

Risk-sensitive foraging does not explain condition-dependent choices in settling reef fish larvae

Emma E Bogdan ¹, Andrea L Dingeldein ¹, Deirdre L Bertrand ¹, Will White ^{Corresp. 2}

Corresponding Author: Will White Email address: will.white@oregonstate.edu

The transition from the planktonic larval to the benthic adult stage in reef fishes is perilous, and involves decisions about habitat selection and group membership. These decisions are consequential because they are essentially permanent (many fish rarely leave their initial settlement habitat, at least for the first several days or weeks). In one common Caribbean reef fish, the bluehead wrasse (Thalassoma bifasciatum), settling larvae either join groups or remain solitary. Grouped fish have lower mortality rates but slightly slower growth rates, and fish that are smaller at the time of settlement are less likely to join groups. We hypothesized that the decision of smaller (i.e., lower condition) fish to remain solitary could be explained by risk-sensitive foraging: with less competition, solitary fish may have higher variance in foraging success, so that there is a chance of a high payoff (outweighing the increased mortality risk) despite the lack of a large difference in the average outcome. We tested this by comparing the mean, standard deviation, and maximum number of a) prey items in stomach contents and b) post-settlement growth rates (from otolith measurements) of solitary and grouped fish during two settlement pulses on St. Croix, U.S. Virgin Islands. However, we did not find evidence to support our hypothesis, nor any evidence to support the earlier finding that fish in groups have lower average growth rates. Thus we must consider alternative explanations for the tendency of smaller fish to remain solitary, such as the likely costs of searching for and joining groups at the time of settlement. This study reinforces the value of larval and juvenile fish as a testbed for behavioral decisionmaking, because their recent growth history is recorded in their otoliths.

¹ Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, United States

² Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA

Risk-sensitive foraging does not explain condition-dependent

3 choices in settling reef fish larvae

Emma E. Bogdan ^{1,2} , Andrea L. Dingeldein ¹ , Deirdre L. Bertrand ¹ , and J. Wilson White ^{1,3}
¹ Department of Biology and Marine Biology
University of North Carolina Wilmington
Wilmington, NC, USA
² Present address:
Ripley's Aquarium of Canada
Toronto, ON, Canada
³ Department of Fisheries and Wildlife
Coastal Oregon Marine Experiment Station
Oregon State University
Newport, OR, USA
Corresponding Author:
J. Wilson White
Oregon State University
2030 SE Marine Science Drive
Newport, OR 97365 USA
Email address: will.white@oregonstate.edu

Abstract

The transition from the planktonic larval to the benthic adult stage in reef fishes is perilous, and
involves decisions about habitat selection and group membership. These decisions are
consequential because they are essentially permanent (many fish rarely leave their initial
settlement habitat, at least for the first several days or weeks). In one common Caribbean reef
fish, the bluehead wrasse (Thalassoma bifasciatum), settling larvae either join groups or remain
solitary. Grouped fish have lower mortality rates but slightly slower growth rates, and fish that
are smaller at the time of settlement are less likely to join groups. We hypothesized that the
decision of smaller (i.e., lower condition) fish to remain solitary could be explained by risk-
sensitive foraging: with less competition, solitary fish may have higher variance in foraging
success, so that there is a chance of a high payoff (outweighing the increased mortality risk)
despite the lack of a large difference in the average outcome. We tested this by comparing the
mean, standard deviation, and maximum number of a) prey items in stomach contents and b)
post-settlement growth rates (from otolith measurements) of solitary and grouped fish during tw
settlement pulses on St. Croix, U.S. Virgin Islands. However, we did not find evidence to
support our hypothesis, nor any evidence to support the earlier finding that fish in groups have
lower average growth rates. Thus must consider alternative explanations for the tendency of
smaller fish to remain solitary, such as the likely costs of searching for and joining groups at the
time of settlement. This study reinforces the value of larval and juvenile fish as a testbed for
behavioral decisionmaking, because their recent growth history is recorded in their otoliths.

