	1 2	Title: Relative contribution of ecological and biological attributes in the fine-grain structure of ant-plant networks					
	3						
ĺ	4	Authors: Cecilia Díaz-Castelazo ¹ , Cristian A.drian Martínez-Adriano ^{1,2} , Wesley Dáttilo ³ , and					
•	5	Víctor Rico-Gray ⁴					
I	6						
I	7						
	8	Affiliations: ¹ Red de Interacciones Multitróficas, Instituto de Ecología, A.C., Xalapa, Veracruz					
	9	91070, México. ² Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Linares,					
1	LO	Nuevo León, México. ³ Red de Ecoetología, Instituto de Ecología, A.C. Xalapa, Veracruz 91070,					
1	11	México. ⁴ Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, México.					
1	12						
1	13	Corresponding author: Cecilia Díaz-CastelazoCarretera Antigua a Coatepec, No. 351, El Haya,					
 1	L4	Xalapa, 91070, Veracruz, México. <u>diazcastelazogm@gmail.com, cecilia.diaz@inecol.mx</u>	 Field	Code Ch	anged		
1	15		Field	Code Ch	anged		

16 Abstract

17	Background. Ecological communities of interacting species analyzed as complex networks have	
18	show <u>n</u> ed that species dependence on their counterparts is more complex than expected at random.	
19	As for other potentially mutualistic interactions, ant-plant networks mediated by extrafloral	
20	nectar show a nested (asymmetric) structure with a core of generalist species dominating the	
21	interaction pattern. Proposed factors structuring ecological networks include encounter	
22	probability (e.g. species abundances and habitat heterogeneity), behavior, phylogeny, and body	
23	size. While the importance of underlying factors that influence the structure of ant-plant networks	
24	have been separately explored, the simultaneous contribution of several biological and ecological	
25	attributes inherent to the species, guild or habitat level has not been addressed.	
26	Methods. Within For a tropical seasonal site we recorded (in 48 censuses) the frequency of	
27	pairwise ant-plant interactions mediated by extrafloral nectaries (EFN) at different habitats and	
28	studied the resultant network structure. We addressed for the first time the role of mechanistic	
29	versus neutral determinants at the 'fine-grain' structure (pairwise interactions) of ant-plant	
30	networks, studying the simultaneous contribution of several attributes of plant and ant species (i.e.	
31	EFN abundance and distribution, ant head length, behavioral dominance and invasive status), and	
32	habitat attributes (i.e. vegetation structure) in prevailing interactions as well as in overall network	
33	topology (community).	
34	Results. Our studied network was highly-nested and, non-modular, with core species having high	

Results. Our studied network was highly-nested and, non-modular, with core species having high species strengths (higher strength values for ants than plants) and low specialization; plants had higher dependences on ants than vice versa. We found that habitat heterogeneity in vegetation structure (open vs. shaded habitats) was the main factor explaining network and fine-grain structure, with no evidence of neutral (abundance) effects. Commented [MS1]: What's a tropical seasonal site?

39	Discussion. Core ant species are relevant to most plants species at the network, showing	 -	Commented [MS2]: In the network? OR at the network level?
40	adaptations to nectar consumption and deterrent behavior. Thus, larger ants interact with more	 -	Commented [MS3]: Dominant?
41	plants species, altogether-with higher dependence of plants on ants, suggestings potential biotic		
42	defense at a community scale. At our study site, spatiotemporal heterogeneity in the ant-plant		
43	interactions among habitats is so prevailing, that emerges at community level structural properties,		Commented [MS4]: Sentence is not clear – what emerges at the ommunity-level structural properties?
44	depicting the effect of abiotic factors in facultative mutualism. High frequency of morphologically	C	
45	diverse and temporarily-active EFNs atacross all habitats suggests phenotypic plasticity in plant		
46	strategies for biotic defense Frequent occurrence of morphologically diverse EFNs at all habitats	 -	Formatted: Highlight
47	suggests plasticity in plant strategies for biotic defense provided by ants. The robust survey of		
48	ecological interactions and their biological/ecological correlates that we addressed-We provides		
49	$insight_{\underline{s}} \xrightarrow{of-into} the interplay between adaptive-value traits and neutral effects in ecological$		
50	networks.		

52 Introduction

53 The interactions among species occurring inat a community have been recently studied recently with a complex network perspective, where interacting species (i.e. plants and animals) 54 are graphically represented as nodes and their feeding interactions as links (Bascompte et al., 55 56 2003). Such studies have paid important attention to network structure and its underlying factors, 57 both for mutualistic or antagonistic interactions. Unraveling how interactions among species are 58 structured in communities or ecosystems is crucial for understanding the ecological and 59 evolutionary processes that support ecosystem function and diversity (Herrera & Pellmyr, 2002); furthermore, understanding the architecture of species relationships may help predict how 60 61 ecosystems respond either to abiotic or human-derived changes (Bascompte, 2010). Ecological network studies have showed shown that interactions among species are 62 63 frequently asymmetric and species dependence on their counterparts is more complex than expected at random (Bascompte, Jordano & Olesen, 2006; Guimarães et al., 2007). For networks 64 65 of mutualistic interactions a nonrandom <u>""nested</u>"² structure is frequently observed, where more specialist species tend to interact with specific subsets of those species interacting with the more 66 generalist species (Almeida-Neto et al., 2008; Bascompte, 2010); thus nested structure implies 67 that interactions occur asymmetrically in a group of generalist species that comprise most 68 69 interactions in the network (network core) (Dáttilo et al., 2013b) and a group of specialist species that maintain few interactions mostly or exclusively with generalist species. Such as a nested 70 architecture has been found to increase network robustness against loss of species (Memmott et 71 72 al., 2004; Bascompte et al., 2006) and to maximize the number of coexisting species supported 73 by these networks (Bastolla et al., 2009; Thébault & Fontaine, 2010). A nested pattern of links in mutualistic interaction networks could result from several ecological and evolutionary processes. 74 For instance, the complementarity and convergence of phenotypic traits between both sets of 75

Commented [MS5]: Although 2003 is not recent!

77 Jordano, 2007). AnoOther nonrandom structural pattern in ecological interaction networks is 'modularity or 78 79 compartmentalization' which is characterized by a group of species interacting more strongly 80 among themselves than with other species or subsets in the network (Bascompte, 2010); the 81 modular pattern is more frequently observed for networks of antagonistic interactions. Like nestedness in mutualistic networks, modularity is thought to increase the persistence of species in 82 antagonistic networks The contrasting structures of antagonistic and mutualistic networks are the 83 84 very ones that also increase the persistence of species in each network type, which is the driving 85 force of network architecture (Thébault & Fontaine, 2010). Proposed mechanisms affecting overall network structure are diverse, including habitat 86 87 heterogeneity constraints (Pimm & Lawton, 1980; López-Carretero et al., 2014), phylogeny (Rezende et al., 2007; Cagnolo, Salvo & Valladares, 2011), body size (Cohen et al., 2005; 88 89 Rezende, Bascompte & Jordano, 2007; Chamberlain & Holland, 2009;), and encounter probability based on natural abundance of species (Vázquez, Chacoff & Cagnolo, 2009; 90 Blüthgen, 2010; Dáttilo et al., 2014a), or variation in spatiotemporal co-occurrence (Rico-Gray et 91 al., 2012; Sánchez-Galván et al., 2012; Díaz-Castelazo et al., 2013; Junker et al., 2013; López-92 93 Carretero et al., 2014). Environmental changes may alter network structure and thus, favor evolutionary responses in opposing directions for different species; the reorganization of network 94 structure because of the indirect effects of coevolution may explain why and how mutualisms 95 96 persist amid the turnover of species and interactions across space and time (Guimarães et al., 97 2017). Several aggregate network properties such as nestedness, connectance (the proportion of 98

interacting species (Thompson, 2005; Stang et al., 2006; Stang, 2007; Rezende, Bascompte &

76

realized interactions from all the ones possible given the number of species), and interaction

asymmetry (i.e. asymmetry of dependence of plants on animals and vice versa) may also emerge
due to properties inherent to communities. These causes include the different abundances of
species, community sampling biases (that affect the detectability of some interactions), and the
spatio-temporal overlap of species (i.e. co-occurrence) (Vázquez et al., 2007, 2009; Blüthgen et
al., 2008; Vázquez et al., 2009).

