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ABSTRACT
Background. Obesity is a global epidemic in the industrialized and developing world,
andmany children suffer from obesity-related complications. Gut microbiota dysbiosis
might have significant effect on the development of obesity. The microbiota continues
to develop through childhood and thus childhoodmay be the prime time formicrobiota
interventions to realize health promotion or disease prevention. Therefore, it is crucial
to understand the structure and function of pediatric gut microbiota.
Methods. According to the inclusion criteria and exclusion criteria, twenty-three
normal weight and twenty-eight obese children were recruited from Nanjing, China.
Genomic DNA was extracted from fecal samples. The V4 region of the bacterial 16S
rDNAwas amplified by PCR, and sequencing was applied to analyze the gut microbiota
diversity and composition using the Illumina HiSeq 2500 platform.
Results. The number of operational taxonomic units (OTUs) showed a decrease in the
diversity of gut microbiota with increasing body weight. The alpha diversity indices
showed that the normal weight group had higher abundance and observed species
than the obese group (Chao1: P < 0.001; observed species: P < 0.001; PD whole
tree: P < 0.001; Shannon index: P = 0.008). Principal coordinate analysis (PCoA)
and Nonmetric multidimensional scaling (NMDS) revealed significant differences
in gut microbial community structure between the normal weight group and the
obese group. The liner discriminant analysis (LDA) effect size (LEfSe) analysis showed
that fifty-five species of bacteria were abundant in the fecal samples of the normal
weight group and forty-five species of bacteria were abundant in the obese group.
In regard to phyla, the gut microbiota in the obese group had lower proportions of
Bacteroidetes (51.35%) compared to the normal weight group (55.48%) (P = 0.030).
There was no statistical difference in Firmicutes between the two groups (P = 0.436),
and the Firmicutes/Bacteroidetes between the two groups had no statistical difference
(P = 0.983). At the genus level, Faecalibacterium, Phascolarctobacterium, Lachnospira,
Megamonas, and Haemophilus were significantly more abundant in the obese group
than in the normal weight group (P = 0.048, P = 0.018, P < 0.001, P = 0.040, and P
= 0.003, respectively). The fecal microbiota of children in the obese group had lower
proportions of Oscillospira and Dialister compared to the normal weight group (P =
0.002 and P = 0.002, respectively).
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Conclusions. Our results showed a decrease in gut microbiota abundance and diversity
as the BMI increased. Variations in the bacterial community structure were associated
with obesity. Gut microbiota dysbiosis might play a crucial part in the development of
obesity in Chinese children.

Subjects Bioinformatics, Microbiology, Gastroenterology and Hepatology
Keywords Gut microbiota, 16S rRNA gene sequencing, Childhood obesity, Bacterial
compositions, Alpha diversity, Beta Diversity

INTRODUCTION
Obesity has become a global epidemic in the industrialized and developing world (Luke et
al., 2014; Popkin, Adair & Ng, 2012). The World Health Organization’s briefing on obesity
showed that global obesity is on a rapid upward trend and has doubled since 1980, with
more than 40 million obese children in the word (Women, 2011). Obesity is associated
with serious health risks, raising great concerns about multiple comorbidities occurring
with obesity, including musculoskeletal disorders, type 2 diabetes, cardiovascular diseases,
nonalcoholic fatty liver disease, and certain cancers (Dietrich & Hellerbrand, 2014; Farni et
al., 2014; Global Burden of Metabolic Risk Factors for Chronic Disease Collaboration, 2014;
Pettitt et al., 2014; Prospective Studies Collaboration, 2009; Wormser et al., 2011; Saydah et
al., 2014). Due to the health and economic burden brought by the rising BMI, obesity has
been included as a global noncommunicable diseases (NCD) target, halting the rise of
obesity in 2025 to its 2010 level (Kontis et al., 2014).

Obesity prevails among children and results in a global problem regarding children’s
general health and well-being. With high prevalence of childhood obesity, many children
suffer from obesity-related complications (Han, Lawlor & Kimm, 2010). The pathogenesis
of obesity is complicated, withmultiple factors involved. Apart from genetic and nutritional
factors, a new factor has been recently identified related to the onset and progression of
obesity—the gut microbiota (Ridaura et al., 2013; Sonnenburg & Sonnenburg, 2014). As
500-1,000 species of microbes lives in the gastrointestinal tract, the gut microbiota is an
ecosystem in itself (Karlsson et al., 2013a; Karlsson, Nookaew & Nielsen, 2014). The number
of microbial genes in the gut microbiota is at least 150-fold larger than that of the human
genes inside in human body (Qin et al., 2010).

Up to now, many studies have demonstrated that the gut microbiota, as the largest and
most complex microecosystem inside the human body, plays extremely important roles
in health and disease (Guyton & Alverdy, 2017; Leung et al., 2016; Lathrop et al., 2011;
Nicholson et al., 2012; Sandhu et al., 2017; Tang & Hazen, 2016; Tremaroli & Backhed,
2012). The gut microbiota genome maintains normal physiological and metabolic
functions in the human body, aiding food digestion through significantly enriching
genes in metabolizing carbohydrates, vitamins, short-chain fatty acids and amino acids
(Gill et al., 2006). For a long period, the microorganisms of the gut microbiota stay in
the mutualistic symbioses and create a balanced and stable intestinal microsystem. This
balancedmicrosystem prepare the host to adapt to special conditions, while the dysbiosis of
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this microsystem shall cause the compositional and functional imbalance in the intestinal
microorganisms (Lynch & Pedersen, 2016).

