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Inertial properties of body segments, such as mass, centre of mass or moments of inertia,
are important parameters when studying movements of the human body. These quantities
are, however, not directly measurable. Current approaches include using regression
models which have limited accuracy; geometric models with lengthy measuring
procedures; or acquiring and post-processing MRI scans of participants. We propose a
geometric methodology based on 3D photogrammetry using multiple cameras to provide
subject-specific body segment parameters while minimizing the interaction time with the
participants. A low-cost body scanner was built using multiple cameras and 3D point cloud
data generated using structure from motion photogrammetric reconstruction algorithms.
The point cloud was manually separated into body segments and convex hulling applied to
each segment to produce the required geometric outlines. The accuracy of the method can
be adjusted by choosing the number of subdivisions of the body segments. The body
segment parameters of six participants (four male and two female) are presented using
the proposed method. The multi-camera photogrammetric approach is expected to be
particularly suited for studies including populations for which regression models are not
available in literature and where other geometric techniques or MRI scanning are not
applicable due to time or ethical constraints.
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1. Introduction

Inertial body segment parameters (BSP), such as mass, centre of mass (CoM) or moment of 

inertia, are used in motion analysis in research as well as in clinical settings. Accurate values are 

essential for techniques such as inverse dynamic analysis to allow the calculation of joint torques

based on measured segmental accelerations (Winter, 1979). It is, however, not straightforward to 

measure these quantities from subjects directly. One approach is to use mathematical models of 

the body segments and rely on anthropometric measurements to determine the dimensions of the 

modelled segments. This type of methods requires a multitude of anthropometric measurements 

of the participants and is limited by the accuracy of the mathematical model of the body 

segments. The first mathematical model suggested by Hanavan in 1964 represented 15 body 

segments as cylinders and spheres and required 25 anthropometric measurements (Hanavan, 

1964). More detailed models presented by Hatze or Yeadon required a total of 95 or 242 

measurements respectively rendering these methods inefficient for studies with a large number of

participants because of the time and discomfort experienced by the participant to acquire all the 

measurements needed (Hatze, 1980; Yeadon, 1990). Other types of approaches rely on X-ray  or 

MRI based tomography to extract subject-specific BSP from participants. Unlike other methods, 

CT or MRI scans provide information about internal structures such as tissue composition which 

should improve the reconstruction accuracy (Martin et al., 1989; Mungiole & Martin, 1990; 

Pearsall, Reid & Livingston, 1996; Bauer et al., 2007). These approaches are, however, also 

difficult to implement in large-scale studies due to cost and ethical constraints. Alternatively, it is

possible to approximate inertial BSP by adjusting previously reported average values or using 

regression models that require only a very few subject-specific measurements (commonly 

subject height and weight). Such average values and regression models were derived 

from cadavers or participants in a number of famous studies, such as the ones by Clauser, 

Dempster or Zatsiorsky (via de Leva) (Dempster, 1955; Clauser, McConville & Young, 1969; 

McConville, Clauser & Churchill, 1980; Leva, 1996). The reliability of such regression models 

is, however, rather low and the models are only applicable to a population similar to the one used

to derive the regression equations.

Recently, other methods have been explored to obtain volumetric data of body segments that, in 

combination with body density assumptions, can provide subject-specific inertial BSP. Sheets et 

al. used a laser to scan the body surface of participants and morphing a generic model, which 
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contained joint location information, to the scanned surface (Sheets, Corazza & Andriacchi, 

2010). Bonnechere et al used a Kinect sensor to estimate body segment lengths but not the 

volumetric data required to estimate inertial properties (Bonnechère et al., 2014). Clarkson 

evaluated the Kinect sensor as a surface scanner using a mannequin, but found the scanning 

resolution to be quite low (Clarkson et al., 2012). Another approach to gain surface data is to use 

photogrammetry. In 1978, Jensen proposed the use of stereophotogrammetry to estimate BSP 

parameters (Jensen, 1978). In his model, the human body was divided into elliptical disks with a 

thickness of 20 mm and the radii of the elliptical disks were estimated using images from the 

front and side. The drawback of this approach lies in the simplifying assumptions of representing

body segments as the elliptical disks. It is, however, possible to reconstruct the surface of a 3D 

object from multiple uncalibrated 2D images taken from different positions without requiring 

any assumptions to the geometry of the body. This principle is referred to as “structure from 

motion” and was initially used for producing 3D models of static objects and landscapes. 