Although relative species abundance (Vázquez et al., 2009; Dáttilo et al., 2014a) and
spatio-temporal overlap -considered as 'neutral' causes of network structure- could explain
overall network structure, they fall short of predicting the frequency of pairwise interactions.
Indeed, the frequency of interactions occurring for any given pair of species within the network
can vary <u>significantlyimportantly</u> even if the overall network topology remains the same
(Vázquez et al., 2005, 2007, 2009; Díaz-Castelazo et al., 2010; Dáttilo et al., 2014d; SánchezGalván et al., 2012).;

112 Tthe pattern and frequency of pairwise interactions is what we refer to here as, the 'fine-113 grain' structure of the network, and is relevant since it could potentially evidence indicate convergence or complementarity between species (Thomson, 2005; Guimarães, Jordano & 114 115 Thompson, 2011). Thus, a current challenge in ecological network studies is to infer which 116 processes are involved in the structuring the fine-scale patterns of interaction networks and how 117 these may change over time (Ramos-Robles et al., 2016). Temporal changes in network structure and species composition may occur because of seasonal variability in weather (Rico-Gray et al., 118 2012), food abundance (Carnicer, Jordano & Melián, 2009; López-Carretero et al., 2014; Ramos-119 120 Robles, Andresen & Díaz-Castelazo et al., 2016), or plant traits (López-Carretero et al., 2016). 121 Progress in understanding the determinants of network patterns requires datasets with detailed information of natural history such as spatial or temporal variation, morphological, behavioral, or 122 life-history traits, which explain interspecific differences observed between species in the number 123

124	and strength of interactions (Stang et al., 2006; Carnicer, Jordano & Melian, 2009; Junker et al.,
125	2013; López-Carretero et al., 2016).
126	The study of ant-plant interactions at a community level, has also been approached with the
127	theoretical/analytical framework of ecological networks (Chamberlain & Holland, 2009; Díaz-
128	Castelazo et al., 2010; Dáttilo et al., 2013a; Fagundes et al., 2017). These ant-plant interactions
129	are mediated by several plant rewards for ants, such as extrafloral nectar, food bodies, fleshy
130	diaspores, or plant domatia. At a community-level, plants providing good-quality extrafloral
131	nectar are highly attractive to ants and accumulate more interactions with aggressive and
132	territorial ant species (Blüthgen et al., 2004; Dáttilo et al., 2014c), but more importantly, ant
133	visits may render reduced herbivory damage (Oliveira et al., 1999; Cuautle & Rico-Gray, 2003;
134	Fagundes et al., 2017). Plenty vVariation in EFN attributes exist, including nectar volume, the
135	amount of secreted sugar, variable gland size and morphology, position of EFNs within plant
136	organs and differential attractiveness to ant foragers. Many of these attributes show phenotypic
137	plasticity or context-dependency (Koptur, 1992; Rudgers, 2004; Wäckers & Bonifay, 2004). In
138	this context, plant investment in nectar production and nectar quality is aare very important
139	factors modifying the benefit received by plants through biotic defense, and fitness-related
140	outcomes of the interaction (Rudgers & Gardner, 2004; Holland, Chamberlain & Horn, 2009).
141	Ant-plant networks, including potentially mutualistic interactions ('potentially', because
142	benefits were have been assessed only for a few interactions, see: Horvitz & Schemske, 1984;
143	Rico-Gray et al., 1989; Oliveira et al., 1999; Cuautle & Rico-Gray, 2003; Cuautle, Rico-Gray &
144	Díaz-Castelazo, 2005; Rico-Gray & Oliveira, 2007), have been recently addressed focusing on
145	theirits spatio-temporal variation (Díaz-Castelazo et al., 2010; Sánchez-Galván et al., 2012; Díaz-
146	Castelazo et al., 2013; Dáttilo et al., 2013b, 2014b) and/or determining biotic/abiotic factors.
147	Among the latter, temperature and precipitation (Rico-Gray et al., 2012), soil pH (Dáttilo et al.,

Commented [MS6]: Sentence needs re-writing. Turn it around. Network approach has been used to...

148	2013a), and the temporal variation in the percentage of plants with active extrafloral nectaries	
149	that mediate the interaction (Lange, Dáttilo & Del-Claro, 2013), have important effects on the	
150	structure (i.e. nestedness, specialization) of ant-plant networks mediated by extrafloral nectaries	
151	(EFNs)At a network_level it has been suggested that the amount of extrafloral nectar secreted is	
152	not a factor determining network attributes (Dáttilo et al., 2013a), however, other community-	
153	level studies (not using a network approach) have proved that attributes of EFNs have important	
154	effects on frequency of ant-plant interactions or ant forager abundance (Rudgers & Gardner,	
155	2004).	
156	Some studies have shown that the variation in the abundance of ants among different types	
157	of vegetation, partially explains the network structure of mutualistic interactions, where \underline{by}	
158	abundant ant species usually interact with more plant species (Dáttilo et al., 2014b). Similarly,	
159	the abundance of plants bearing extrafloral nectaries (Lange, Dáttilo & Del-Claro, 2013) and	
160	plant size are important predictors of asymmetric (i.e. nested) interactions between plants and	
161	ants in ant-plant networks. Ant species attributes that may influence structure in ant-plant	
162	networks, is include the social recruitment behavior of ants, as well as its invasive potential. Once	Comm
163	a worker ant forager finds a profitable food source (i.e. EFnectar) it will (or not if it is a solitary	
164	forager) recruit nestmates using variable strategies (Dornhaus & Powell, 2010), such as group	
165	recruitment, tandem running, mass recruitment by pheromone trail, trunk trails, and team	
166	transport, etcwhich are highly variable depending on ant species/genus or ecological context;	
167	often, aggressive behavior of ants and numerical dominance are attributes that influence the	
168	recruitment and competition abilities (Parr & Gibb, 2010). Ant dominance hierarchy determined	
169	by ant behavior, also influences network structure since given that ant species found in the central	
170	core of the network are frequently competitively superior (i.e. showing massive recruitment and	
171	resource domination) compared with peripheral species with fewer interactions (Dáttilo et al.,	

Commented [MS7]: This setence is far too long. Break into two sentence,

172	2014c). Furthermore, invasive ant species, given their opportunism, recruitment behavior, and
173	numeric dominance (Ness & Bronstein, 2004; Lach & Hooper-Bui, 2010), could rapidly become
174	important components of the core of ant-plant networks even if they do not displace other ant
175	species (Díaz-Castelazo et al., 2010; Falcão et al., 2017).
176	While the importance of abiotic/biotic factors have been separately explored for ant-plant
177	networks,
178	contribution of biological attributes of species and ecological and habitat level attributes (i.e.
179	ecological correlates) in a facultative mutualistic ant-plant network, is addressed here for the first
180	time. Attributes of the species sets considered here are in accordance with the foraging theory
181	perspective required for a mechanistic understanding of ecological networks (Ings et al., 2009).
182	Our study system provides the opportunity to test simultaneously the effect of several ecological
183	and biological attributes of interacting species including morphology, behavior, and abundance as
184	well as their inter-habitat (spatial) variation on the overall and 'fine-grain' structure of a
185	quantitative mutualistic network. In particular we addressed the following questions: 1) Whatieh
186	is the network structure of this intensively-sampled ant-plant community mediated by extrafloral
187	nectaries?; 2) Which is the "fine-grain" structure emerging from the frequency (strength) of
188	pairwise interactions?; 3) Which is the position of species in the core/periphery structure of the
189	network?; and 4) Which is the relative contribution of biological or ecological correlates (ant,
190	plant or habitat attributes) in rendering the "fine-grain" and overall network structure?
191	

- 192 Materials & Methods
- 193 Study site and data collection
- 194 Field work was carried out at Centro de Investigaciones Costeras La Mancha (CICOLMA),
- located on the coast of the state of Veracruz, Mexico (19° 36' N, 96 ° 22' W; elevation <100 m).

196	The climate is warm and sub-humid with rainy season between June and September, a total
197	annual precipitation is ca. 1500 mm, and mean annual temperature is 22°-26°C. The major
198	vegetation types in the study area are tropical sub-deciduous forest, tropical deciduous forest,
199	coastal dune scrub, mangrove forest, freshwater marsh, and deciduous flood forest (Castillo-
200	Campos & Travieso-Bello, 2006). Changes in the abundance of associations between ants and
201	plants bearing extrafloral nectaries (EFNs) suggest that ant-plant interactions are strongly
202	influenced by climatic conditions as a result of marked seasonality (Díaz-Castelazo et al., 2004;
203	Rico-Gray & Oliveira, 2007). Marked seasonality at the study site (rainy, dry, and cold-front
204	seasons) influences primary productivity and have a strong effect in animal-plant interactions
205	(Rico-Gray 1993; Díaz-Castelazo et al. 2004; Sánchez-Galván et al. 2012; López-Carretero et al.
206	2014; Ramos-Robles, Andresen & Díaz-Castelazo, 2016; Martínez-Adriano, 2017).
207	Biweekly observations were conducted between October 1998 and September 2000 (Rico-
208	Gray, 1993; Díaz-Castelazo et al., 2004), rendering resulting inan intensive sampling of 48
209	censuses along six 1km trails that sampled vegetation types representative of the plant
210	communities in the study region: 1) pioneer dune vegetation (PDV), 2) coastal dune scrub (CDS),
211	3) tropical sub-deciduous forest in young soil (TSF-Y), 4) tropical sub-deciduous forest in old
212	soil (TSF-O), 5) tropical deciduous flood forest with wetland (TDF-W), and 6) mangrove forest
213	ecotone (MFE) (nomenclature as in Martínez-Adriano et al., 2016; derived from Castillo-Campos
214	and Travieso-Bello, 2006, following methods from Rico-Gray, 1993 and Díaz-Castelazo et al.,
215	2004). Vegetation associations differ in their structural complexity provided partly by arboreal
216	plant cover and contrasting physiognomies occur between "open" and "shaded" habitats, with the
217	first three habitats being included in the former physiognomy the first three habitats (PDV, CDS,
218	and (TSF-Y) being included in the former physiognomy, and in the later the other three habitats
219	(TSF-O, TDF-W, and MFE) included in the latter (Díaz-Castelazo et al. 2004; López-Carretero et