In recent years, a growing number of researchers have paid attention to the gut
microbiota and explored its functions in the pathogenesis and regulation of metabolic
disorders. It has been suggested that the microbiota continues to develop through
childhood and children may be the best candidate for microbiota interventions to realize
health promotion or disease prevention (Hollister et al., 2015). Therefore, it is essential
to foster a preliminary understanding of the pediatric gut microbiota. However, due to
limited information of the pediatric gut microbiota regarding its structure and function,
the mechanism and the degree of gut microbiota contributing to the development of
childhood obesity have not yet been elucidated. As a result, a gut microbiota study in the
context of obesity is needed to explain the relationship between the obesity epidemic and
the gut microbiota.

Though it is difficult to cultivate the anaerobic gut microbiota in the laboratory,
new genome sequencing techniques enable us to collect and analyze information of
human gut microbiota from the perspectives of microbial composition and function
(MetaHIT Consortium, 2011; Qin et al., 2010). In our study, we recruited children from a
same geographic area to minimize variations irrelevant to obesity. Our research goal was
to evaluate gut microbial biodiversity between obese and normal weight children, aged
between 6-11 years old, using 16S rRNA gene sequencing. We expect that our findings
could have some reference meanings in preventing and treating childhood obesity.

MATERIALS AND METHODS
Ethics statement
The study was conducted in accordance to the Declaration of Helsinki revised in 2013 and
approved by the ethics committee of Zhongda Hospital, Southeast University (approval
number: 2017ZDSYLL109-P01). Participation in this study was voluntary, and all parents
gave written informed consent.

Research object
A total of 51 volunteers of both sexes (27 males and 24 females) were recruited from
Nanjing, China. Subjects were strictly categorized into the normal weight group (n= 23)
or the obese group (n= 28) according to the inclusion and exclusion criteria.

Inclusion criteria: (1) The age range for participation was 6-11 years old. (2) In
accord with the determination standard of normal weight and obesity of children, the
standard was ‘‘Body mass index cut-offs for overweight and obesity in Chinese children and
adolescents aged 2-18 years’’ (Li et al., 2010) formulated by the Department of Growth and
Development, Capital Institution of Pediatrics (Table 1). (3) Willing to participate in the
study and obtain the consent of the guardian, voluntarily taking the subject and signing
the informed consent form.

Exclusion criteria: (1) Antibiotics have been used in the past 4 weeks. (2) Gastrointestinal
dysfunction, previous gastrointestinal disease history or diarrhea, abdominal distension,
abdominal pain or constipation within the past 4 weeks. (3) Trauma, serious infection,
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Table 1 Bodymass index cut-offs for overweight and obesity in Chinese children and adolescents aged
2-18 years.

Age (Years) Boys Girls

Overweight Obesity Overweight Obesity

2 17.5 18.9 17.5 18.9
3 16.8 18.1 16.9 18.3
4 16.5 17.8 16.7 18.1
5 16.5 17.9 16.6 18.2
6 16.8 18.4 16.7 18.4
7 17.2 19.2 16.9 18.8
8 17.8 20.1 17.3 19.5
9 18.5 21.1 17.9 20.4
10 19.3 22.2 18.7 21.5
11 20.1 23.2 19.6 22.7
12 20.8 24.2 20.5 23.9
13 21.5 25.1 21.4 25.0
14 22.1 25.8 22.2 25.9
15 22.7 26.5 22.8 26.7
16 23.2 27.0 23.3 27.2
17 23.6 27.5 23.7 27.6
18 24.0 28.0 24.0 28.0

and infectious diseases. (4) Hereditary obesity. (5) Drug-induced obesity. (6) Endocrine
disorders and metabolic diseases.

Sample collection
Fecal samples were collected and well-sealed in sterile boxes, immediately frozen in a
refrigerator and transported to school the next morning and stored at −20 ◦C before
being transferred in insulating polystyrene foam containers to the Key Laboratory of
Environmental Medical Engineering and Education Ministry, where samples were stored
at −80 ◦C until further analysis.

DNA extraction and PCR amplification
Genomic DNA was extracted according to the specifications of TIANamp Stool DNA kit
(TIANGEN, China, Cat. DP328), applied to all feces samples. The integrity and purity of
DNA were detected by 1% agarose gel electrophoresis, while the concentration and purity
of DNA were detected by NanoDrop One. The V4 region of the bacterial 16S rDNA was
amplified by PCR with the specific primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) labeled in a 12 bp barcode. PCR
amplification was conducted using primers with a barcode and Premix Taq under the
following conditions: 5 min at 94 ◦C for initialization, 30 s denaturation at 94 ◦C for 30
cycles, 30 s annealing at 52 ◦C, and 30 s extension at 72 ◦C, and a final 10 min elongation
at 72 ◦C. The fragment length and concentration of PCR products were detected by 1%
agarose gel electrophoresis, and samples with a main band length in the range of 290-310
bp were selected. After comparing the concentrations of PCR products using GeneTools
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Analysis Software (Version 4.03.05.0, SynGene), the required volume of each sample was
calculated according to the principle of equal quality, and each PCR product was mixed
and recovered by the An E.Z.N.A. R© Gel Extraction Kit (OMEGA, USA, Cat. D2500). TE
buffer was used to elute and recover the target DNA fragments.