Introduction

when making choices that affect fitness in a stochastic environment, animals often account
for both the average fitness payoff for different alternatives as well as the relative variance
associated with those payoffs (Caraco et al. 1980, Barkan 1990, Carter & Dill 1990, Kacelnik &
Bateson 1996, Houston & McNamara 1999, Kacelnik & Mouldon 2013). For example, in the
classic original experiment, Caraco et al. (1980) showed that well-fed yellow-eye juncos (Junco
phaeonotus) were risk-averse in their food preferences, preferring feeding stations with a lower
variance in the amount of food delivered, regardless of the average amount. However, juncos on
a poorer diet were risk-prone, choosing higher-variance feeding stations. This behavior can be
explained by the 'budget rule': if a bird's energy budget is sufficient to meet immediate needs
(e.g., overnight survival), it will be risk-averse and minimize the chance of low or zero payoffs.
If, however, the energy budget is lacking, the bird will choose the higher-variance option (even if
the mean payoff is insufficient for its needs) in order to have a chance at a life-saving high
payoff (Stephens 1981, Smallwood 1996, Houston & McNamara 1999).
This simple version of the budget rule has been criticized for failing to adequately explain
experimental data on foraging animals (Bateson 2002, Kacelnik & Mouldon 2013), although
more sophisticated versions of the rule produce better fits to data (Lim et al. 2016). Nonetheless,
there is a general expectation that animal behaviors reflect differences in the variance of payoffs
from different choices. For example, some spiders switch between sit-and-wait and mobile
hunting strategies depending on the variance in prey encouter rates (Caraco & Gillespie 1986,
Gillespie & Caraco 1987; but see Smallwood 1993 for an alternative explanation). In common
eiders, Somateria mollissima, birds in poor energetic condition joined smaller flocks and foraged
in habitats with less-preferred prey but a more variable energetic return, apparently minimizing

competition and gaining the possibility of a bigger payoff in prey collection (Guillemette et al. 1992).

Many benthic marine organisms face a period of crucial and irreversible decisionmaking when they make the transition from a highly dispersive planktonic larval stage and a less mobile, benthic adult stage, often with home ranges on the scale of meters or even centimeters (Doyle 1975, Stamps et al. 2005). The adult habitat selected by the settling larva will have long-term fitness consequences, leading to strong selective pressure for the evolution of adaptive settlement behaviors. For example, larval barnacles use chemical cues from intertidal organisms that share a similar range of environmental tolerances to select appropriate locations for settlement in the intertidal (Raimondi 1988). Larval coral reef fish also respond to chemical cues to identify higher-quality habitats (Dixson 2011, Dixson et al. 2014) and some species also avoid locations that are already occupied by competitors or older conspecifics in order to avoid competition (Stier & Osenberg 2010). All of these examples describe scenarios in which larvae respond to differences in the mean payoff between settlement sites. In this paper, we investigated whether larvae also respond to the variance in fitness payoffs when making settlement decisions.

In addition to the decisions about settlement habitat that other coral reef fishes make, settling larvae of the bluehead wrasse, *Thalassoma bifasciatum*, also face a choice about social group membership. Bluehead wrasse are one of the most common fish on Caribbean reefs, and adults are highly mobile, swimming rapidly around the reef in loose aggregations. However, at the time of settlement, larval bluehead wrasse bury themselves in the reef sediment for approximatly 3 days while they metamorphose (Victor 1982). When they emerge, juvenile wrasse are highly site-attached for the first week of their life on the reef, staying within tens of cm from a shelter crevice while cautiously feeding on zooplankton in the water column. At this

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

time, juvenile bluehead wrasse are either solitary or form small groups of up to twenty. Fish that are larger at the time of settlement are more likely to join groups, and per-capita mortality declines with increasing group size (White & Warner 2007a, Dingeldein & White 2016). White & Warner (2007b) showed that fish in groups spend considerably more time foraging than solitary fish, but have somewhat slower post-settlement growth rates, likely due to competition. This suggests that smaller fish trade the safety of group membership for the opportunity for a faster growth rate (White & Warner 2007a, 2007b, Dingeldein & White 2016). Faster growth is a metric of (eventual) fitness in small immature fish. This is because many coral reef predators are gape-limited (they can only consume things smaller than their mouth opening) so as small fish grow, fewer predators are able to consume them. Thus faster-growing fish spend less time in vulnerable size classes, conferring greater survival and a better chance of reaching reproductive age (Miller et al. 1988, Houde 1989). However, the negative relationship between growth rate and group size reported by White & Warner (2007b) was small, and perhaps not biologically significant (though statistically significant, the r^2 was only 0.09). Therefore, we investigated whether the group-joining decision of juvenile bluehead wrasse was risk-sensitive, and a response to the variance in fitness outcomes rather than (or perhaps in addition to) the mean. We hypothesized that small fish may be more likely to remain solitary because of the potential for higher prey capture rates and higher growth rates. To test this hypothesis, we reanalyzed the dataset collected by Dingeldein & White (2016), who found an effect of size-atsettlement on the decision to join groups, but did not examine the post-settlement growth rates of the fish they collected. We analyzed the post-settlement growth rates (estimated from otolith growth rings) to test for differences between solitary and grouped fish in the a) mean and b) variance of both gut fullness and growth rates. We anticipated that while the means would not