220	al. 2014).; hHabitats 1, 2 and 3 are also different from 4, 5, and 6 in their floristic similarity of	
221	flowering plants (Chao-Jaccard Similarity Index, see Martínez-Adriano et al., 2016) and in the	
222	mean density of ants observed in honey baits placed in (Díaz-Castelazo et al., 2004). At these six	
223	vegetation types we recorded all occurrences of ants collecting liquids directly from all the plants	
224	at the transects (ant-plant interactions); we considered all plant life forms but only from those	
225	below 4 m in height, since no canopy censuses were performed. We also estimated the abundance	
226	of EFN-bearing plants through their line cover within each transect (Díaz-Castelazo et al., 2004	
227	or Sánchez-Galván et al., 2012 for details). On each visit at each transect we recorded: ant	
228	species, plant species, the plant organ where the extrafloral nectaries were located, and its	
229	distribution. Once an individual plant was marked as visited by ants, it was subsequently re-	
230	checked throughout the study; when doubt existed on the nectar source, EFN-secretion was	
231	confirmed with glucose reagent stripses (Clinistix, Bayer). We considered extrafloral nectar	
232	either produced by the surface of reproductive structures such as the spike, pedicel, bud, calyx, or	
233	fruit, or secreted by special structures on vegetative parts such as leaves, shoots, petioles, bracts,	
234	or stems. Ants were considered to be feeding on nectar when they were immobile, with	
235	mouthparts in contact with nectar secreting tissues, for periods of up to several minutes (Rico-	
236	Gray, 1993). For estimating the abundance of EFN-bearing plants we measured the linear cover	Commented [MS8]: Not clear? Percentage co
237	of each species along the trails or transects at each vegetation association (Díaz-Castelazo, et al.	
238	2004). Further information on the ant-plant interaction censuses showed at the present study	
239	(including seasonal variations of species and attributes) is detailed in Díaz-Castelazo, et al. 2004	
240	(i.e. Appendix 1, Figure 1).	Commented [MS9]: Not sure of this?
241		

242 Plant and ant attributes

243	Regarding the distribution of EFNs among plant organs, we used a general characterization
244	(Díaz-Castelazo et al., 2005) differentiating the EFNs which are glands circumscribed to
245	particular plant organs or whorls (at specific or modular locations) from the ones dispersed
246	among plant organs (i.e. secretory trichomes on leaves or surfaces of vegetative tissues). Díaz-
247	Castelazo et al. (2005) results raised the idea that indicated that gland distribution on plant organs
248	could follow an aggregated (i.e. circumscribed) location against compared to a widely dispersed
249	location <u>and, that this</u> could result in distinct ant visitor arrays (Díaz-Castelazo et al., 2004), in a
250	similar way that EF-nectar sources may differ from honeydew sources in their associated ant
251	assemblages (Blüthgen & Fiedler, 2004; Blüthgen et al., 2000). Circumscribed EFNs include:
252	elevated glands, hollow glands (vascularized), transformed glands (vascularized), capitated
253	trichomes (non-vascularized), and unicellular trichomes (non-vascularized). Dispersed EFNs
254	include: flattened glands, peltate trichomes, and scale-like trichomes (Díaz-Castelazo et al.,
255	2005).
255 256	2005). Attributes for plants include <u>d:</u> (1) the abundance of plants with extrafloral nectaries _a
256	Attributes for plants include <u>d</u> : (1) the abundance of plants with extrafloral nectaries _a
256 257	Attributes for plants include <u>d:</u> (1) the abundance of plants with extrafloral nectaries <u></u> conforming the interaction network (cover of these plant species along transects representative of
256 257 258	Attributes for plants include <u>d:</u> (1) the abundance of plants with extrafloral nectaries <u>a</u> conforming the interaction network (cover of these plant species along transects representative of vegetation associations); (2) species distribution in vegetation associations with distinct habitat
256 257 258 259	Attributes for plants include <u>d</u> : (1) the abundance of plants with extrafloral nectaries <u></u> conforming the interaction network (cover of these plant species along transects representative of vegetation associations); (2) species distribution in vegetation associations with distinct habitat structure (open or shaded habitats): it is an important factor influencing the richness and
256 257 258 259 260	Attributes for plants include <u>d</u> : (1) the abundance of plants with extrafloral nectaries <u></u> conforming the interaction network (cover of these plant species along transects representative of vegetation associations); (2) species distribution in vegetation associations with distinct habitat structure (open or shaded habitats): it is an important factor influencing the richness and abundance of ant plant interactions (Diaz-Castelazo et al., 2004), interactions with other insects
256 257 258 259 260 261	Attributes for plants include <u>d</u> : (1) the abundance of plants with extrafloral nectaries <u></u> . conforming the interaction network (cover of these plant species along transects representative of vegetation associations); (2) species distribution in vegetation associations with distinct habitat structure (open or shaded habitats): it is an important factor influencing the richness and abundance of ant plant interactions (Díaz-Castelazo et al., 2004), interactions with other insects (López-Carretero et al., 2014), and the spatio-temporal variation of interactions given the
256 257 258 259 260 261 262	Attributes for plants include <u>d</u> : (1) the abundance of plants with extrafloral nectaries <u></u> . conforming the interaction network (cover of these plant species along transects representative of vegetation associations); (2) species distribution in vegetation associations with distinct habitat structure (open or shaded habitats): it is an important factor influencing the richness and abundance of ant plant interactions (Díaz Castelazo et al., 2004), interactions with other insects (López Carretero et al., 2014), and the spatio-temporal variation of interactions given the seasonality of those communities (Rico Gray, 1993; Rico Gray & Oliveira, 2007; Díaz-Castelazo

Commented [MS10]: Start new sentence here. This is similar to...

266	defense of valuable plant organs compared to vegetative ones (Rico-Gray, 1993; Wäckers &	
267	Bonifay, 2004; Holland, Chamberlain & Horn, 2009).	
268	Attributes for ants included the following: (1) behavioral dominance, found to be one of	Formatted: Space After: 0 pt
269	the most important features in mutualistic ant plant interactions given that competitive species	
270	may exclude submissive ones (Andersen, 2000; Ness & Bronstein, 2004; Lach & Hooper-Bui,	
271	2010; Dáttilo et al., 2014c); the behavioral dominance scores we used were based oin the	
272	classification of ant functional groups proposed by Andersen (1995; 2000) in relation to plant	
273	life-forms, stress, and disturbance $\frac{1}{2}$ (2) head length, a robust estimator of body mass in ant	
274	species (Kaspari & Weiser, 1999), which in turn have been shown to be positively correlated with	
275	important network-level properties such as the number of plant species ants interact with (degree)	
276	in ant-plant networks (Chamberlain & Holland, 2009);and_(3) species status as invasive., since	
277	some of these species may outnumber their native counterparts in the study site (Díaz-Castelazo	
278	et al., 2010) or disrupt mutualistic interactions (Schultz & McGlynn, 2000; Holway et al., 2002);	
279	Ithe invasive status that we used was based in Holway et al. (2002), with adjustments to include	
280	'tramp' species status as well (McGlynn, 1999; Lach & Hooper-Bui, 2010; Falcão et al., 2017)	
281	<u>(Table X2).</u>	
282	We provide further detail on species attribute selection at the present study We selected	Commented [MS11]: Integrate the info in 282-304 into the above paragraphs
283	these attributes because as follows. Cover and distribution of EFN-bearing plant species (among	
284	habitats with different vegetation structures) -they give us relevant information about (1) the	
285	cover of plant species along transects representative of the vegetation associations, (2) habitat	
286	structure is an important factor influencing the richness and abundance of ant-plant interactions	
287	(Díaz-Castelazo et al., 2004), interactions with other insects (López-Carretero et al., 2014), and	
288	the spatio-temporal variations due to seasonality (Rico-Gray, 1993; Rico-Gray & Oliveira, 2007;	
289	Díaz-Castelazo et al., 2010). Similarly, , and (3) the differential distribution of EFNs among plant	
1	12	