Sequencing and data processing
Libraries were built according to the NEBNext R© UltraTM DNA Library Prep Kit for
Illumina R© and sequenced on an Illumina HiSeq2500 platform (Caporaso et al., 2011),
and then 250 bp paired-end reads were generated. Trimmomatic software (V0.33,
http://www.usadellab.org/cms/?page=trimmomatic) (Bolger, Lohse & Usadel, 2014) was
used to filter the quality of the raw reads data at both ends. At the same time, with reference
to the barcode and primer information at both ends of the sequence, Mothur software
(V1.35.1, http://www.mothur.org) (Schloss et al., 2009) was used to distribute the sequence
to corresponding samples; the allowed mismatch number of barcodes was 2, and the
maximum mismatch number of primers was 3. Then, after quality control, barcode and
primers were removed to obtain paired-end clean reads. For double-ended sequencing
data, it was necessary to splice each pair of paired-end reads using FLASH software
(V1.2.11, https://ccb.jhu.edu/software/FLASH/) (Magoc & Salzberg, 2011) in terms of the
overlap between paired-end reads to splice the paired reads into a sequence and to filter
out nonconforming tags in order to collect the original spliced sequence (raw tags). The
minimum overlap length was set to 10 bp and the maximum allowable mismatch ratio in
the overlap region of the spliced sequence was set to 0.1. Mothur software was used to carry
out quality control and filter the spliced sequences to obtain effective spliced fragments.

OTU and species community analysis
The USEARCH software (V8.0.1517, http://www.drive5.com/usearch/) (Edgar, 2010) was
used to cluster all clean tags for all samples. By default, the sequence was clustered into
an operational taxonomic unit (OTU) with 97% identity. Singleton OTUs were removed
with usearch (http://www.drive5.com/usearch/manual/chimera_formation.html), and
chimeric sequences were removed with UCHIME (http://www.drive5.com/usearch/
manual/uchime_algo.html) (Edgar et al., 2011). The assign_taxonomy.py script and
Ribosomal Database Project (RDP) Classifier method (Cole et al., 2007) in Quantitative
Insights Into Microbial Ecology (QIIME, version 1.9.1) were used to obtain species
annotation information. The number of valid tag sequences (No. of seqs) and the OTU
taxonomic comprehensive information table (otu_table) were obtained by removing
chloroplast and mitochondrial sequences as well as OTUs and the tags that could not be
annotated at the set limit. Based on otu_table, R software (V2.15.3) (R Core Team, 2013)
was used to calculate the annotation proportion of OTUs at each classification level, and
the sequence of each sample at each classification level was obtained to form a column
chart. All values greater than 0 in each column of values were recorded as 1 and summed,
which was the total OTUs of each sample. On the basis of the normalized otu_table, the
common or unique OTU analysis was conducted with the ggplot2 package in R software,
and meanwhile the OTU triangulation was drawn using the ggtern package to show the
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common or unique OTUs and their abundance between the two groups. The pheatmap
package in R software was used to carry out the cluster analysis between samples and
species. With the phylogenetic relationship and relative abundance information of each
OTU in the samples, the species annotation results of a single sample was visualized by
KRONA software (http://sourceforge.net/projects/krona/) (Ondov, Bergman & Phillippy,
2011). Using GraPhlAn software (http://huttenhower.sph.harvard.edu/graphlan) (Asnicar
et al., 2015), a single sample OTU annotation circle graph based on GraPhlAn was
obtained. Representative OTU sequences with the top 50 overall relative abundance
and genus classification information were selected, and Mafft software (Katoh
et al., 2002) was used to carry out a multisequence comparison. FastTree software
(http://microbesonline.org/fasttree/) (Price, Dehal & Arkin, 2009) was used to build trees
simultaneously combining the relative abundance of each OTU and species annotation
confidence information of representative sequences, and the ggtree software package (Yu
et al., 2017) was used to carry out the visual display. OTU abundance information were
normalized using a standard of sequence number corresponding to the sample with the
least sequences. Based on the normalized data, alpha diversity and beta diversity were all
performed in the following paragraphs.

Alpha diversity analysis
According to the normalized OTU abundance table, the alpha_diversity.py script
(http://huttenhower.sph.harvard.edu/graphlan) in the QIIME software package (version
1.9.1) (Caporaso et al., 2010; Kuczynski et al., 2011) was used to calculate four diversity
indices (Chao et al., 2010). According to theOTUabundance table, the alpha_rarefaction.py
script (http://qiime.org/scripts/alpha_rarefaction.html) in the QIIME software package
was used to calculate dilution curve data of four diversity indices, and the vegan package
(Dixon, 2003) was used to draw the dilution curve. Based on the OTU abundance table, the
plot_rank_abundance_graph.py script (http://qiime.org/scripts/plot_rank_abundance_
graph.html) in the QIIME software package was selected to calculate the rank debt curve
index. The data from the specaccum species accumulation curve analysis was calculated
and mapped in line with the normalized OTU abundance table.