differ (or differ only slightly), solitary fish would exhibit higher variances in growth, indicating that remaining solitary is a risk-prone strategy for small juvenile wrasse.

Materials & Methods

The samples used in this study were collected by Dingeldein & White (2016), and additional details of collection are provided there. Recently settled juvenile bluehead wrasse were collected using hand nets and clove oil anesthetic from three sites on the northwest shore of St. Croix, USVI (Fig. S1). Bluehead wrasse settle to the reef in approximately week-long pulses following a new moon (Caselle & Warner 1996); collections for this study occurred during settlement pulses in July and August of 2012. Dingeldein & White (2016) described collecting two sets of fish: zero-day collections, in which larvae settling to a transect were collected on their first day on the reef, and additional collections in which entire groups and solitary fish were selected at random for collection after they had been on the reef for 1-4 days. We used the latter set of collections to examine patterns of post-settlement growth. Fish were preserved immediately after each dive in 75% ethanol.

All samples were collected following the current laws of the United States Virgin Islands (USVI); fieldwork was performed in accordance with the USVI Department of Planning and Natural Resources (Permit No. STX-041012) and with approval of the University of North Carolina Wilmington's Institutional Animal Care and Use Committee (Protocol A1011-009), in compliance with the U.S. National Research Council's Guide for the Care and Use of Laboratory Animals.

Planktonic resource quantification

To quantify the availability of the bluehead wrasses' planktonic prey, we conducted plankton tows on SCUBA at each site, swimming approximately 0.5 m over the reef, perpendicular to the transects on which fish were collected. The width of the transect area (~30 m) was sampled twice by beginning at the first transect, swimming out to the last, and returning to the beginning. Plankton tows were conducted on the same days that fish were collected (except for the first of four days of sampling in both July and August at the Butler Bay site). Plankton samples were filtered through a 150 μm sieve, fixed in 10% formalin, and preserved in 75% ethanol. A 1 mm² gridded Sedgewick rafter cell was used to count the number of cyclopoid, harpactacoid, and calanoid copepods (and several other taxonomic groups) present in 1 mL of each sample. These counts were scaled up to obtain abundance estimates for the entire sample. A flowmeter was attached to the front of the plankton net to obtain volumetric measurements of the amount of water that was sampled on each tow. This provided an estimate of the amount of available prey/m³ present in the water column at each given site and day.

Otolith analysis

After preservation, sagittal otoliths were extracted from each fish and placed in microscope immersion oil for at least thirty days prior to improve clarity. We photographed whole otoliths at 400× under polarized light using Leica Acquire 1.0 software (Leica Microsystems, Buffalo Grove, IL, USA). We counted and measured daily otolith increment widths using ImageJ software (National Institutes of Health, Bethesda, MD, USA), starting at the first visible ring and counting along the longest axis (post-rostrum). In bluehead wrasse, the timing of both initial larval settlement and subsequent emergence onto the reef is clearly demarked on the otolith by a wide metamorphic band (Victor 1982). Therefore we were able to measure both post-settlement

age (number of bands after the metamorphic band) and post-settlement growth rate (the mean width of post-settlement increments). Each otolith was read by the same two people and the results were compared; otoliths were measured again if the post-settlement age did not agree, and discarded if the readers could not reach an agreement. Data were also discarded if the metamorphic band width (MBW) measurements differed by >10%.

Diet analysis

Stomachs of each preserved fish were dissected under 10x magnification to estimate diet composition and stomach fullness at the time of collection. Juvenile bluehead wrasse feed continuously during daylight hours, and all fish were collected after the fish had been active and feeding for at least one hour. Diet items were classified to the lowest taxonomic level possible (usually order) and counted. Most diet items were clearly identifiable planktonic or benthic crustaceans (copepods, isopods, amphipods) and, following White and Warner (2007b), fullness was estimated in terms of the total number of items in the stomach.