290	organs could favor different ant assemblages (Majer, 1993; Blüthgen & Fiedler, 2004); this	
291	attribute-is essential for the optimal defense of valuable reproductive plant organs compared to	
292	vegetative ones (Rico-Gray, 1993; Wäckers & Bonifay, 2004; Holland, Chamberlain & Horn,	
293	2009). WhitWith regard to ant attributes, the (1) behavioral dominance is a relevant feature in	
294	mutualistic ant-plant interactions given that the competitive species may exclude submissive ones	
295	(Andersen, 2000; Ness & Bronstein, 2004; Lach & Hooper-Bui, 2010; Dáttilo et al., 2014c); , (2)	
296	head length has been shown to be positively correlated with important network level properties	
297	such as the "degree" of ant species, which its the number of plant species AQUI FALTA ALGO	
298	<u>EN EL DOCUMENTO ORIGINAL Y POR ESO LA ORACION NO SE ENTIENDE EL</u>	
299	ORIGINAL DICE " to be positively correlated with important network-level properties such as	
300	the number of plant species ants interact with (degree) each ant species interacts with in ant-plant	-
301	networks (Chamberlain & Holland, 2009).; regarding AND (3)the invasive status of ant species.	
302	this is a relevant attribute since many invasive species given their behavior or foraging strategies,	
303	may outnumber their native counterparts (Díaz-Castelazo et al., 2010) or even disrupt mutualistic	
304	interactions (Schultz & McGlynn 2000; Holway et al., 2002).	
305		
306	Data analysis	
307	The ant-plant network analyzed here consists of a quantitative species-species matrix given by	
308	the frequency of occurrence of each pairwise ant-plant interaction. Ecological and biological	
309	attributes of the species were of different kinds and considered as highly important in modulating	
310	the mutualistic interaction (Díaz-Castelazo et al., 2004; 2005).	
311	The pairwise interaction matrix here considered is a highly informative sub-web taken from	
312	Díaz-Castelazo et al. (2010), where we excluded those interactions that occurred at considerably	

very low frequencies (interactions recorded on less than three occasions from the whole 48

313

Formatted: Highlight

Commented [MS12]: Meaning? Not entirely sure what getting at here. More clarity in writing needed here.

314	censuses), in order to perform better multivariate analysis (NMDS), interpretation of biplot
315	ordinations, and adjustment of explanatory variables. This also reduced the probability of
316	considering a species with a single or very few interactions as a "specialist", when it was just
317	simply a very rare species. Further, removing rare interactions and helped to avoid the
318	overestimation of specialization, nestedness, and strength asymmetry (Blüthgen et al., 2008).
319	For this informative network we analyzed nestedness (NODF) (Nestedness based on
320	Overlap and Decreasing Fill) (Almeida-Neto et al., 2008) using ANINHADO (Guimarães &
321	Guimarães, 2006). This metric is very robust to at correctly detecting a-nestedness-pattern since it
322	is less sensitive to matrix size and shape (Almeida-Neto et al., 2008). Significance of the NODF
323	value for our network was obtained with ANINHADO after comparing it with 1000 simulations
324	using null model Ce (Guimarães & Guimarães, 2006), which corresponds to Null Model II of
325	Bascompte et al. (2003) and assumes that the probability of an interaction occurring is
326	proportional to the observed number of interactions of both plant and ant species (Bascompte et
327	al., 2003; Dáttilo et al., 2013b). We then estimated network topology or structural metrics
328	(connectance, dependence asymmetry, weighted nestedness, and niche overlap) using different
329	indicesexes included in the function "network-level" of the "bipartite" package (Dormann &
330	Gruber, 2009) in 'R'_(R Core Team, 2014).
331	In addition, we tested the existence of a modular structure at the network, estimating
332	modularity index (M) (range: 0-1) with simulated annealing optimization approach (SA)
333	(Guimerà & Amaral, 2005), based on Barber <u></u> 's modularity metric for bipartite networks (Q _{B)}
334	(Barber, 2007) with the software MODULAR (Marquitti et al., 2013). The statistical significance
335	of modularity (M) was calculated using Monte Carlo tests with 1000 randomizations (Guimerà,
336	Sales-Pardo & Amaral, 2004). High values of M indicate the occurrence of ants and plants in

337 cohesive subgroups that generate compartments or modules in which these species interact more 338 closely than with the other species in the network (Olesen et al., 2007). We calculated the core-periphery structure of the network and its component species (i.e. 339 which species constitute the cohesive core of generalists, and which low-degree species constitute 340 341 the periphery) with a function developed by Martínez-Adriano (2017) in R software based on the 342 formula proposed by Dáttilo, Guimarães & Izzo (2013), where the species with values equal or 343 larger than up close to 1 are considered as core components and species < 1 are considered 344 peripheral. For calculation of the "fine-grain" structure of the network we used the "species-level" 345 346 function (Dorman, 2011) in the "bipartite" package. The metrics calculated for this objective were "species strength" and "d-". , the first Species strength is defined as the sum of dependences 347 348 of the plants visited by this animal (or vice versa). It is a measure of the importance of this animal from the interaction service provided to the plants at the studied community (network); Tthus, 349 350 species strength is a quantitative extension of the metric "species degree" and provides information about the relevance of a species for their interacting counterpart, being thus a more 351 meaningful measure of network complexity (Bascompte, Jordano & Olesen, 2006). While, The 352 353 second metric, d' is the specialization of each species based on its discrimination from random 354 selection of partners (Blüthgen et al., 2008). In order to explore the among-species dissimilarities resulting in the interaction pattern of 355 the network, we generated the ordination of interaction frequencies with the multivariate 356 357 technique "Non-metric Multidimensional Scaling (NMDS)" (Quinn & Keough, 2002). This 358 method is specifically designed to graphically represent relationship between objects (i.e. species/sites) in a multidimensional space provided by non-metric dissimilarities among objects. 359 NMDS is one of the most effective methods for the ordination of ecological data and the 360

Commented [MS13]: ¿ necessary word

361	identification of underlying gradients, because it does not assume a linear relationship among the	
362	variables (Quinn & Keough, 2002). NMDS reduces the dimensionality of a matrix of among	
363	sample similarity coefficients, based on particular number of dimensions (Borg & Groenen,	
364	1997). We chose the Bray-Curtis dissimilarity coefficient to construct the similarity matrices	
365	because joint absences do not influence among sample similarity, and then we chose a two-	
366	dimension configuration. The fit of an NMDS ordination, known as "stress", is determined by	
367	how well the ordination preserved the actual sample dissimilarities, where values range from zero	
368	to one (values of 0.2 and below are valid configurations to be interpreted). Because NMDS	
369	analysis offers more than one solution, we carried out an iterative process to find the model with	
370	smallest stress value using the metaMDS function in Vegan package (Dixon, 2009) on R <u>Studio</u>	
371	software <u>(Ver. 3.5.1., 0.99.902).R Core Team, 2014).</u>	
372		
373	In order to explore the simultaneous relative contribution of several biological attributes of	
374	species, ecological and habitat level attributes on the interaction pattern (NMDS ordination), we	
375	fitted those ecological/biological factors and vectors using the envfit function from the "V+egan"	
376	package (Dixon, 2009) -on- <u>R software (Ver. 3.5.1., R Core Team, 2014).</u>	
377	<u>RStudio software (Ver. 0.99.902)'R software</u> '. This function fit the vectors (continuous	
378	variables) and factors (categorical variables) of the environmental variable to the NMDS	
379	ordination, providing statistical significance by comparing our real model of pairwise interactions	
380	with 1000 permutations of a given null model; the envfit function provides a measure of	
381	correlation (r) and a significance value based on the probability that 1000 random permutations	
382	of simulated (environmental) variables would have a better fit than the real variables (Oksanen,	
383	2009).	