Beta diversity analysis
According to the normalized OTU abundance table, the beta diversity distance was
calculated using jackknifed_beta_diversity.py script (http://qiime.org/scripts/jackknifed_
beta_diversity.html) in QIIME software. Principal Coordinate Analysis (PCoA) was
performed to get principal coordinates and visualize from complex data (Lozupone et
al., 2011). A distance matrix of unweighted Unifrac among samples obtained before was
transformed to a new set of orthogonal axes, themaximum variation factor is demonstrated
by first principal coordinate, the second maximum one by the second principal coordinate,
and so on. PCoA analysis was displayed by QIIME2 and ggplot2 package (Ginestet, 2011).
Upgma_cluster.py script (http://qiime.org/scripts/upgma_cluster.html) in QIIME software
was applied to build the cluster tree of samples using the UPGMA cluster analysis method.
Based on the normalizedOUT table (otu_table_subsampled),NonmetricMultidimensional
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Table 2 Characteristics of the study population.

Variables Normal weight (n= 23)
Mean (SD)

Obesity (n= 28)
Mean (SD)

Gender (Boys/Girls) 11/12 16/12
Age (Years) 8.86(1.61) 8.49(1.48)
BMI (kg/m2) 15.32(1.42) 24.44(2.03)*

Notes.
*Asterisks indicate statistical significance (∗P < 0.05, Wilcoxon rank-sum test).

Scaling (NMDS) analysis was performed with the vegan package and displayed with the
ggplot2 package in R software.

LEfSe and PICRUSt analysis
The linear discriminant analysis (LDA) effect size (LEfSe) analyses were performed on
the website http://huttenhower.sph.harvard.edu/galaxy (Segata et al., 2011). For OTUs
with an average abundance in all samples that was greater than 0.1%, abundances were
normalized to the sum of the values per sample in 1 million and then subjected to
LDA. The cut off value was the absolute LDA score (log10) >2.0. Functional capacity
of gut microbiota was predicted using the Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) (Galaxy Version 1.0.0) (Langille et
al., 2013). The closed reference OTU table was generated from quality control reads in
QIIME against the Greengenes reference sequence database. Closed OTU-table drawn by
QIIME was compared with KEGG (Kyoto Encyclopedia of Genes and Genomes) database
to obtain functional predictions. PICRUSt predictions were categorized as levels 1-3 into
KEGG pathways.

Statistical analysis
IBM SPSS 23.0 software were applied in all statistical analyses. Depending on the normality
of the underlying data drawn from the Shapiro-Wilk test, differences between groups
were examined by two-tailed t -test or Wilcoxon rank-sum test. Test results at an alpha of
P < 0.05 were considered statistically significant.

RESULTS
Study population
In this study, we categorized 28 obese children into the obese group and 23 healthy children
into the normal weight group to analyze the two group’s gut microbial composition. The
two groups revealed no statistical difference regarding gender ratio and age (Table 2).

Sequencing data
A total of 2,349,074 raw sequence reads were obtained from the 51 subjects. After a series
of quality filtering, 2,004,646 classifiable 16S rRNA gene sequences were obtained, and
the average number of sequences for each individual was 39,307 (ranging from 25,813 to
55,847). All sequences were clustered with representative sequences, and a 97% sequence
identity cut-off was used.
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Figure 1 Venn diagram and rarefaction curves for calculated OTUs. (A) Different colors represent dif-
ferent groups in the Venn diagram. The areas with overlapping circles of different colors represent the set
of OTUs commonly present in the counterpart groups, and the single-layer zone represents the number
of OTUs uniquely found in each group. (B) Observed species curves and (C) Shannon curves represent-
ing the observed number of species in the two groups. The abscissa represents the number of sequences
extracted by resampling, and the ordinate indicates the diversity value or the average number of OTUs
per sample in each group. Rarefaction curves show the observed species at various sequencing depths. (D)
The rank-abundance curve shows the species richness and uniformity. The curve width indicates that the
species composition was more abundant. A flat curve indicates a more uniform species composition. (N:
normal weight group; F: obese group).

Full-size DOI: 10.7717/peerj.8317/fig-1

The Venn diagram (Fig. 1A) demonstrated the shared and exclusive communities
between the groups. The total number of OTUs obtained was 1,213, among which 449
OTUs were shared by both groups, 211 genera were specific to the normal weight group
and 104 genera were specific to the obese group, showing a decrease in the gut microbial
diversity as the body weight increased.

Estimation of the alpha diversity and beta diversity
Rarefaction curves drawn on the observed species and Shannon indices (Figs. 1B and 1C)
indicated that although deeper sequencing may reveal rare OTUs, the majority of microbial
diversity had been captured. These curves also revealed that the alpha diversity in samples
from the normal-weight group was the highest and that in obesity group was the lowest.
To confirm its validity, we calculated Chao1 indices by Wilcoxon rank-sum test (Fig. 2),
finding that the mean microbial abundance between two groups decreased significantly
(P = 0.006, Wilcoxon rank-sum test). Shown in the rank-abundance curve, the species
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Figure 2 Alpha diversity metrics (Chao1 index, observed species, PD whole tree and Simpson index)
of OTU-level fecal bacterial communities. (A) (B) Boxplotsfor comparison of species richness (Chao1 in-
dex; observed species) between the two study groups; (C) Boxplots for comparison of phylogenetic diver-
sity (PD whole tree); (D) Boxplots for comparison of species diversity (Shannon index). All Boxplots show
that the normal weight group had more abundance and diversity than the obese group. (N: normal weight
group; F: obese group).

Full-size DOI: 10.7717/peerj.8317/fig-2

abundance and uniformity of gut microbiota in the obese group were lower than those in
the normal weight group (Fig. 1D).