Statistical analysis

To examine differences in mean and variation in diet and post-settlement growth as a function of group size, we treated each group as an individual replicate and calculated the mean, standard deviation, and maximum number of diet items and post-settlement growth rates observed in each group. We examined the maximum because the rationale of risk-sensitive foraging is that a risky strategy affords a potentially greater fitness payoff despite a similar or lower mean fitness payoff. Sometry fish on a given reef and day were also considered to be a replicate "group" (group size = 1) for the purposes of calculating these statistics.

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

We used linear models to test for an effect of group size on mean, standard deviation, and maximum number of diet items and post-settlement growth. We tested for a continuous effect of group size (e.g., growth rate declines with each additional group member), so the main effect was 1/(group size). In each model we also included fixed effects of site and month to account for possible spatiotemporal covariation in growth rates, as well as a fixed effect of planktonic copepod density (copepods were the dominant prey item in fish stomachs; see *Results*). We removed those effects from reported model results in a backwards stepwise fashion if their effects were clearly not statistically meaningful (p > 0.2). For diet analyses, the planktonic copepod covariate was simply the density of copepods on the day the fish was collected (only fish collected on days when plankton tows were made were included in analyses with that covariate). For growth analyses, the effect of resource availability would be integrated over the post-settlement life of the fish. Therefore, for each fish, we calculated the average copepod density during the prior days the fish had been on the reef (based on the estimate of postsettlement age). We then averaged those hindcast copepod density estimates for all of the fish in each group. For diet analyses, the distributions of the mean and maximum number of diet items were asymmetrical, with long tails, so we applied a $\log(x+1)$ transformation to the data prior to analysis. All other response variables met the distributional assumptions of linear models. Because Dingeldein and White (2016) had reported that fish that were larger at the time of emergence onto the reef (estimated from the otolith axis radius from the core to the outer edge of the metamorphic band) were more likely to join groups. Consequently we were concerned that size at emergence could subsequently confound detection of group effects on growth, if larger fish also tended to grow faster. We tested for this relationship and found that although it was

statistically significant, due primarily to the very high sample size (p = 0.04, df = 228; Fig. S2), it

had essentially no explanatory power ($R^2 = 0.01$). We therefore decided that there was little risk of confounding effects from this factor.

When the group size effect was found to be not statistically significant in the reduced linear models, we evaluated the statistical power of the test. We did this by estimating the power of the *t* statistic associated with the group size regression coefficient (in a two-sided test context). For these analyses, we fixed the variance of the statistic at the level observed in the test, and then calculated power for a range of sample sizes and effect sizes using the pwr package in R (Champely 2018).

All analyses were conducted using R 3.5.1 (R Core Team 2018). Data and code are available at github.com/jwilsonwhite/bluehead_risk_sensitivity. Graphics were produced using ggplot2 (Wickham 2016).

Results

After sample processing and quality control, we were able to analyze diet and otolith data from 230 fish that were ≥ 1 day post-settlement age (allowing a calculation of post-settlement growth rate). These fish comprised 97 individual groups of ≥ 2 fish and 25 'groups' of solitary fish (i.e., all of the solitary fish collected from a site on a given day). Settlers ranged in age from 1-7 days post-settlement, though 95% of the individuals were ≤ 4 days post-settlement age. The distribution of post-settlement ages in the collection did not differ between grouped and solitary individuals. When calculating the mean and maximum number of diet items and growth rates, we used only data from groups for which ≥ 2 individuals were collected and successfully processed (total n = 49); when calculating the standard deviation we were more conservative and only used data from groups for which ≥ 3 individuals were available (total n = 28). This necessarily

removed.