Perhaps the most striking example to date is the "Building Rome in a Day" project which used 

images from the Flikr web site (http://www.flickr.com) to generate a 3D model of the whole city 

(Agarwal et al., 2009). The reconstruction of a 3D surface from multiple cameras is two-stage 

process. In stage one, the position, orientation and the parameters of the camera optics are 

estimated. This is achieved by the bundle adjustment algorithm (Triggs et al., 2000) that 

minimizes the error between the re-projected feature points using estimated camera pose and 

parameters with the actual feature points in the images. In theory, feature points could be chosen 

manually but this would be cumbersome and potentially not very accurate. Instead, Scale 

Invariant Feature Transform (SIFT) algorithms are employed which automate this process by 

identifying possible common points between multiple images (Lowe, 1999). Stage two uses the 

calibrated views to produce a dense point cloud model of the 3D object. There are a number of 

possible approaches to achieve this (for review see (Seitz et al., 2006)) but probably the most 

widespread current approach is patch-based multi-view stereo reconstruction (Furukawa & 

Ponce, 2010). This photogrammetric approach has gained wide acceptance for producing 3D 

models in areas such as archaeology (McCarthy, 2014) and palaeontology (Falkingham, 2012), 

and is even used for markerless motion capture (Sellers & Hirasaki, 2014).

The aim of this paper is to investigate whether an approach based on structure form motion 

photogrammetric reconstruction can provide person-specific body segment parameters and to 

identify the strength and weaknesses of such an approach with regards to ease of 

implementation, cost-effectiveness, subject comfort and processing time. A low-cost body 
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scanner was built using multiple cameras and the body segment parameters of six participants 

(four male and two female) are presented using the proposed method. 

2. Methods

Photogrammetry relies on obtaining multiple photographs taken from different locations. These 

photographs can be taken with any suitable device and for objects that do not move, the most 

cost effective option is to take 50+ photographs with a single camera that is moved around the 

object. This has the additional advantage that a single intrinsic calibration can be used since the 

camera optics can be considered identical for multiple images. However for subjects that can 

move, all the photographs must be taken simultaneously so that the subject is in exactly the same

position for all the images. Simultaneous photographs can be achieved in several different ways 

including multiple still cameras with synchronised remote controls, multiple USB web cameras, 

or multiple networked cameras. There is probably little to choose between these methods but 

initial experimentation found that network/IP cameras provided a cost effective solution that 

scaled well. The camera resolution should be as high as reasonably possible since higher 

resolution images provide more information for the feature extraction algorithms and higher 

point density in the eventual reconstruction. This means that low resolution cameras such as low 

cost web cameras and standard resolution video cameras may not be suitable.

Most applications that employ photogrammetry aim to capture surface data in great detail with 

the emphasis on creating almost true-to-live 3D models and thus maximizing the point cloud 

density. Some applications require only the information available from the point cloud directly 

(such as feature point locations) and do not require a surface mesh. In fact, meshing algorithms 

tend to decrease the accuracy of the model (Falkingham, 2012). In applications where the 

reconstructed object is to be 3D-printed (Garsthagen; Hobson; Straub & Kerlin, 2014) or where 

volumetric data is required (such as for body segment estimations presented in this paper), a 

(closed) surface mesh needs to be created from the point cloud. A high-resolution mesh is 

commonly desired in 3D printing (e.g. for aesthetic or functional reasons), which requires a large

number of photographs and sophisticated algorithms to convert the point cloud to a mesh. In this 

paper, we propose the use of convex hulling to generate simplified geometric outlines of the 

body segments. Convex hulling is robust to low-density surface point clouds (and even potential 

gaps in the point cloud) and can thus be implemented with ease and run automatically without 

requiring user input. Furthermore, being able to generate surface meshes from a low-density 
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point cloud lowers the number of cameras required to build the 3D scanner (as opposed to 

needing a large number of cameras to achieve densely packed point clouds).