384	To test if the frequency of ants was different when foraging in the different EFN	
385	morphological types we performed a χ^2_{L} test. To test if between-group floristic similarity	Formatted: Superscript
386	(Sorensen's floristic similarity index, Češka, 1966) -was higher than within group floristic	
387	similarity we performed one-way ANOVA contrasting open and shaded habitats. With this	
388	analysis we further confirm that open and shaded habitats differ in their vegetation structure and	
389	in turn, provide differential biotic and abiotic conditions for inhabitant species, presumably	
390	affecting the resultant network structure of ant-plant interactions. To explore if a relation with ant	
391	head length and species degree in the network (the number of plant species interacting with ants)	
392	existed, we performed a Spearman rank correlation (Quinn & Keough, 2002).	
393		
394	Results	
395	Network-level and fine-grain structure	
396	Our ant-plant network consisted of 31 EFN-bearing plant species and 19 ant forager species	
397	linked by 1302 quantitative interactions (overall frequency of interactions) derived from 157	
398	species associations (links among species). The general topology shows a highly and	
399	significantly nested network ($NODF = 49.13$, $NODF$ (Ce) = 34.93, P (Ce) < 0.001); although five	
400	modules were detected \underline{inet} the modularity analysis (Barber's Q_B) the network was not	
401	significantly modular ($M= 0.288, P = 0.55$), thus no true compartments exist at <u>in</u> the network	
402	(Fig. 1). Network-level indexes were: connectance = 0.267 , dependence asymmetry = 0.669	
403	(implying that plants depend more on ants than the opposite), niche overlap among ant species =	
404	0.223, niche overlap among plant species = 0.425 , and weighted nestedness = 0.554 (implying	
405	that is network still nested when considering the frequency of pair-wise interactions). Four plant	Commented [MS14]: Needs a re-write – doesn't make sense Maybe:
406	species (Fig. 1, Table 1) and three ant species (Fig. 1, Table 2) constituted the central core of this	implying that the network is still nested even when the frequency of pair-wise interactions is taken into account
407	network, the remaining species were peripheral; plant core species were: Cordia spinescens,	

408	Cedrela odorata, Callicarpa acuminata, and Crotalaria incana, while ant core species were:	
409	Camponotus planatus, Camponotus mucronatus, and Camponotus atriceps.	
410	Regarding to 'species strength' mMost plant species exhibited low strength values (below	
411	1), thus and therefore had little having a modest relevance for to the ant community. However,	
412	some plant species, namely -Cordia spinescens, Cedrela odorata, Callicarpa acuminata, and	
413	Turnera ulmifolia, did havestand_out with higher strength values (around 2), indicating their	
414	which are Cordia spinescens, Cedrela odorata, Callicarpa acuminata, and Turnera ulmifolia.	
415	These plant species are the most importantce as EF_nectar sources for ant foragers at a	
416	community level.	
417	Species-level specialization values (d', considered as a measure of selectiveness) for plant	
418	species were also generally low (around 0.1), and only those plant species with few (or peculiar	
419	atypical) associated ant species (ant species with interaction patterns atypical or different from	
420	the rest) showed values above 0.3. These findings are in accordance to the generalized, highly	
421	nested structure of this network.	
422	In contrast with plants, some ant species had higher strength values. Seven ant species had	
423	values above 1, and two core ant species, Camponotus planatus and C. mucronatus, have strength	
424	values over 6, being thus very important visitors $\frac{1}{2} \text{EFN}$ -bearing plants.	
425		
426	Relative contribution of attributes to the assemblage of pair-wise interactions	
427	Attributes of species are summarized as follows: plant species with circumscribed nectaries	Commented [MS15]: I'd prefer aggregated if possible to be consistent throughout – more intuitive word for readers. If required
428	produced larger mean nectar volumes (2.06 μ l), than those plants with dispersed nectaries (0.53	to stay as technical term – that's fine.
429	μ l). However, the <u>number</u> amount of active glands in a plant individual may be higher for	
430	dispersed nectaries, since these glands are structurally simpler than those of circumscribed	
431	nectaries. The frequency of ants foraging on the different EFN morphological types (Díaz-	

432	Castelazo et al. 2005; Díaz-Castelazo et al. 2017) were different (χ^2_8 = 1091.7, <i>P</i> <0.01).	
433	Moreover, the range of total associated ant species visiting plants considered within each type of	
434	nectary is different among EFN distribution types. Moreover, T the range of visits to	
435	circumscribed nectaries (9-17 ant species) was between nine and 17 ant species, while it was	
436	between 20 and 23 ant species lower than the number of ant species visiting for dispersed	Commented [MS16]: Many places throughout where writing could be shortened like this.
437	nectaries (20-23 ant species). Thus, similar to gland morphology, EFN distribution in plant	
438	organs may influence visitation rates but mostly by <u>attracting</u> a distinct composition of associated	
439	ant species.	
440	We considered the two main vegetation structural associations ("open" vs. "shaded	
441	habitats") to be natural groups, because floristic similarity between them is considerably $\underline{v}e$ lower	
442	(15.80) and significantly different ($F_{1,13} = 15.79$, $P < 0.01$) to that occurring within each group	
443	(36.06 and 41.28 for open and shaded habitats, respectively). See Methods for information on the	
444	vegetation associations, either of "open or shaded habitats".	
445	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS)	Commented [MS17]: This isnt a result as such – and its in the figure legend. No need to repeat here
445	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS)	
445 446	The stress value of the multivariate Non-Metrie Multidimensional Scaling (NMDS)	
445 446 447	The stress value of the multivariate Non-Metrie Multidimensional Sealing (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), <u>and</u> being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented	
445 446 447 448	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), <u>and</u> being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented ant-plant assemblage dissimilarity. This configuration having as well very low residuals (max res	
445 446 447 448 449	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), and being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented ant-plant assemblage dissimilarity. This configuration having as well very low residuals (max res = 0.0004) indicating a good concordance between the calculated dissimilarities and the distances	
445 446 447 448 449 450	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), <u>and</u> being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented ant-plant assemblage dissimilarity. This configuration having as well very low residuals (max res = 0.0004) indicating a good concordance between the calculated dissimilarities and the distances among objects.	
445 446 447 448 449 450 451	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), <u>and</u> being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented ant-plant assemblage dissimilarity. This configuration having as well very low residuals (max res = 0.0004) indicating a good concordance between the calculated dissimilarities and the distances among objects. In Fig. 2, axis NMDS1 is related to the contribution or importance of plant species to the	
445 446 447 448 449 450 451 452	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), <u>and</u> being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented ant-plant assemblage dissimilarity. This configuration having as well very low residuals (max res = 0.0004) indicating a good concordance between the calculated dissimilarities and the distances among objects. In Fig. 2, axis NMDS1 is related to the contribution or importance of plant species to the ant forager community. Those plant species that are ordered at either low (negative) or higher	
445 446 447 448 449 450 451 452 453	The stress value of the multivariate Non-Metric Multidimensional Scaling (NMDS) obtained at the fourth run of the iterative process was the lowest (0.17), <u>and</u> being an acceptable value suggesting that the NMDS two-dimensional solution of the ordination suitably represented ant-plant assemblage dissimilarity. This configuration having as well very low residuals (max res = 0.0004) indicating a good concordance between the calculated dissimilarities and the distances among objects. In Fig. 2, axis NMDS1 is related to the contribution or importance of plant species to the ant forager community. Those plant species that are ordered at either low (negative) or higher (positive) values of the axis NMDS1, have low species strength values; in contrast, those plant	

456	community analysis (Fig. 2). Axis NMDS2 divides pPlant species are primarily separated	
457	according to the main habitats where they occur (Fig. 2). The vegetation associations with	
458	differential structure (open vs. shaded habitats) were the variables that determined the variation in	
459	the frequency of ant-plant pairwise interactions mediated by EFNs ($r^2 = 0.24$, $P = 0.005$). On the	
460	uppersuperior part of the ordination, tThe plant species of within shaded habitats (low light) with	
461	modest light incidence-follow a 'humidity' gradient from the most humid forests to the drier	
462	habitats: the higher values for NMDS2 show (in decreasing order) plants (and associated ants)	
463	from the MFE, followed TSF-W, and TSF-O <u>(Fig. 2)</u> . At the bottom of the bi-plot <u>NMDS2</u> the	
464	plants and ants occurring mostly in open vegetation types with high light incidence: from ezero to	
465	the lowest values of NMDS2, the interacting species are arranged through TSF-Y, CDS, and	
466	PDV.	
467	The results of fitting the biological/ecological variables in the NMDS ordination showed	
468	that vegetation associations with differential structure (open vs. shaded habitats) were the	
469	variables that determined the variation in the frequency of ant plant pairwise interactions	
1		
470	mediated by EFNs (r ² = 0.24, P = 0.005). Two contrasting groups were formed along NMDS2,	Commented [MS19]: Repetitive of above
470 471	mediated by EFNs ($r^2 = 0.24$, $P = 0.005$). Two contrasting groups were formed along NMDS2,	Commented [MS19]: Repetitive of above
		Commented [MS19]: Repetitive of above
471	which were plant species (and their associated ant forager species) located either in open or	Commented [MS19]: Repetitive of above
471 472	which were plant species (and their associated ant forager species) located either in open or shaded habitats (Fig. 2). Neither the distribution of EFNs on plant organs, nor the abundance of	Commented [MS19]: Repetitive of above
471 472 473	which were plant species (and their associated ant forager species) located either in open or shaded habitats (Fig. 2). Neither the distribution of EFNs on plant organs, nor the abundance of extrafloral-nectary bearing plants at each vegetation type, had a significant contribution to the	Commented [MS19]: Repetitive of above
471 472 473 474	which were plant species (and their associated ant forager species) located either in open or shaded habitats (Fig. 2). Neither the distribution of EFNs on plant organs, nor the abundance of extrafloral-nectary bearing plants at each vegetation type, had a significant contribution to the variation in the observed ant-plant association patterns.	Commented [MS19]: Repetitive of above
471 472 473 474 475	which were plant species (and their associated ant forager species) located either in open or shaded habitats (Fig. 2). Neither the distribution of EFNs on plant organs, nor the abundance of extrafloral-nectary bearing plants at each vegetation type, had a significant contribution to the variation in the observed ant-plant association patterns. None of the variables of ant species (behavioral dominance, invasive status or head length)	Commented [MS19]: Repetitive of above
471 472 473 474 475 476	which were plant species (and their associated ant forager species) located either in open or shaded habitats (Fig. 2). Neither the distribution of EFNs on plant organs, nor the abundance of extrafloral-nectary bearing plants at each vegetation type, had a significant contribution to the variation in the observed ant-plant association patterns. None of the variables of ant species (behavioral dominance, invasive status or head length) were significant to explain the network's fine-grained structure. We found, however, a significant	Commented [MS19]: Repetitive of above
471 472 473 474 475 476 477	which were plant species (and their associated ant forager species) located either in open or shaded habitats (Fig. 2). Neither the distribution of EFNs on plant organs, nor the abundance of extrafloral-nectary bearing plants at each vegetation type, had a significant contribution to the variation in the observed ant-plant association patterns. None of the variables of ant species (behavioral dominance, invasive status or head length) were significant to explain the network's fine-grained structure. We found, however, a significant positive correlation between ant head length and species degree (the number of plant species	Commented [MS19]: Repetitive of above