excluded all pairs of fish (group size = 2) but ensured that estimates of variance in each group 237 had at least n = 3. The maximum number of individuals analyzed from any one group was 6. 238 239 Planktonic resource availability 240 The density (number/m³) of copepods sampled in plankton tows varied over two orders of 241 242 magnitude between July and August across all sites, and was also variable (though less so) from day-to-day at each site (Fig. S3). 243 244 Diet 245 The overall diet composition of fish examined was primarily harpacticoid, cyclopoid, and 246 calanoid copepods (65%, Fig. S4), with the remainder consisting of amphipods, isopods, 247 ostracods, foraminifera, bivalves, and gastropods. Because copepods were both the dominant 248 item and the largest, most energy rich prey items (cf. White and Warner 2007b), we focused our 249 analyses on the numbers of copepods only. 250 There was no effect of group size (modeled as 1/[group size]) on the mean, standard 251 deviation, or maximum number of copepods in fish stomachs (Fig. 1, Table S1). For both the 252 253 mean and maximum, the effect of month was not significant but did not meet the threshold for stepwise removal $(0.05 \le p \le 0.2)$, so that effect is depicted in Fig. 1 as a trend towards more diet 254 items in stomachs during the second month of sampling. For the standard deviation of stomach 255 256 items, there was a significant positive effect of planktonic copepod abundance, and fish at the Northstar site had significantly fewer prey items in their stomachs. The site effect is depicted in 257 Fig. 1b, which displays the residual standard deviation with the effect of planktonic copepods 258

In general, the effects of group size were in the direction we hypothesized (e.g., greater standard deviation in solitary fish) but observed effect sizes were low (e.g., 7% lower mean and 4% lower standard deviation in a group of two relative to solitary fish), variation was very high (Fig. 1), and the patterns were clearly not statistically meaningful (p > 0.5 for all group size effects). We assessed our power to detect any effect, given the variation in our response variables (Fig. S5). For the mean and the maximum, power would not be > 0.8 for the observed effect size even if sample size were quadrupled to over 100 groups of fish. For standard deviation, increasing power to 0.8 would have required nearly quadrupling sample size to 50 groups of fish (recall that we had a smaller sample size for that analysis).

Growth rate

There was no effect of group size (modeled as 1/[group size]) on the mean, standard deviation, or maximum post-settlement growth rate (Fig. 2, Table S2). There were faster mean and maximum growth rates and smaller standard deviations in growth rate in the first month of sampling (despite lower planktonic resource abundances), and those effects are also depicted in Fig. 2. For standard deviation in growth, the effects of site and planktonic copepod abundance were not significant but did not meet the threshold for removal from the model (0.05 , so the site effect is shown in Fig. 2b and the response variable is shown as residuals with the effect of planktonic copepod abundance removed (as in Fig. 1b).

The effects of group size on growth varied, with slightly positive (but not significant) effects of group size on the mean and maximum growth rate (contrary to our hypothesis), but a slightly negative effect (also not significant) of group size on the standard deviation in growth (as we hypothesized). However, the observed effect sizes were very low (e.g., 9% lower standard

deviation in a group of two relative to solitary fish), variation was very high (Fig. 2), and clearly not statistically meaningful (p > 0.25 for all group size effects). We assessed our power to detect any effect, given the variation in our response variables (Fig. S6). For the mean and the maximum, power would not be > 0.8 for the observed effect size even if sample size were quadrupled to over 100 groups of fish. For standard deviation, power was 0.95 at the observed effect size, variance, and sample size.

Discussion

The goal of this study was to determine whether group-joining decisions by settling fish larvae could be explained in terms of risk-sensitive behavior. Prior research had shown that fish that were larger at settlement were more likely to join groups (Dingeldein and White 2016), and that larger groups of juvenile bluehead wrasse had higher per capita survival but slower growth rates (White and Warner 2007a,b). We extended that earlier work by examining the variation in growth rates within entire groups of fish. Contrary to the trend reported by White and Warner (2007b), we found no effect of group size on mean growth rate. Additionally, we did not find support for our hypothesis that solitary fish have higher variation in feeding rate and growth rate than do grouped fish. Thus we find no support for risk-sensitive foraging behavior as an explanation for the observation that smaller fish are more likely to remain solitary (Dingeldein and White 2016).

These results suggest that bluehead wrasse that join groups at the time of settlement experience lower predation risk, despite spending more time foraging in the water column (White and Warner 2007a,b), with no apparent cost in terms of post-settlement growth. This is reinforced by our finding that there was not a relationship between post-settlement growth rate

and fish size at settlement. Evidently, the latter trait (which is shaped by the larval origin and dispersal trajectory of the fish; Hamilton et al. 2007) affects the propensity to join groups (and thus mortality risk) but not post-settlement growth. Why did we not find the same pattern of mean post-settlement growth as White and Warner (2007b) did, at some of the same study sites? The most likely explanation is that negative relationship reported by White and Warner (2007b) was slight, and only detectable when variation in planktonic prey resource availability was included as a covariate. It is possible that there is temporal variation in the shape of the relationship, fluctuating between slightly negative and flat, perhaps reflecting variability in the composition of the prey field or other environmental factors that affect energetics and growth.