2.1. 3D body scanner design

Photogrammetric reconstruction can work well with as few as 4 cameras (Sellers & Hirasaki, 

2014)but more cameras are necessary to provide a relatively gap free reconstruction. To estimate 

the minimal number of cameras necessary to achieve a 360° reconstruction, we positioned a 

single camera on a circle of radius 1.6 m and placed  a stationary skeletal dummy as a test 

subject in the centre.. Images were taken  every 5° and the point cloud reconstructions using 72, 

36, 24, 18, 12 and 9 images, corresponding to angular resolutions ranging from 5° to 40°, were 

compared (see Fig. 1A). Acceptable reconstructions for the purpose of this paper, i.e. no loss of 

body segment features, were found with 18 or more cameras although using larger numbers of 

cameras certainly improved the point cloud density. After initial testing, the setup design was  

adjusted by increasing the radius of the camera placements (to increase the field of view to 

accommodate outstretched arms), placing the cameras above head-hight and angling the camera 

views downwards (as opposed to placing the cameras at the bottom or at hip-height) and using 

asymmetric patterns on the floor in the shared field of view of all cameras. The latter greatly 

aided the reconstruction reliability as the camera calibration algorithm relies on shared features.1 

The network camera was implemented using Raspberry Pi (RPi) modules, type A, each equipped

with an 8GB SD card and a Pi camera (http://www.raspberrypi.org). These modules run the 

Linux operating system (Raspbian) and provide a flexible and cost-effective 5 megapixel 

network camera platform. The 18 RPi modules (each with a camera) were attached to a 4.8 m 

diameter hexagonal frame elevated to height of 2.3m by six support poles (see Fig. 1B).  Each 

RPi module was provided with a USB WiFi receiver (Dynamode WL-700-RX) and power was 

provided using the standard RPi power adapter plugged into a multi-socket attached to each 

support pole. Four 500 W Halogen floodlights were mounted to provide additional lighting to 

increase the image quality. 

RPi cameras can record either still images or movie files. For this application we needed to 

trigger all the cameras to record a single image at the same instant. This was achieved using the 

open source “Compound Pi” application (http://compoundpi.readthedocs.org), which uses the 

1 Without the patterns on the floor, the camera calibration relied on shared features found on the subject, whereas 
the patterned floor provided a large (or even completely sufficient) number of features to run the camera 
calibration algorithm.

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

PeerJ reviewing PDF | (v2014:11:3034:1:0:NEW 11 Feb 2015)

Reviewing Manuscript

http://compoundpi.readthedocs.org/
http://www.raspberrypi.org/


UDP broadcast protocol to control multiple cameras synchronously from a single server. Once 

the individual images have been recorded, the application provides an interface to download all 

the images obtained to the server in a straightforward manner. Since UDP broadcast is a one-to-

many protocol, all the clients will receive the same network packet at the same time and the 

timing consistency for the images will be of the order of milliseconds which is adequate for a 

human subject who is trying to stand still. Higher precision synchronisation can be achieved 

using a separate synchronisation trigger but this was unnecessary in this application.

2.2. Data acquisition

Full body scans using the RPi setup were obtained from six voluntary participants.  Additionally,

their body weight and height was measured (Table 1). The male visible human was used as an 

additional data set for validation (National Library of Medicine’s Visual Human Project (Spitzer 

et al., 1996)). The experimental protocol (reference number 13310) was approved by the 

University of Manchester ethics panel. In accordance with the experimental protocol, written 

consent was obtained from all participants.

The reconstruction algorithms rely on finding matching points across multiple images so they do 

not work well on images that contain no textural variation. We therefore experimented with 

using different types of clothing in the scanner, such as sports clothing, leisure clothing, and a 

black motion capture suit equipped with Velcro strips to aid feature detection. Clothing was 

either body-tight or tightened using Velcro strips if they were loose since loose clothing would 

lead to an overestimation of the body volume. The participants stood in the centre of the RPi 

setup with their hands lifted above their head (see Fig. 2) and the 18  images were then acquired.