480	Wasmannia auropunctata, Tetramorium spinosum and Paratrechina longicornis) separate from
481	the rest of ant species at the interaction displayin the ordination, suggesting differenttial
482	associations from the rest of the community (Fig. 2). However, when all ant attributes are
483	simultaneously considered, they do not provide significant contribution to the variation in the
484	observed ant-plant association pattern.
485	
486	Discussion
487	Network-level and fine-grain network structure
488	Our studied network, comprising 31 plant and 19 ant species withattached by 157
489	interaction links, has a general nested structure, thus is highly nested or is asymmetric in its
490	specialization patterns (see also Díaz-Castelazo et al., 2010; Díaz-Castelazo et al., 2013) <u>±</u> <u>#The</u>
491	network and shows no modular structure, as occurs commonly in theoretical mutualistic
492	networks, especially for facultative non-symbiotic interactions (Guimarães et al., 2007). A
493	relatively small core of <u>A Ffew</u> species with very high interaction frequencies exists within our
494	network (eight plant and four ant species), referred to as 'super-generalists'. Super-generalist
495	species are fundamental components-forof the maintenance of convergence at the community-
496	level within highly diversified mutualistic assemblages (Guimarães, Jordano & Thompson,
497	2011). In our study, super-generalist species may favor trait convergence: core ant species belong
498	to the same functional group (Subordinate Camponotini) and share adaptations foraginge on
499	plant-derived liquids sources such as EFnectar (Davidson, Cook & Snelling, 2004). Similarly,
500	core plants species show mostly "dispersed" EFNs, a gland distribution that may favor a more
501	diverse array of associated ant visitors.
502	In our study system, the fact that the plant 'guild' shows higher dependence asymmetry

values than ants, implying that $\frac{d}{dt}$ the studied community plants 'depend' more on ants as a

504	guild than the opposite. This, is also reinforced by the higher species-level strength values of ants
505	than those of plants. This asymmetry could reflect a higher temporal turnover of plants at the
506	network -probably caused by seasonality or disturbance versus higher ant resilience- probably
507	derived from facultative foraging of ants. Three of the four plant species constituting the core of
508	this network had high strength values (Cordia spinescens, Cedrela odorata, and Callicarpa
509	acuminata), suggesting that the most connected plant species are important resources for the ants
510	at a community level. However, the relative importance of specific plant species for this ant
511	community do not seem related to specific biological attributes or neutral effects, since neither
512	mean nectar volumes secreted by each plant species (Díaz-Castelazo et al., 2005; Díaz-Castelazo
513	et al., 2017), nor gland distribution or mere plant abundance explained core composition and
514	species strength of plant species. Instead, this pattern seems to emerge from degree and
515	interaction frequencies, possiblye driven by other higher-scale factors (i.e. habitat structure,
516	species co-occurrence, abiotic variables, etc.).
517	The rest of the plant species showed very low strength values having thus a modest low
518	importance relevance for the ant community. Species-level specialization values (d') for plant
519	species were also generally low (around 0.1), and only those plant species with few (or peculiar)
520	associated ant species (with an atypical interaction pattern) exhibited values above 0.3. These
521	findings are in accordance to the generalized, highly nested structure of this network. For
522	potentially mutualistic networks such as this and for-facultative ant-plant interactions-such as the
523	ones mediated by extrafloral nectar, low specialization or selectiveness for each species (and the
524	whole network) is the general trend (Bascompte et al., 2003; Vázquez & Aizen, 2004; Díaz-
525	Castelazo et al., 2010).
526	In contrast with plants (which have very low species strength values), the ant species that

527 constituting the core of this network (*Camponotus planatus, Camponotus mucronatus*, and

Commented [MS20]: Remove values - this is starting to sound like a repeat of the results rather than a discussion Formatted: Not Highlight

528	Camponotus atriceps) had species strength values above 1; C. planatus and C. mucronatus have	
529	strength values above 6, being thus remarkably important visitors of EFN-bearing plants. Species	Commented [MS21]: Remove values
530	belonging to this genus are frequent visitors of EFNs (Díaz-Castelazo et al., 2004; Díaz-	
531	Castelazo et al., 2013) and solitary leaf foragers that cover high foliar areas. Camponotus species	
532	have high ability toof rapidly up take uping nectar given their proventricular adaptations that	
533	allow passive damming of sugary liquids, large crop capacities, and seeping canals to nourish the	
534	midgut (Davidson, Cook & Snelling, 2004). Thus, this group of ants is highly adapted to forage	
535	in nectar and sugary liquids. Therefore, it is unsurprising that It is understandable that at in the	
536	our present study Camponotus species have high degree (links with plant species), high strength	
537	values, and low levels of specialization or selectiveness (d').; given that these ants are	
538	physiologically adapted to forage in all available extrafloral nectar sources, not having any	Commented [MS22]: repetitive
539	trophic restriction, they These species tend to be generalist visitors of EFN-bearing plants,	
540	although some other ecological aspects-,such as competitiveon ability of other ant species and	
541	resource attractiveness (Dáttilo et al., 2014c)- may differentiate visitation patterns of these core	
542	ant species. At Within our studied community the core ant species are relevant to most plants	
543	species at the network, thus the plant species depending more of ant species, and evident nectar	Commented [MS23]: ¿? Plant species are more dependent on the ant?
544	consumption adaptations and deterrent behavior of core ants, suggest potential biotic defense at a	
545	community scale.	Commented [MS24]: This sentence needs a re-write – doesnt make sense
546		
547	Relative attributes contributions of the attributes to the assemblage of pair-wise	Commented [MS25]: This section needs to be reduced. Is very repetitive
548	interaction <u>s</u>	
549	Major vegetation associations grouped according to habitat structure, were the only factors that	
550	explained variations in pair-wise interactions or fine-grain structure of the network. Open and	
551	shaded (i.e. forest) habitats at the study site seems to differ structurally in vegetation and \overline{on} -in	
1		

552	their abiotic conditions, which may in turn be important determinants of insect-plant interactions	
553	(López-Carretero et al., 2014). Although, some studies have discussed the possible effects of	
554	abiotic variables on ant-plant networks (Díaz-Castelazo et al., 2010; Rico-Gray & Oliveira, 2007	
555	(references therein); Rico-Gray et al., 2012, Sánchez-Galván et al., 2012), ours is the only one	
556	addressing habitat abiotic effects jointly together with species-level biological attributes and	
557	neutral explanations (i.e. abundance) in a quantitative ant-plant network.	
558	A mechanistic explanation for the differential ant-plant association pattern between open	
559	and shaded habitats (suggesting habitat complexity effects, Dáttilo et al., 2013b), may include	
560	light incidence (under light conditions, jasmonic acid-induced EFN secretion is higher than in	
561	dark conditions (Radhika et al., 2010), 'attractiveness' or nutritional value of extrafloral nectar	
562	secreted by 'light demanding' plant species compared to 'shade tolerant' ones, and the	
563	physiological tolerance of ants to high temperatures. Increased photosynthetic activity of plants in	
564	open light-rich habitats (Radhika et al., 2010) could result in higher carbohydrates availability in	
565	extrafloral nectar, and thus increased attractiveness to ants, or a higher density of EFN-bearing	
566	plant life forms (such as vines). EFN-bearing plants growning in sunlight obtain a measurable	
567	benefit from ant visitation, whereas the same plant species growing under shaded conditions has	
568	no such a benefit (e.g., Bentley, 1976; Frank & Fonseca, 2005). For some plant species, the size	
569	of EFNs and quantity of nectar secretion are higher under intense light conditions compared to	
570	low light conditions (Yamawo & Hada, 2010) and a similar trend is found for the ant abundance	
571	foraging on these glands (Rudgers & Gardener 2004, Yamawo & Hada, 2010). This effect of site	
572	conditions on EFN abundance and secretory activity could also exist in our study system, since	
573	vegetation types with canopy cover (shaded) versus open habitats do sustain different species	
574	abundances, floristic similarities (Díaz-Castelazo et al., 2004), and patterns of specific insect-	
575	plant interactions (López-Carretero et al., 2014).	

