2 The authors declare no competing interests.

1	Author contributions
2	Contributed to conception and design: KS, YY
3	Contributed to acquisition of data: KS
4	Contributed to analysis and interpretation of data: KS
5	Drafted and/or revised the article: KS, YY
6	Approved the submitted version for publication: KS, YY
7	

PeerJ

1	Data accessibility statement
2	The dataset is shown in https://figshare.com/s/c067967c1cfd3238244b
3	
4	
5	



- 1 Figure legend
- 2 Figure 1. The results of the laboratory and online experiments. Error bars denote standard
- 3 deviations.

Figure 1

The results of the experiment

The results of the laboratory and online experiments. Error bars denote standard deviations