2.3. Data processing

The 3D point cloud reconstruction was initially done using open source application VisualSFM 

(http://ccwu.me/vsfm/) which performed adequately, but we then switched to using Agisoft 

PhotoScan Standard Edition v1.0.4 (http://www.agisoft.com) which proved to be much easier to 

install and use. Agisoft PhotoScan also achieved a better reconstruction quality with fewer holes 
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in the point cloud and smoother surfaces.2 The parameters used in the reconstructions are 

reported in the supporting information.  Agisoft PhotoScan runs identically on Windows, Mac or 

Linux. The full 3D reconstruction with 18 images took an average of 30 minutes using an 8 core 

3GHz Xeon MacPro with 12GB RAM. The actual time taken was variable depending on the 

image file size and the reconstruction parameters. The output of the Agisoft PhotoScan is an 

unscaled 3D point cloud of the participants and surrounding scenery (see Fig. 2), which requires 

further post-processing to calculate BSP values. First, the point cloud was scaled and oriented 

using CloudDigitizer (Sellers & Hirasaki, 2014), the oriented point clouds were then divided into

anatomical segments using Geomagic (http://geomagic.com), and the convex hulls computed in 

Matlab® (http://www.mathworks.com  , see supporting information). The reference points for the 

body segmentation are listed in the supporting information Table S1. The body segments were all

oriented into the standard anatomical pose before the volume, centre of mass and inertial tensor 

were calculated based on the hull shape and segment density using a custom function 

implemented in Matlab® (see supporting information). The choice of body density is an 

interesting issue. Different tissues within segments have different densities and tissue 

composition is moderately variable between individuals. Indeed variations in density are 

commonly used to estimate body fat percentage (Siri, 1961; Brožek et al., 1963). MRI and CT 

based techniques can allow individual tissue identification and can compensate for this but 

surface volumetric techniques need to use an appropriate mean value. Segment specific densities 

are available (e.g. (Winter, 1979)) but the quoted trunk density is after subtraction of the lung 

volume. For a surface scan model, we need to use a lower value trunk density that incorporates 

the volume taken up by the air within the lungs. Therefore for the purpose of this paper a trunk 

density value of 940 kg/m³ was chosen, while a uniform density of 1000 kg/m³ was assumed for 

all other body segments (Weinbach, 1938; Pearsall, Reid & Ross, 1994). The body mass 

calculated from the volume was never exactly the same as the recorded body mass so the density

values were adjusted pro-rata to produce a consistent value for total mass.

s=
mParticipant

∑ mSegmHull,i

(1)

The factor s effectively scales the body densities and is thus also applied the moments and 

products of inertia obtained from the convex hull segments (see supporting information).

2 This is based on the comparison of the best reconstruction result achieved with each software after testing an 
extensive, but not complete, combination of reconstruction parameters.
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3. Results

Six participants were scanned using the RPi photogrammetry setup and their point cloud 

segmented. In order to be able to calculate the inertial properties, the point cloud needs to be 

converted into a closed surface mesh. To calculate the volume of an arbitrary shape defined by a 

surface mesh, the mesh needs to be well defined, i.e., it should be two-manifold, contain no holes

in the mesh, and have coherent face orientations. The processing of converting a point cloud to a 

well defined mesh is known as hulling and there are several possible methods available. The 

simplest is the minimum convex hull where the minimum volume convex shape is derived 

mathematically from the point cloud (www.qhull.org). This approach has the advantage of being 

extremely quick and easy to perform and it is very tolerant of point clouds that may contain 

holes where the reconstruction algorithm has partially failed. However it will always 

overestimate the volume unless the shape is convex. There are also a number of concave hulling 

approaches. Some are mathematically defined such as AlphaShapes (Edelsbrunner & Mücke, 