One unusual aspect of our results was the opposite effects of the sample month on stomach fullness (a trend towards fewer items in the first month than the second, which matches the pattern of abundance in planktonic copepods over each study reef) and post-settlement growth (faster in the first month than the second). This pattern is counterintuitive, and we cannot offer a simple explanation. At the scale of individual fish, the two measures reflect different time scales: stomach contents reflect gut passage time (likely hours), while post-settlement growth integrates multiple days of resource availability. Fish collections were made on multiple days during each monthly recruitment pulse, and planktonic prey availability differed by nearly an order of magnitude at a single site from day to day, so this effect may simply reflect a few high-preyabundance days in the second month, but mean conditions that did not favor faster growth in that month. In hindsight it would have been preferable to use a sampling approach that integrated copepod abundance over multiple days, as in White and Warner (2007b), but that was not logistically feasible in this study.

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

When reporting results that fail to reject the null hypothesis, one must consider the evidence that a Type-II error is being made. This would be a particular concern if marginal increases in either effect size or sample size might have produced substantial increases in power, meaning that repeating the study or increasing sample sizes would yield significant results. Though we acknowledge the potential problems with post-poc power analysis (e.g., Underwood 1999), in this case our power analyses suggest that in most cases the observed effect sizes were simply very small relative to the variance in response variables, such that even drastic (4x) increases in sample size would not have yielded meaningfully higher power. The exception was for our test of a group size effect on the standard deviation of growth rates, which had power > 0.9, also reinforcing our conclusion that we did not commit Type-II error. This is reinforced by examining the data in Figs. 1 and 2: the distributions of data for every metric of both diet and growth rates overlap considerably across group sizes, and differences in central tendency are very small relative to the variability in the response variables. Based on that evidence, we doubt that we would have detected any meaningful statistical results with greater sample size. Given the lack of evidence for risk-sensitive foraging, we turn to an alternative hypothesis for the tendency of smaller fish (at settlement) to remain solitary. Stamps (2006) proposed the 'silver spoon' hypothesis for habitat selection by dispersing juveniles. This hypothesis has two parts: individuals in better condition can a) afford to be choosier during habitat selection, searching longer to find better habitat, and b) better compete for a contested location, or for membership in a group that might attempt to reject them. It is reasonable to see how this could apply to coral reef fish; larvae that have just settled onto the reef (or emerged from the sediment post-metamorphosis, in the case of bluehead wrasse) must find a suitable shelter habitat (and group) quickly, because traversing the reef during a search carries high predation risk. A larger

fish would have faster swimming speed and thus be able to search more area without incurring additional predation exposure. Larval settlement behaviors happen at night in unpredictable locations (and when the animals are small and nearly transparent), they are difficult to study (Holbrook and Schmitt [1997] is the only example of which we are aware). However, it may be possible to test this hypothesis by examining the relative contribution of instantaneous mortality risk during the search and deferred mortality risk in subsequent days after habitat and group selection is complete, using a modeling approach like that of Stamps et al. (2005).

Conclusions

Larval fish are a rich testbed for examining the influences on behavioral decisionmaking, because they carry in their otoliths a record of their past condition and growth history (Booth and Beretta 2004, Grorud-Colvert and Sponaugle 2006, Dingeldein and White 2016). The details of how larvae make habitat-selection and group-joining decisions continue to be a topic of considerable interest and investigation (e.g., Stier and Osenberg 2010). For bluehead wrasse, we had hypothesized – based on prior studies – that the likely explanation for the highly consequential decision to join a group or not was based on the potential for higher fitness payoffs for solitary fish. However, our data did not provide any support for that hypothesis, and the observed ratios of signal to noise suggest that this conclusion was not due to a lack of statistical power. We hope that future study may shed more light on the selective factors underlying these behavioral decisions.