The alpha diversity indices (the Chao1, observed species, PD whole tree and Shannon
index) were used to describe alpha diversity (Fig. 2). Significant differences were found
between the normal weight group and the obese group (P < 0.001; P < 0.001; P < 0.001;
and P = 0.008, respectively, Wilcoxon rank-sum test), showing a higher abundance and
diversity in the normal weight group than in the obese group. In addition to the alpha
diversity evaluation, the unweighted UniFrac analysis was applied to compare similarities
among gut microbial communities (beta diversity). Looking into the bacterial composition
profiles, we observed significant differences between the normal weight group and the obese
group (R 2

= 0.054, P = 0.001, adonis analysis). NMDS and PCoA based on the abundance
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Figure 3 PCoA and NMDS based on the abundance of OTUs. (A) PCoA and (B) NMDS plots compar-
ing sample distribution between the two groups. Points clustered at the left and the right left represent the
gut microbial composition of the obese group and the normal weight group, respectively. The closer the
spatial distance of the sample, the more similar the species composition of the sample. (N: normal weight
group; F: obese group).

Full-size DOI: 10.7717/peerj.8317/fig-3

of OTUs revealed differences in the microbial composition (Fig. 3). Specifically, an evident
clusteringwas identified for subjects of normal weight and obesity. The observation revealed
significant differences in gut microbial community structure between the normal weight
group and the obese group, with two principal component scores accounted respectively
for 11.59% and 5.57% of the total variations. Moreover, separation between the two groups
was particularly obvious. Representing the intestinal microbial composition, data points
for subjects of normal weight clustered at the right and obese ones at the left.

The relative abundance of fecal bacterial communities
Statistics of the OTUs suggested the relative abundance of the bacteria at the categorization
of phylum, class, order, family and genus. The results showed that fecal bacterial
composition differed between the two groups.

Bacteroidetes was the most predominant phylum, contributing 55.48% and 51.35%
of the gut microbiota in the normal weight group and the obese group, respectively,
followed by Firmicutes, contributing 37.93% and 36.18%, respectively (Figs. 4A and 4B).
Proteobacteria, Fusobacteria, Verrucomicrobia and Actinobacteria constituted the next
most dominant phyla. Microbial compositions showed high interindividual variability,
among which Bacteroidetes accounted for 21.01-73.78%, and Firmicutes accounted for
18.72-59.49% among all individuals. In regard to phyla, proportion of Bacteroidetes
(51.35%) in the obese group was lower than that in the normal weight group (55.48%)
(P = 0.030, Wilcoxon rank-sum test). No statistical differences were revealed in Firmicutes
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Figure 4 Histogram of the community composition of gut microbiota at the phylum level. (A) The or-
dinate represents the sample, and the abscissa represents the relative abundance. (B) The abscissa repre-
sents the group, and the ordinate represents the relative abundance. The figures show species with a rela-
tive abundance of 1% or more. All species with a relative abundance of less than 1% and classified as ‘‘un-
classified’’ and ‘‘unidentified’’ were classified as ‘‘Others’’. (N: normal weight group; F: obese group).

Full-size DOI: 10.7717/peerj.8317/fig-4

(P = 0.436, Wilcoxon rank-sum test) and the Firmicutes/Bacteroidetes (P = 0.983,
Wilcoxon rank-sum test) between the two groups.

Analysis of the relative abundance of bacterial taxonomic groups showed that the fecal
microbiota was dominated by fourteen genera: Bacteroides (mean relative abundance, N,
41.58%; F, 40.06%) (In the following analysis, ’’N’’ is short for ‘‘Normal weight’’ and
‘‘F’’ for ‘‘Fat’’, namely ‘‘Obesity’’), Faecalibacterium (N, 7.03%; F, 10.76%), Prevotella
(N, 4.72%; F, 6.19%), Oscillospira (N, 4.50%; F, 1.61%), Dialister (N, 4.03%; F, 0.91%),
Parabacteroides (N, 4.01%; F, 2.39%), Sutterella (N, 2.68%; F, 5.60%), Roseburia (N, 1.94%;
F, 2.32%),Ruminococcus (N, 1.91%; F, 1.13%), Phascolarctobacterium (N, 1.64%; F, 3.43%),
Lachnospira (N, 1.55%; F, 3.23%), Escherichia (N, 1.39%; F, 1.32%),Megamonas (N, 0.54%;
F, 1.79%), Haemophilus (N, 0.32%; F, 1.96%). Faecalibacterium, Phascolarctobacterium,
Lachnospira, Megamonas, and Haemophilus in the obese group were significantly more
abundant than those in the normalweight group (P = 0.048,P = 0.018,P <0.001,P = 0.040
and P = 0.003, respectively, Wilcoxon rank-sum test). As forOscillospira andDialister, they
took lower proportions in the obese group when compared to the normal weight group
(P = 0.002, two-tailed t -test; and P = 0.002, Wilcoxon rank-sum test). For the remaining
genera, the gut microbiome sequencing data did not indicate significant differences in the
abundance for the obese group compared to the normal weight group.