1994) and Ball Pivoting (Bernardini et al., 1999) and require additional parameters defining the 

maximum level of permitted convexity. Others are proprietary and can require considerable 

manual intervention such as the built in hole-filling algorithms in Geomagic. This latter group 

provides the highest quality reconstructions but at the expense of considerable operator time. For

this paper we concentrated on convex hulls under the assumption that the level of concavity in 

individual body segments was likely to be relatively small. The relative segment mass of all 

participants are reported in Fig. 3 (the segmented convex hulls are shown in Fig. S1 in the 

supporting information). Figure 3 also displays average values from literature. As the 

participants were imaged wearing shoes, the foot volume was overestimated significantly. It is 

possible to adjust the value using a foot-specific scaling factor that accounts for this 

overestimation although of course if the subsequent use of the BSP parameters is in experiments 

with participants wearing shoes then the shoe mass becomes an important part of the segment. 

For the purpose of this paper, a scaling factor was derived based on a single participant (P5), by 

comparing the convex hull volume of the of the foot imaged in socks versus the convex hull 

volume wearing shoes, and this factor (of 0.51) applied to all participants' inertial values of the 

feet. The moments of inertia are shown in in Fig. 4 together with average values from literature. 

Geometric methods also allow us to calculate the products of inertia which are otherwise simply 

assumed to be zero. The average products of inertia are depicted in Fig. 5 (absolute values shown

only, signed values reported in the supporting information Table S2-S4). Some segments, e.g. the
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thigh or trunk, have products of inertia that are of a similar order of magnitude as their moments 

of inertia, which is indicative of a noticeable difference between the inertial principal axes and 

the anatomical principal axes. The majority of the products of inertia are however significantly 

smaller than the moments of inertia (of the same segment) by one to two orders of magnitude.  

Figure 6 contains the relative centre of mass in the longitudinal segment direction, i.e. along the 

z-axis with the exception of the foot whose longitudinal axis corresponds to the x-axis (see Fig. 

2). Figure 7 shows the shift of CoM from the longitudinal axis in the transverse plane (x-y 

plane). The CoM values in literature assume a zero shift from the principal anatomical 

(longitudinal) axis. The shift values we found with our geometric method are generally unequal 

to zero, but they have be to viewed with caution as the placement of the reference anatomical 

axis itself has uncertainties associated with it. The numerical values presented in Fig. 3-7 and the

segment lengths are reported in the supporting information (Tables S2-S13)

To estimate the effect of the convex hull approximation on the mass estimation versus the 

original body segment shape, the volumes of a high resolution 3D body scan and of their convex 

hull approximation were calculated and compared. A detailed surface mesh was obtained from 

the National Library of Medicine’s Visible Human Project (Spitzer et al., 1996) by isosurfacing 

the optical slices using the VTK toolkit (http://www.vtk.org) and cleaning up the resultant mesh 

using Geomagic. The surface mesh of the 3D body scan was separated into body segments and 

the volume calculated following the same methodology as used for the point cloud data. A 

convex hull was applied to each body segment and the volume calculated again (see Fig. 8). The 

volume overestimations for each body segment (averaged between left and right) are shown Fig. 

9 (column CH). Several body segments showed a large relative volume overestimation (using 

10% error as a cutoff, although the choice would depend on the required accuracy): foot (26%), 

shank (31%), hand (47%) and forearm (16%). This is due to the relatively strong curvatures in 

these segments. To minimize the effect, these body segments were subdivided (see Fig. 10) and 

the convex hulls recalculated. The results of the divided segments are also shown in Fig. 9 

(column CHD), and the decrease in volume overestimation is apparent. The volume 

overestimation of the subdivided foot (11%), shank (11%) and forearm (5%) are at a similar 

level to the other body segments and would probably be acceptable in many cases. The hands 

show the largest relative mass overestimation still (25%), which is due to its curved position and 

slightly open fingers. The convex hull error of the hand is, however, expected to be significantly 
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smaller if the hand is imaged while being held in a straight position with no gaps between the 

digits.

Figure 11 contains the relative mass estimations of the original surface mesh, the convex hulls 

with and without subdivision, and the average and regression model values found in literature. 