Commented [MS26]: Or preference for?

Commented [MS27]: ¿

576	Among-habitat heterogeneity in vegetation structure (as well as seasonality) at our study	Commented [MS28]: Very long sentence – does not make sense
577	site is so prevalent (having a strong effect in animal-plant interactions as seen in Rico-Gray,	
578	1993; Díaz-Castelazo et al., 2004; Sánchez-Galván et al., 2012; López-Carretero et al., 2014; and	
579	Ramos-Robles, Andresen & Díaz-Castelazo, 2016); that it is clearly detected in the ant-plant	
580	interaction pattern, in contrast to other studies where vegetation structure differences are not so	
581	outstanding to have an effect in other ant-plant networks (Dáttilo et al., 2013b), with more/fewer	
582	interactions occurring along a humidity gradient Further evidence of among_habitat	
583	heterogeneity transcending to ant-plant network structure, is provided at in the present study by	
584	the multivariate analysis, where the component explaining more variance in the lack of	
585	independence among ant and plant species (NMDS1), displays habitats following a decreasing [$_{}$	Commented [MS29]: Too repetitive of Results – delete this. You've already presented the Results- just discuss
586	humidity gradient, from MFE, followed by TSF-W and TSF-O, TSF-Y, CDS and PDV. Indeed,	
587	open habitats at the study site, such as coastal dune scrub (CDS) and pioneer dune vegetation	
588	(PDV), have the most extreme temperatures, solar radiation (Moreno-Casasola, 1982; Moreno-	
589	Casasola & Travieso-Bello, 2006), and are subject to continual disturbance (López-Carretero et	
590	al., 2014) because sand movement, strong winds, and abrasion (Pérez-Maqueo, 1995).	
591	Our results showed that no nN eutral effects derived from variation in species abundances	
592	aredid not structureing the studied ant-plant network in our study. Abundance of EFN-bearing	
593	plant species was considered inat our analysis but, rendereding no significant contribution to	
594	explain the frequency of pairwise ant-plant interactions. Similar results were found in plant-	
595	herbivore network study at the for another ecological network at the same study site such as a	
596	plant herbivore network (López-Carretero et al. 2016), where network parameters were not	
597	influenced by plant cover (abundance) but by biological and seasonality aspects. Atln our study,	
598	Aalthough we did not directly explore the effect of ant abundance was not included in order to	
599	explore its effect in on network structure, we know from robust estimates of ant density (honey	

600	baits) at the same periods of time and vegetation types, that average ant density is higher in open	
601	habitats than in shaded ones (Díaz-Castelazo et al., 2004). In other studies of ant-plant	
602	interactions, the abundance of interacting species partially explain some features of network	
603	structure (Vázquez et al. 2007; Dáttilo et al., 2014a). However, Dáttilo et al. (2014a) show that	
604	although more abundant ant species interact with more <u>plant species with</u> EFNs-plant species,	
605	information on the difference in abundance among interacting species was insufficient to explain	
606	ant-plant network organization: nestedness wasbeing higher in networks of ants and plants with	
607	EFNs than that observed in networks of ants and plants without EFNs. Thus, the differences in	
608	nestedness, connectance, and heterogeneity of interactions remained after controlling for the	
609	effects of species richness structure.	
610	Other potentially mutualistic networks have shown that species abundance or temporal	
611	overlap are far from <u>do not</u> accurately predicting the frequency of pair-wise interactions, leaving	
612	much unexplained variation (Vázquez et al., 2009). Poisot et al. (2015) highlight that interaction	
613	networks should benefit from a population-level approach given the fact that the same species	
614	may happen to interact differently when their local abundances or trait distribution changes, or	
615	when the environment affects either of these factors. These authors outline several direct	
616	(abundance-based and trait-based) and indirect (biotic modifiers and indirect effects of co-	
617	occurrence) effects to-that may account for interactions occurrence. Given that perspective, at the	
618	sampling intensity and duration of our ant-plant interaction survey (-a biweekly two-year census	
619	that capture the high seasonality at the study site, reflecting that could reflect detailed temporal	
620	and spatial variation; see Díaz-Castelazo et al. 2004)-, neither the abundance-based nor the trait-	
621	based modifiers seems to be relevant enough to account for variation in pairwise ant-plant	
622	interactions, even if at other scales ant abundance could partially explain an overall network	
623	pattern (Dáttilo et al., 2014a). In contrast, an indirect effect given by habitat structure (biotic	

Commented [MS30]: This seems all very repetitive

624	modifiers through co-occurrence, sensu Poissot et al., 2015) explain-more thoroughly explains	Commented [MS31]: Re-write
625	the quantitative interaction pattern at the presentin our study.	
626	The fact that neither the distribution of EFNs on plant organs nor the abundance of	Commented [MS32]: repetitive
627	extrafloral-nectary bearing plants at each vegetation type had a significant simultaneous	
628	contribution to the variation in the observed ant-plant association patterns, does not rule out its	
629	potential effect on ant foraging patterns at other sites or when within habitat information is	
630	considered (Dáttilo et al. 2013a, 2014b). At our study site, besides the overwhelming	
631	evidence of seasonality and habitat heterogeneity <u>(and-we did find an effect of habitat</u>	
632	structure in ant-plant interactions within the network), the high occurrence frequency of	
633	morphologically diverse EFNs at vegetation associations (Díaz-Castelazo et al., 2005) that	
634	have a temporal activity (i.e. seasonality) (Díaz-Castelazo et al., 2004) ₃₇ suggests phenotypic	
635	plasticity in plant strategies for biotic defense, as that showed for other anti-herbivory plant	
636	defenses at the study site (López-Carretero et al., 2016; López-Carretero et al., 2018).; i	
636 637	<u>defenses at the study site (López-Carretero et al., 2016; López-Carretero et al., 2018).; i</u> Information on the contribution to plan <u>t</u> fitness of the EFN occurring among plant organs	Commented [MS33]: confusing?
		Commented [MS33]: confusing?
637	Information on the contribution to plan <u>t</u> fitness of the EFN occurring among plant organs	Commented [MS33]: confusing?
637 638	Information on the contribution to plan <u>t</u> fitness of the EFN occurring among plant organs	Commented [MS33]: confusing?
637 638 639	Information on the contribution to plan <u>t</u> fitness of the EFN occurring among plant organs could shed light on the optimal defence-value of EFN resources as an indirect defence (Holland, Chamberlain & Horn, 2009) mediated by ants <u>, an issue not yet explored at a</u>	Commented [MS33]: confusing?
637 638 639 640	Information on the contribution to plan <u>t</u> fitness of the EFN occurring among plant organs could shed light on the optimal defence-value of EFN resources as an indirect defence (Holland, Chamberlain & Horn, 2009) mediated by ants <u>, an issue not yet explored at a</u> <u>community-level</u> .	Commented [MS33]: confusing?
637 638 639 640 641	Information on the contribution to plant fitness of the EFN occurring among plant organs could shed light on the optimal defence-value of EFN resources as an indirect defence (Holland, Chamberlain & Horn, 2009) mediated by ants, an issue not yet explored at a community-level For ant variables attributes, although ant size (head length) was not a significant factor	Commented [MS33]: confusing?
637 638 639 640 641 642	Information on the contribution to plant fitness of the EFN occurring among plant organs could shed light on the optimal defence-value of EFN resources as an indirect defence (Holland, Chamberlain & Horn, 2009) mediated by ants, an issue not yet explored at a community-level For ant variables attributes, although ant size (head length) was not a significant factor explaining frequency of pairwise interactions, it was, however, important in explaining other	Commented [MS33]: confusing?
637 638 639 640 641 642 643	Information on the contribution to plant fitness of the EFN occurring among plant organs could shed light on the optimal defence-value of EFN resources as an indirect defence (Holland, Chamberlain & Horn, 2009) mediated by ants, an issue not yet explored at a community-level For ant variablesattributes, although ant size (head length) was not a significant factor explaining frequency of pairwise interactions, it was, however, important in explaining other species-level attributes such as species degree, within a mutualistic network; tThis may occurbe	Commented [MS33]: confusing?
637 638 639 640 641 642 643 644	Information on the contribution to plant fitness of the EFN occurring among plant organs could shed light on the optimal defence-value of EFN resources as an indirect defence (Holland, Chamberlain & Horn, 2009) mediated by ants, an issue not yet explored at a community-level For ant variables attributes, although ant size (head length) was not a significant factor explaining frequency of pairwise interactions, it was, however, important in explaining other species level attributes such as species degree, within a mutualistic network; tThis may occurbe because_competition because competition among ant species foraging at EFNs may vary with ant	Commented [MS33]: confusing?