Acknowledgements

3/3	We thank M. Heintz for assistance in the field, and A. Orpen, J. Jaramillo, C. Brady, and L.
374	Lukas for assistance in the lab. St. Croix Ultimate Bluewater Adventures provided valuable
375	logistical support. DLB thanks her father, the late RJ Bertrand, and her son, A Bertrand, for their
376	enduring support.
377	
378	
379	References
380	Beauchamp, G. 2003: Group-size effects on vigilance: a search for mechanisms. Behav. Proc.
381	63 , 111–121
382	Bednekoff, P. A. & Lima, S. L. 1998: Re-examining safety in numbers: interactions between risk
383	dilution and collective detection depend upon predator targeting behavior. Proc. Royal Soc.
384	B, 265 , 2021-2026.
385	Booth, D. J. & Beretta, G. A. 2004: Influence of recruit condition on food competition and
386	predation risk in a coral reef fish. Oecologia. 140, 289-294.
387	Broderson, J., Nilsson, P. A., Hansson, L. A., Skov, C. & Bronmark, C. 2008: Condition-
388	dependent individual decision -making determines cyprinid partial migration. Ecology 89,
389	1195-1200.
390	Caselle, J. E. & Warner, R. R. 1996: Variability in recruitment of coral reef fishes: the
391	importance of habitat at two spatial scales. Ecology 77, 2488-2504
392	Champley, S. 2018: pwr: Basic functions for power analysis. R package version 1.2-2.
393	https://CRAN.R-project.org/package=pwr
394	Clifton, K. E. 1991: Subordinate group members act as food-finders within striped parrotfish
395	territories. J. Exp. Mar. Biol. Ecol. 145, 141-148.

- Dingeldein, A. L. & White, J. W. 2016: Larval traits carry over to affect post-settlement
- behaviour in a common coral reef fish. J Anim. Ecol. **85**, 903-914
- 398 Gillespie, R. G. & Caraco, T. 1987: Risk-sensitive foraging strategies of two spider populations.
- 399 Ecology **68**, 887-899.
- 400 Grand, T. C. & Dill, L. M. 1999: The effect of group size on the foraging behavior of juvenile
- coho salmon: reduction of predation risk or increased competition? Anim. Behav. 58, 443-
- 402 451.
- 403 Grorud-Colvert, K. & Sponaugle, S. 2006: Influence of condition on behavior and survival
- 404 potential of a newly settled coral reef fish, the bluehead wrasse *Thalassoma bifasciatum*.
- 405 Mar. Ecol. Prog. Ser. **327**, 279-288.
- 406 Hill, M. R. J., Alisauskas, R. T., Ankney, C. D., & Leafloor, J. O. 2003: Influence of body size
- and condition on harvest and survival of juvenile Canada geese. J. Wildlife Manage. 67, 530–
- 408 541.
- Hixon, M. A & Webster, M. S. 2002: Density dependence in marine fishes: coral-reef
- 410 populations as model systems. In: Coral reef fishes: dynamics and diversity in a complex
- ecosystem (Sale, P. F., ed). Academic Press, San Diego, pp 303–325.
- Holbrook, S. J. & Schmitt, R. J. 1997: Settlement patterns and process in a coral reef damselfish:
- *in situ* nocturnal observations using infrared video. Proc. 8th Int. Coral Reef Symp. 2, 1143-
- 414 1148.
- 415 Houde, E. 1989: Comparative growth, mortality, and energetics of marine fish larvae:
- temperature and implied latitudinal effects. Mar. Ecol. Prog. Ser. 87, 471-495.
- Hurly, T. A. & Oseen, M. D. 1999: Context-dependent, risk-sensitive foraging preferences in
- wild rufous hummingbirds. Anim. Behav. **58**, 59-66.