With a BMI value of almost 28, the male visible human is not well represented by the average or 

regression model values found in literature, where the majority of the studies involve relatively 

athletic people (BMI average of around 24) or obese individuals (BMI over 30). The convex 

hulls of the subdivided segments (CHD in Fig. 11) give the closest approximation to the original 

mesh and, with the exception of the hands, are within a relative error of less than 5%. The 

relative error of the convex hull of the whole segments (CH in Fig. 11) is larger but closer to the 

original mesh than average and regression values given in literature. The moments of inertia are 

overestimated as well as they are a product of the mass of the segment. Their overestimation 

follows the same trend as the mass overestimation, i.e. the largest overestimation occurs for the 

hands, followed by the shanks and feet (see Fig. S2 in supporting information), and the 

subdivided segments produce more accurate values with an average relative error below 10%.

4. Discussion

We can see from the results that the proposed methodology produces values that are very similar 

to those derived using regression equations. There are no consistent problems although it is 

clearly important that the hand is held in a suitable flat position but with fingers adducted so that 

the hulling can provide an accurate volume estimation. We would expect that the 

photogrammetric process will work as well as any of the published geometrical approaches 

(Hanavan, 1964; Hatze, 1980) since it is simply an automated process for achieving the same 

outcome. The procedure is currently moderately time consuming in total but the interaction time 

with the participant is extremely short and involves no contact which can be very beneficial for 

certain experimental protocols or with specific vulnerable participants. Since most of the time is 

spent post-processing the data, we expect that this post-processing could be streamlined 

considerably by writing dedicated software rather than the current requirement of passing the 

data through multiple software packages.  

In general regression equations work well for applicable populations and are probably more 
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suitable if body mass distribution is not a major focal point of the research, particularly given 

that in some cases it can be shown that experimental outcomes are not especially sensitive to the 

BSP parameters chosen (Yokoi et al., 1998). The values generated in our sample are relatively 

close to those generated by using regression equations but BSP values are highly variable 

between individuals and current regression equations are only suitable for a very limited range of

body shapes. This is particularly the case when we are dealing with non-standard groupings such

as children, the elderly or people with particularly high or low BMI values.

However there are some specific issues with this technique that could to be improved for a more 

streamlined and potentially more accurate workflow (see Fig.12, which summarises the steps 

involved in estimating body segment parameters using photogrammetry). 

Convex hulling of the point cloud is a robust and fast way to produce surface meshes. The fact 

that it systematically overestimates the volume of concave features can be improved by 

subdividing body segments into smaller parts and the decision then becomes what level of 

subdivision is appropriate for an acceptable level of accuracy (see Fig. 12 C). For example, with 

only one subdivision of the shank and forearm the relative error of their volume overestimation 

was reduced by a factor of three, and the end result was within 10% of the true value which is 

probably sufficient in most cases, especially given the level of uncertainty in other parameters 

such as segment specific density. It is important to note that the scaling factor used in our method

minimises the segment mass estimation errors introduced by the volume overestimation 

significantly. In fact, if all hulled segment masses (i.e. the product of segment volume and 

segment-specific density, see Fig. 12 D) were overestimated by 10% , the final body segment 

mass would be calculated correctly due to the scaling factor applied to each segment. Using a 

pro-rata scaling factor therefore performs best when the relative errors of the volume estimation 

of each segment are within a small range of each other.

The adoption of one of the concave hulling techniques is likely to lead to a similar level of 

improvement again with a minimum (but not zero) level of additional work. The level of 

subdivision required not only depends on the body segment, but also the population studied so it 

may well be appropriate that the segmentation level is adjusted according to the type of study 

and its sensitivity to inaccuracies in the BSP (i.e. multiple segment subdivisions increase 

accuracy of volume estimation). In this work, a uniform scaling factor and constant body density

(apart from the trunk) was assumed. It is well known that the density varies among body 
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segments as well as among populations due to different percentages of fat and muscle tissue 

(Drillis, Contini & Bluestein, 1964; Durnin & Womersley, 1974; Zatsiorsky, 2002). Thus, using 

segment and population specific densities (and scaling factors) may improve the accuracy of the 

presented methodology if such values are available or derived. Similarly important contributions 

to segmental mass distribution such as the presence of the lungs within the torso can be modelled

explicitly which may lead to small but important shifts in the centre of mass (Bates et al., 2010).