Phylogenetic and taxonomic profiles of gut microbiota and PICRUSt
analysis
To analyze the statistical differences in microbial communities between the normal weight
group and the obese group, we compared OTUs with the LEfSe analysis. The histogram
reflected the LDA scores that were computed for the features at the OTU level (Fig. 5A).
Cladograms of the taxa with LDA values >2.0 were depicted in Fig. 5B.
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Figure 5 Different structures of gut microbiota in the two groups. The bar graph and cladogram indi-
cate the taxa that discriminate among the two groups , based on the LEfSe method and linear discriminant
analysis (LDA) effect size method. (A) The statistical test was performed using the LDA effect size method.
Only taxa with an alpha value of 0.05 and with absolute LDA (log10) scores >2.0 were considered signifi-
cant. (B) Cladogram depicting the phylogenetic distribution of microbial lineages associated with the two
groups. Each small circle at a different classification level represents a classification at that level, and the
diameter of the small circle is proportional to the relative abundance (the levels represent, from the inner
to outer rings, genus, family, order, class and phylum). (N: normal weight group; F: obese group).

Full-size DOI: 10.7717/peerj.8317/fig-5

Upon analyzing the fecal samples, a total of 55 species of bacteria were abundant in the
normal weight group and 45 species were abundant in the obese group. As shown in Fig. 5A,
the relative abundance of taxonomic groups showing an LDA score greater than 104 was
summed for the normal weight group (Oscillospira and Bacteroides uniformis) and the obese
group (Proteobacteria, Prevotella copri, Alcaligenaceae, Sutterella, Betaproteobacteria, and
Burkholderiales). Multiple genera were found in significantly high abundances in the
normal weight group. These included Oscillospira, Ruminococcus, Prevotella, Adlercreutzia,
Sporobacter, Bifidobacterium, Clostridium,Desulfovibrio, Bilophila, Christensenella, Alistipes,
Anaerotruncus, Eubacterium, Holdemania, Oxalobacter, Defluviitalea, and Collinsella.
The genera that were enriched in the obese group were Turicibacter, Campylobacter,
Actinobacillus, Aggregatibacter, SMB53, Rothia, Granulicatella, Streptococcus, Veillonella,
Megamonas, Fusobacterium, Phascolarctobacterium, Haemophilus, Lachnospira, and
Sutterella.

Cladograms (Fig. 5B) were generated from the LEfSe analysis, which showed the most
differentially abundant taxa enriched inmicrobiota with green for the normal weight group
and red for the obese group. The diameter of each circle is proportional to its abundance.
The obese group showed a significant decrease in the phylum Actinobacteria, phylum
Tenericutes, class Deltaproteobacteria, class Erysipelotrichia and some taxonomic groups
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belonging to the order Bacteroidales, such as family Paraprevotellaceae, Barnesiellaceae,
S24-7, and Rikenellaceae and a greater abundance of the phylum Proteobacteria, phylum
Fusobacteria and class Bacilli when compared with the normal weight group (Fig. 5B).

To study the changes of gut microbial function in obese children, we adopted
PICRUSt. Based on KEGG database, PICRUSt revealed a total of six biological metabolism
pathways at Level 1 pathways: metabolism, genetic information processing, environmental
information processing, cellular processes, organismal systems, human diseases. Among
them, metabolism, genetic information processing and environmental information
processing dominated, accounting for 46.89%-51.41%, 18.33%-22.12% and 10.22%-
14.87%, respectively. These six pathways in the obese group were lower than those in
the normal weight group. Meanwhile, the secondary function of the predicted gene
was analyzed, finding it consisted of 39 sub-functions including membrane transport,
carbohydrate metabolism, amino acid metabolism, replication and repair, energy
metabolism, translation, cellular processes and signaling. Within the 39 predicted
functional categories at KEGG pathway hierarchy level 2, except immune system diseases,
neurodegenerative diseases and signal transduction, the remaining 36 sub-functions within
the predicted gene all decreased in obese children.

DISCUSSION
Gut microbiota plays is essential to regulate energy metabolism and fat storage and is
closely associated with the occurrence and development of obesity (MetaHIT Consortium,
2011; Collins et al., 2015; Musso, Gambino & Cassader, 2010; Walters, Xu & Knight, 2014).
Studies have confirmed that the composition of gut microbiota changes and the microbial
diversity decreases in obese people and obese rats (Petriz et al., 2014). In the present study
we found alterations in gut microbiota composition in the obese and normal-weight
Chinese children. Rarefaction curves and rank-abundance curve suggested the abundance
and diversity of gut microbiota in obese children were lower than those in normal weight
children and. Alpha diversity metrics generated a more accurate verification. Alpha
diversity is an index reflecting the variety of microbial species in stool samples. A higher
alpha diversity indicates higher abundance in one sample (Liu et al., 2017). In this study,
the alpha diversity indices, including Chao1, observed species, PD whole tree and Shannon
index, revealed that the gut microbial composition of children in different BMI categories
was statistically significant. The abundance and diversity of gutmicrobiota in obese children
were significantly lower than those in normal weight children, which is consistent with
existing research (Le Chatelier et al., 2013; Gao et al., 2017; Menni et al., 2017; Scheithauer
et al., 2016). Such differences are attributed to the excessive intake of high fat foods by
obese children (Tilg & Moschen, 2014). A high-fat diet can reduce the expression of the
intestinal epithelial tight junction proteins occludin and ZO-1, affect the integrity of
the intestinal epithelium, cause changes in intestinal permeability and increase the level
of circulating lipopolysaccharide, which contribute to increase the incidence of obesity
(Cani et al., 2008). Beta diversity is an index reflecting the heterogeneity of gut microbiota
between samples in each group. A higher beta diversity is indicative of larger compositional
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differences in the gut microbiota between samples in a certain group (Liu et al., 2017). We
used unweighted UniFrac analysis to compare the similarity and heterogeneity among gut
microbial communities and identified an apparent clustering pattern in the normal weight
group and the obese group. The normal weight group and the obese group were distinct
from each other in terms of gut microbiota composition, it showed that the structure of gut
microbiota changed significantly with body weight, and these changes may be associated
with the occurrence and development of obesity.