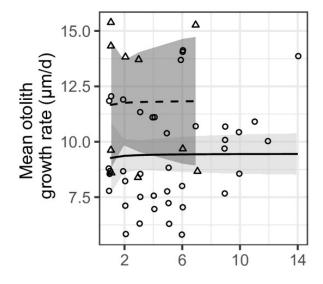
- 419 Kent, R., Holzman, R. & Genin, A. 2006: Preliminary evidence on group-size dependent feeding
- success in the damselfish *Dascyllus marginatus*. Mar. Ecol. Prog. Ser. **323**, 299-303.
- 421 Miller, T., Crowder, L., Rice, J., & Marschall, E. 1988. Larval size and recruitment mechanisms
- in fishes: towards a conceptual framewor. Can. J. Fish. Aquat. Sci. 45, 1657-1670.
- Parrish, J. K. & Edelstein-Keshet, L. 1999: Complexity, pattern, and evolutionary trade-offs in
- animal aggregation. Science. **284**, 99-101.
- 425 R Development Core Team. 2018: R: a language and environment for statistical computing. R
- Foundation for Statistical Computing, Vienna, Austria.
- 427 Sandin, S. A. & Pacala, S. W. 2005: Fish aggregation results in inversely density-dependent
- predation on continuous coral reefs. Ecology **86**, 1520–1530.
- Sogard, S. M. & Olla, B. L. 1997: The influence of hunger and predation risk on group cohesion
- in a pelagic fish, walleye pollock *Theragra chalcogramma*. Environ. Biol. Fish.. **50**, 405-
- 431 413.
- Stamps, J. A., Krishnan, V. V. & Reid, M. L. 2005: Search costs and habitat selection by
- dispersers. Ecology **86**, 510-518.
- Stamps, J. A. 2006: The silver spoon effect and habitat selection by natal dispersers. Ecol. Lett.
- **9**, 1179-1185
- 436 Stier, A. C. & Osenberg, C. W. 2010: Propagule redirection: habitat availability reduces
- colonization and increases recruitment in reef fishes. Ecology **91**, 2826-2832.
- 438 Underwood, A. J. 1999: Publication of so-called 'negative' results in marine ecology. Mar. Ecol.
- 439 Prog. Ser. **191**, 307-209.
- 440 Victor, B. C. 1986: Larval settlement and juvenile mortality in a recruitment-limited coral reef
- 441 fish population. Ecol. Monogr. **56**, 145–160

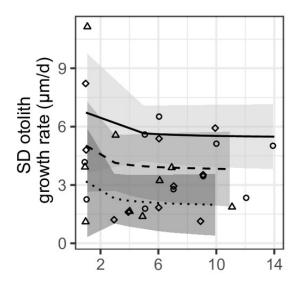

442	White, J. W. & Warner, R. R. 2007a: Safety in numbers and the spatial scaling of density-
443	dependent mortality in a coral reef fish. Ecology 88, 3044-3054.
444	White, J. W. & Warner, R. R. 2007b: Behavioral and energetic costs of group membership in a
445	coral reef fish. Oecologia 154 , 423-433.
446	Wickham, H. 2016: ggplot2 – Elegant graphics for data analysis. Springer-Verlag, New York.
447	
448	
449	

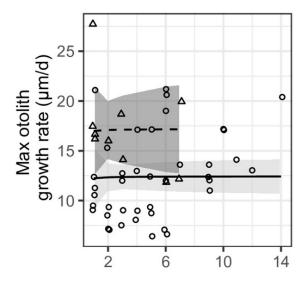
Figure 1

Relationships between different metrics of the number of copepods in guts of juvenile bluehead wrasse and group size (solitary fish have a group size of 1).

Each data point represents an individual group of fish or the sample of solitary fish on a particular reef and day. Each panel shows a different diet statistic: (a)mean number of copepods in guts within a group; (b) standard deviation of number of copepods within a group; (c) maximum number of copepods within a group. Lines indicate linear model fits (with group effect modeled as 1/[group size]) and shading indicates 95% confidence region around model fits. In (a, c), the first month (July 2012) is shown as triangle points, dashed curve and darker shading; circles, solid curve and lighter shading denotes the second month (August 2012). In (b), data are displayed as residuals with the effect of planktonic copepod abundance removed, and displayed according to site: Cane Bay (circles, solid curve, light shading), Northstar (triangles, dashed curve, medium shading), and Butler Bay (diamonds, dotted curve, dark shading).




Figure 2


Relationships between different metrics of juvenile bluehead wrasse post-settlement growth rates (measured in otoliths) and group size.

Each data point represents an individual group of fish or the sample of solitary fish on a particular reef and day. Each panel shows a different growth rate statistic: (a)mean growth rate within a group; (b) standard deviation of growth rate within a group; (c) maximum growth rate within a group. Lines indicate linear model fits (with group effect modeled as 1/[group size]) and shading indicates 95% confidence region around model fits. In (a, c), the first month (July 2012) is shown as triangle points, dashed curve and darker shading; circles, solid curve and lighter shading denotes the second month (August 2012). In (b), data are displayed as residuals with the effect of planktonic copepod abundance removed, and displayed according to site: Cane Bay (circles, solid curve, light shading), Northstar (triangles, dashed curve, medium shading), and Butler Bay (diamonds, dotted curve, dark shading).