In terms of technology, the current arrangement of using 18 Raspberry Pi cameras is reasonably 

straightforward and relatively inexpensive. It requires no calibration before use, and the process 

of moving the subject into the target area is extremely quick. However it does take up a great 

deal of room in the laboratory and the current software is reliant on clothing contrast for the 

reconstructions which limits the flexibility of the technique. One area where this could be 

improved is by projecting a structured light pattern onto the subject so that areas with minimal 

contrast can be reconstructed accurately (Casey, Hassebrook & Lau, 2008). Our results show that

18 cameras is currently the minimum needed for full body reconstruction and a system with 36 

or more cameras would produce better point cloud reconstruction results by minimizing areas of 

potential occlusions (such as between the legs or between the arms and trunk) and increasing the 

point cloud density. To what degree a more densely packed point cloud would significantly 

improve the accuracy of the estimated inertial parameters based on convex hulls would be an 

interesting aspect to investigate further. We would expect a denser point cloud to facilitate the 

use of more complex meshing methods instead of convex hulling. 

One future use of this technology is clearly the use of such systems and algorithms for complete 

motion capture (Sellers & Hirasaki, 2014). The limitation currently is that these cameras would 

need to be closely synchronised and whilst the proposed system is adequate for producing a 

single still image, it is currently not able to adequately synchronise video. In addition the video 

resolution is much lower and this makes the reconstruction more difficult. However we predict 

that markerless, multiple video camera structure from motion systems will become a much more 

common mainstream tool for experimental motion capture in the near future. Ideally we could 

imagine that such a system would both do the motion capture and also the body segment 

parameter reconstruction since much of the computational technology would be shared.

Conclusion
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A methodology based on structure form motion photogrammetric reconstruction has been 

presented that provides subject-specific body segment parameters. The method relies on the 

surface depth information extracted from multiple photographs of a participant, taken 

simultaneously from multiple different view points. The brief interaction time with the 

participants (taking all required photos simultaneously, and measuring the height and weight 

only) makes this a promising method in studies with vulnerable subjects or where cost or ethical 

constraints do not allow the use of other imaging methods such as CT or MRI scans.  Unlike 

regression models that are valid only for a small population sample, we expect the proposed 

methodology to be able to perform equally well for a wide range of population samples. The 

post-processing time is lengthy compared to using regression models or average values from 

literature but not compared to processing MRI or CT data. The 3D scanner presented in this 

paper was able to produce a sufficient 3D data points to estimate body segment volumes with 

only 18 RPi cameras, which kept the hardware cost to a minimum. Depending on the accuracy 

required for the project, we would expect both more cameras and higher resolution cameras to 

improve the robustness of the 3D point cloud reconstruction.

While the results presented in this work were derived using commercial software, such as 

AgiSoft, Geomagic and Matlab®, we were able to to achieve similar results using open-source 

software only (such as VisualFMS (http://ccwu.me/vsfm/) for calculating 3D point clouds and 

MeshLab (http://meshlab.sourceforge.net/) for point cloud segmentation, hulling and BSP 

calculation). This makes our proposed methodology, in combination with the low hardware 

costs, particularly promising for small-budget projects. 
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1
Body Scanner Design.

A: Point cloud reconstruction with varying number of cameras. B: Schematic representation

of the RPi scanner design.
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2
Image processing work flow.

Images from the RPI scanner are converted to 3D point clouds which are then scaled and

segmented manually. Subsequently, convex hulling is used to produce a surface mesh

around each body segment.
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3
Segment mass (as % of body mass).

P: Average value of all six participants (error bars show standard deviation). Foot mass

adjusted by a factor of 0.51 to compensate for volume overestimation due to wearing shoes.