In the gut of healthy humans, intestinal microorganisms can be divided into six
phyla: Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria and
Verrucomicrobia (Eckburg et al., 2005; Lozupone et al., 2012), among which Firmicutes
and Bacteroidetes accounted for more than 90% (Mariat et al., 2009). We also found that
the top 6 phyla of gutmicrobiota in childrenwere Bacteroidetes, Firmicutes, Proteobacteria,
Fusobacteria, Verrucomicrobia and Actinobacteria, among which Firmicutes and
Bacteroidetes accounted for approximately 90%. Research regarding the changes in
Bacteroidetes and Firmicutes in gut microbiota is not settled. Some studies found that
Bacteroidetes in obese children decreased while Firmicutes increased (Rahat-Rozenbloom
et al., 2014; Turnbaugh et al., 2008; Patrone et al., 2016), while others revealed that the
number of both Bacteroidetes and Firmicutes in obese children increased (Ismail et al.,
2011). This study found that compared with the normal weight group, the number of
Bacteroidetes in the obese group was significantly reduced, which was consistent with the
results of Ley et al. (Krajmalnik-Brown et al., 2012; Ley et al., 2006; Turnbaugh et al., 2008).
In the healthy gut, Bacteroidetes plays an essential role in degraded plant polysaccharides
that cannot be absorbed in the human body and participating in the nutrition metabolism
of the human body together with other bacteria. A long-term high-fat diet will reduce the
number of Bacteroidetes, affect the absorption of polysaccharides and proteins, and hence
result in obesity (Murphy et al., 2010). In contrast, this study found that the number of
Firmicutes did not change significantly. Finucane et al. also found no difference between
obese versus lean individuals in their relative abundance of Firmicutes (Finucane et al.,
2014). This can be explained by the differences in ethnic groups, diet and lifestyle of
the subjects (De Filippo et al., 2010; Zhang et al., 2013; Matsuyama et al., 2019; Wu et al.,
2011; Bai, Hu & Briner, 2019). Additionally, the ratio of Firmicutes to Bacteroidetes (F/B)
is often regarded as a marker of obesity in related studies; especially the F/B value in
obese animals is higher than normal weight, but this result does not apply to the study
of the human body (Finucane et al., 2014; Ley et al., 2005). This study found that the F/B
value was significantly different among different individuals, indicating that not all obese
individuals had significantly increased F/B values, and the F/B ratio between the two groups
had no statistical difference, which confirmed other relevant reports (Karlsson et al., 2012;
Schwiertz et al., 2010). However, studies on the gut microbiota of obese children in the
Antwerp region of Belgium and the Kazak region of Xinjiang found that the F/B ratio
increased (Bervoets et al., 2013; Xu et al., 2012). To sum up, currently, there are ambiguities
in the relationship between the changes in the F/B ratio and the incidence of obesity.
Research conclusions on this aspect are not consistent all over the world, mainly because
the effect of gut microbiota on obesity is far more complicated than the imbalance or
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interaction of two microbial phyla. Therefore, whether it is appropriate to simply use the
F/B ratio as a marker of obesity remains to be discussed. More detailed research is needed
to evaluate the relationship between the F/B ratio and obesity.

To investigate the relationship between gut microbiome functions and obesity, we
predicted the potential metagenomes with PICRUSt. The inferred gene families were
annotated and combined with level 1 to level 3 pathways. After analyzing the predicted
gene copy number of gut microbiota in different groups, we found that the relative
abundance of gut microbiota in obese children changed, and their functions also changed
correspondingly. The overall trend of predicted gene copy number in the Level 1to Level
3 was lower than that in the normal weight group. Unfortunately, these changes were not
statistically significant. A larger sample size will help to carry out in-depth research on this
aspect.