Z(m): Male average values reported by Zatsiorsky. Z(f): Female average values reported by

Zatsiorsky (Leva, 1996; Zatsiorsky, 2002). D(m): Male average values by Dempster (via

Zatsiorsky) (Dempster, 1955; Zatsiorsky, 2002).
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4
Moment of inertia in [10⁴ kg*m²].

P: Average value of all six participants (error bars show standard deviation). Foot moment of

inertia adjusted by a factor of 0.51 to compensate for volume overestimation due to wearing

shoes. Z(m): Male average values reported by Zatsiorsky. Z(f): Female average values

reported by Zatsiorsky (Leva, 1996; Zatsiorsky, 2002). The definition of the coordinate

system is shown in Fig. 2.
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5
Absolute values of products of inertia in [10⁴ kg*m²].

he absolute values of Ixy, Ixz and Iyz are shown together with a positive error bar (negative

error bar is symmetrical) equal to one standard deviation. The signed values are reported in

the supporting information in Tables S2-S4. The Ixy value of the hand is smaller than 10³

kg*m² and is not displayed. Foot products of inertia adjusted by a factor of 0.51 to

compensate for volume overestimation due to wearing shoes.
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6
Centre of mass along the longitudinal axis.

P: Average value of all six participants (error bars show standard deviation). Z(m: male, f:

female): Average values by Zatsiorsky, adjusted by de Leva . The CoM is given as % of the

segment length. The definition of the segments and reference points are given in the

supporting information Table S1 - Exceptions: * Foot of participants: Heel and toe end point

of participant's shoes instead of foot. ** Forearm and Upper Arm of Z: Elbow reference point

is the elbow joint centre instead of the Olecranon (Leva, 1996; Zatsiorsky, 2002)⁠.
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7
CoM shift from the anatomical longitudinal axis in the transverse (x-y) plane.

Average values of all six participants are shown (error bars show standard deviation). Due to

mirror-symmetry, the y-values of the segments on the left- and right-hand side have opposite

signs. To calculate the average, the sign of the segments on the left-hand side was inverted.

The CoM is given as % of the segment length. The data of the foot is not included due to the

participants wearing shoes.
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8
Visible Human surface mesh.

A: High-resolution surface mesh. B: Convex hull mesh.
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9
Segment volume overestimation of the hulled mesh versus the high-resolution surface
mesh of the Visible Human.

Data shown as the relative difference of the hull with respect to the original mesh. CH:

Convex hull of body segment. CHD: Convex hull of divided body segments (only segments

indicated with an * were subdivided, see Fig. 10).
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10
Subdivision of the body segments with large curvature.

The first row (S) shows the high-resolution surface mesh, the second row (CH) the convex

hull of the whole body segment, and the bottom row (CHD) the convex hulls of the

subdivided body segments.
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11
Male Visible Human segment mass (as % of body mass) of the high-resolution mesh,
convex hull, regression model and average values.

S: High-resolution surface mesh. CH: Convex Hull of whole body segments. CHD: Convex Hull

with subdivided body segments (only segments indicated with an * were subdivided as

shown in Fig. 10). ZR: Values predicted using Zatsiosrky's linear regression model (using

weight and height). Z: Male average values reported by Zatsiorsky. D: Male average values

reported by Dempster (Dempster, 1955; Leva, 1996; Zatsiorsky, 2002)⁠.

PeerJ reviewing PDF | (v2014:11:3034:1:0:NEW 11 Feb 2015)

Reviewing Manuscript



12
Methodology to estimate subject-specific body segment parameters using
photogrammetry.

A. Photogrammetry; B. Body segmentation; C. Segment hulling; D. Inertial parameter

estimation.
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Table 1(on next page)

Participant mass and weight.

P1 – P6: Participants (m: male, f: female). VH: Male Visible Human.
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P1 (m) P2 (m) P3 (m) P4 (m) P5 (f) P6 (f) VH (m)
Mass [kg] 73.4 77.0 88.2 87.8 65.4 55.2 90.3
Height [m] 1.81 1.83 1.85 1.83 1.65 1.58 1.80
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