To further study the difference in gut microbiota in children with different body weights,
LEfSe analysis based on the OUT level was conducted to screen key biomarker species. At
the genus level, significant differences existed in the composition of some microorganisms
between the normal weight group and the obese group. LDA difference analysis of intestinal
microflora in the two groupswas conducted to compare strainswith LDA scores greater than
2. The results showed that the genera Oscillospira, Ruminococcus, Prevotella, Adlercreutzia,
Sporobacter, Bifidobacterium, Clostridium,Desulfovibrio, Bilophila, Christensenella, Alistipes,
Anaerotruncus, Eubacterium, Holdemania, Oxalobacter, Defluviitalea, and Collinsella were
significantly higher in the gut microbiome of the normal weight group. The genera
Turicibacter, Campylobacter, Actinobacillus, Aggregatibacter, SMB53, Rothia, Granulicatella,
Streptococcus, Veillonella,Megamonas, Fusobacterium, Phascolarctobacterium,Haemophilus,
Lachnospira, and Sutterella were enriched in the obese group. A recent study from Canada
discovered that the abundance of Oscillospira, which is closely related to the decline
of childhood obesity, increased in the infant’s gut microbiota three months after birth or
when the expectantmother was in contact with pet animals (Tun et al., 2017). Sclerenchyma
contains a large number of bacteria with fermentation functions, such as Ruminococcus,
which can decompose food fibers that cannot be digested by the human body into
absorbable short-chain fatty acids (acetic acid, propionic acid, butyric acid, lactic acid,
etc.) and increase energy intake through intestinal absorption (Turnbaugh et al., 2006).
Moreover, the short-chain fatty acids produced by fermentation can also act on the G
protein-coupled receptors 41 and 43 to promote intestinal endocrine cells (L cells and
I cells) to synthesize and secrete peptide YY, PYY and glucagon-like peptide-1 (GLP-1),
slow intestinal peristalsis and promote sugar-induced insulin secretion, eventually leading
to energy concentration and fat accumulation (Duca, Sakar & Covasa, 2013). Cani et
al. (2007) showed that a high-fat diet led to a decrease in the number of Eubacterium,
Clostridium and Bifidobacterium and simultaneously caused inflammation, obesity and
insulin resistance. Hao et al. analyzed the bacterial content in feces of obese people in
China. The results showed that compared with normal weight people, the number of
Bifidobacterium in obese people had a decreasing trend (Zuo et al., 2011). Recent studies
have reached the same conclusion (Gao et al., 2017). Compared with the control group,
Wang et al. found that in a high-fat diet group, the weights of SD rats increased with the
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numbers of Lactobacillus and Bifidobacterium in the intestinal tract dropped significantly,
while the numbers of Bacteroides and Clostridium showed an upward trend, especially
Clostridium (Wang et al., 2013; Bao et al., 2012). Clostridium can upregulate the expression
of glucose transporter 2 in the jejunal mucosa and the expression of lipoyltransferase
in the ileal mucosa, which can lead to an increase in the absorption of glucose and fats
(Woting et al., 2014). Some studies also showed that Clostridium was negatively correlated
with fasting blood glucose, HbA1c and insulin levels (Karlsson et al., 2013b). Gao et al.
documented that the abundance of Fusobacterium was significantly higher in obese people
(Gao et al., 2017). A study in 2014 showed that compared with plant foods (e.g., fruits
and vegetables), high-fat animal foods (e.g., meat, eggs and milk) had a greater impact on
gut microbiota. In the intestinal tracts of people that eat animal foods, bacteria that were
resistant to cholate, such as Bilophila, grew significantly (David et al., 2014). Sutterella was
significantly high in the obese group in a study of the relationship of gut microbiota and
diarrhea, autism and eczema (Finegold, 2011; Lv et al., 2017). Some studies have noted that
Streptococcus is related to Crohn’s disease (CD), and Streptococcus is of great importance
in the inflammatory mucosal region of CD patients (Fyderek et al., 2009). Veillonella was
able to decompose glucose and lactic acid into short-chain fatty acids (Burger-van Paassen
et al., 2009). However, these short-chain fatty acids cannot synthesize mucoprotein but
can lead to the increased permeability of intestinal mucosa and facilitate the formation of
inflammation (Brown et al., 2011). Some researchers indicted that the species of Lachnospira
might be associated with type 2 diabetes (Kameyama & Itoii, 2014). However, there are few
reports on the relationship between Bilophila, Streptococcus, Veillonella, Lachnospira and
obesity, which warrants further research. In brief, our findings provide further support for
the fact that the increase and decrease of these key biomarker species are closely associated
with obesity. Our findings may also suggest potentially hazardous microorganisms. In the
future, studies carried on larger sample size will be conducive to illustrate the function of
gut microbiome composition in influencing the BMI.

Several limitations in our study should be considered. It was conducted in cross-section
and could not provide evidence of a causal effect between the gut microbiota and obesity.
With the small sample sizes, we cannot rule out the possibility of chances in our findings.
Thus, validation on a larger sample size is needed. High-throughput sequencing technology
requires high quality samples and the DNA concentration of whole genome in some sample
bacteria cannot reach amplification requirements. Subjects selected for this study only
represent the gut microbial composition of children in one specific region. In spite of the
inclusion and exclusion criteria, the results were still influenced by the factors of subjects
themselves, the individual differences among the subjects were apparent. Gut microbial
samples in this study were all from one certain point in time, but it is currently considered
that a long-term observation may be more valuable to study the dynamically changing gut
microbiota.

CONCLUSIONS
The gut microbiota composition of obese children is quite different from that of normal
weight people, and intestinal dysbiosis has a close relationship with the occurrence and
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development of obesity. However, there are still many inconsistencies at present, which
requires a large number of studies to verify the causality between specific intestinal bacterial
species and obesity, and the relevant mechanism needs to be explored more deeply and
accurately. On the other hand, as far as existing studies are concerned, an overwhelming
majority of experimental results are obtained from animal experiments, but there are few
studies on the mechanism and flora in the human body. Both gut microbiota and obesity
are affected by a variety of factors. It will be of far-reaching significance to expound on
their acting mechanism and incorporate multiple variables into long-term clinical studies
in a reasonable way. Upon diagnosis, gut microbiota is a therapeutic target of obesity. The
regulation of the composition of gut microbiota or the regulation of the production of gut
microbiota metabolites, including the transplant of host bacteria, the use of antibiotics,
biological bacterial agents, food and drug treatment, will bring new ideas to obesity
treatment, but we still need a large number of medical studies to support them.
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