648	small species, and thus interacting with more plant species. In addition, itFor example, it has been	
649	shown that recruitment of ant foragers to a resource $i_{\underline{HS}}$ negatively correlated with ant body size	
650	(LeBrun, 2005);, thereby contributing to the degree of ant species. For example, LeBrun (2005)	
651	showed that recruitment of foraging ants to a resource is strongly and negatively correlated with	
652	ant body size. A as ant body size increases, the number of recruiting foragers decreases, which	
653	can lead to a body sizedriven competition hierarchy in which larger ant species visit more plant	
654	species.	
655	-Overall _a ant behavioral dominance as a factor was not significant in explaining variations	
656	in the frequency of pair-wise interactions, possibly due to the spectra of factors considered	
657	simultaneously within the analysis, since the EFNs considered here include both, dispersed EFNs	
658	and circumscribed EFNs being included; that they could provide resources for both, dominant and	
659	non-competitive ant species. However, ant invasive/tramp species at the study site (Solenopsis	
660	geminata, Wasmannia auropunctata, Tetramorium spinosum and Paratrechina longicornis)	
661	seems to have a slightly different pattern of interaction from the other species (separate from the	
662	rest of ant species at the interaction display), probably due to their ability to access new habitats	
663	or food resources (Ness & Bronstein, 2004; Lach & Hooper-Bui, 2010).	
664	This seems in accordance <u>makes sense in</u> to such a human-altered ecosystem as La	
665	Mancha, that seems to rapidly reflect ant invasions. At smaller time-seales, at the sameAt our	
666	study site, ant invasiveness does not seem to alter the core structure of the network (Falcão et al.,	
667	2017), despite of other possible functional effects in the community. Effects of invasive ants in	
668	biotic communities and their resultant interaction networks are just aboutstill to be explored.	
669		
670	Conclusions	

Commented [MS34]: Not convinced that you've evidence for larger bodied ants forage over larger áreas – ref for this?

Commented [MS35]: Too long

671	Our extrafloral-nectary mediated ant-plant network result was highly nested, non-	
672	modular, showed high species strength for core species, low specialization or selectiveness, and	
673	higher dependence of plants on ants. This is not surprising for ; all (_in accordance to_a	
674	facultative mutualism scenario, mainly consideringgiven that the core ant species at this network	
675	are well known as good plant-defenders in general (Oliveira et al., 1999; Cuautle & Rico-Gray,	
676	2003; Dáttilo et al., 2014c), At our studied community, core ant species are relevant to most	Formatted: Highlight
677	plants species at the network, thus the plant species depending more of ant species, and the	
678	adaptations of nectar consumption and deterrent behavior of core ants, suggest potential biotic	
679	defense at a community scale.	
680	When simultaneously exploring plants, ants, and habitat attributes on a network-level and	
681	fine-grain structure, the only factor that significantly affectsed the pair-wise interactions wasis	
682	habitat heterogeneity in vegetation structure (and distribution of EFN-bearing plant species). At	
683	our study site, this heterogeneity is so strong that is clearly detected in the ant-plant interaction	
684	network pattern, both inet network topology and inet the fine-grain network structure provided by	
685	the frequency of pair-wise interactions. This provides further evidence of abiotic factors influence	
686	in facultative mutualism and biotic plant defense.; being thus, further evidence of abiotic factor	Commented [MS36]: How does vegetation structure relate to abiotic factors? Not clear here
687	influence in facultative mutualism and biotic plant defense.	
688	Habitat heterogeneity in vegetation structure and distribution of EFN-bearing plant	
689	species depicts plasticity variability in plant strategies for biotic anti-herbivory defense: in our	
690	study the plant species at shaded habitats more frequently have dispersed EFNsnectaries, while	
691	plants at open habitats more frequently have circumscribed EFNs are	
692	more structurally complex glands (i.e. elevated or pit nectaries) and are more effectively	Formatted: Not Highlight
693	protected from nectar evaporation (Koptur, 1992; Nepi, 2007), which is required valuable at these	
694	open, insolated, high-temperature sites.	Commented [MS37]: ¿
	30	

695	Non-neutral effects were detected at ant-plant interacting community, since EFN-bearing	
696	plant abundance per se had no effects in the ant-plant interaction pattern. As we showed before,	
697	more ecological/biological factors, such as habitat/vegetation structure, could affect network	
698	structure (CITA). [Thus, possible convergence effects of interacting species at open vs. shaded	Commented [MS38]: Delete - repetitive
699	habitats may be occurring presided by supergeneralist species and consequently the possibility of	
700	cascading coevolutionary events taking place. This may deserve further study considering	
701	ecological/abiotic and coevolutionary contexts (Guimarães et al. 2017) for mutualistic interaction	
702	networks.	Commented [MS39]: Reduce to one simple sentence – there are new concepts in here. Conclusion should not introduce new
703		concepts.
704	Acknowledgements	
705	We wish to acknowledge Mariana Cuautle, Rosa Linda Robles and Gloria Castelazo for their	
706	assistance during specific fieldwork. Fernando Ortega helped with the characterization of	
707	extrafloral nectaries. Paulo R. Guimarães and Pedro Jordano made suggestions that improved this	
708	manuscript at early stages. Exclusively CDC thanks for the achievement of this study to God	
709	Almighty for the gifts of life, of Christ and his unchanging love and grace.	
710		
711	References	
712	Almeida-Neto M, Guimarães P, Guimarães PRJr, Loyola RD, Ulrich W. 2008. A consistent	
713	metric for nestedness analysis in ecological systems: reconciling concept and measurement.	
714	Oikos 117:1227–1239. DOI:10.1111/j.2008.0030-1299.16644.x	
715	Andersen AN. 1995. A classification of Australian ant communities, based on functional groups	
716	which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography	
717	22:15–29.	
718	Andersen AN. 2000. A global ecology of rainforest ants: functional groups in relation to	

- 719 environmental stress and disturbance. In: Agosti D, Majer JD, Alonso LE, Schultz TR, eds.
- 720 Ants: standard methods for measuring and monitoring biodiversity. Washington:

721 Smithsonian Institution Press, 25–34.

- Barber MJ. 2007. Modularity and community detection in bipartite networks. *Physical Review E*.
 76:066102.
- 724 Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003. The nested assembly of plant-animal
- mutualistic networks. *Proceedings of the National Academy of Sciences of the United States* of America 100:9383–9387. DOI:10.1073/pnas.1633576100.
- 5 I
- 727 Bascompte J, Jordano P, Olesen JM. 2006. Asymmetric coevolutionary networks facilitate
- biodiversity maintenance. *Science* 312:431-433.
- 729 Bascompte J. 2009. Disentangling the web of life. *Science* 325:416-419.
- 730 Bascompte J. 2010. Structure and dynamics of ecological networks. *Science* 329:765–766.
- 731 Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. 2009. The
- r32 architecture of mutualistic networks minimizes competition and increases biodiversity.
- 733 *Nature* 458(7241):1018.
- Bentley BL. 1976. Plants bearing extrafloral nectaries and the associated ant community:
- 735 Interhabitat differences in the reduction of herbivore damage. *Ecology* 57:815–820.
- 736 Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barthlott W. 2000. How plants shape
- 737the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries
- and homopteran honeydew. *Oecologia* 125:229-240.
- 739 Blüthgen N, Fiedler K. 2004. Competition for composition: lessons from nectar-feeding ant
- 740 communities. *Ecology* 85:1479–1485.
- 741 Blüthgen N, Fründ J, Vázquez DP, Menzel F. 2008. What do interaction network metrics tell us
- about specialization and biological traits? *Ecology* 89:3387–3399.

- 743 Blüthgen N. 2010. Why network analysis is often disconnected from community ecology: A
- critique and an ecologist's guide. *Basic and Applied Ecology* 11:85-195.
- 745 Borg I, Groenen P. 1997. Modern Multidimensional Scaling. Springer, New York.
- 746 Cagnolo L, Salvo A, Valladares G. 2011. Network topology: patterns and mechanisms in plant-
- herbivore and host-parasitoid food webs. *Journal of Animal Ecology* 80(2): 342-351.
- 748 Carnicer J, Jordano P, Melián CJ. 2009. The temporal dynamics of resource use by frugivorous
- birds: a network approach. *Ecology* 90:1958-1970.
- 750 Castillo-Campos G, Travieso-Bello AC. 2006. La flora. In: Moreno-Casasola ed. Entornos
- 751 *Veracruzanos: la costa de La Mancha*. Instituto de Ecología, A.C., México.
- Češka, A. (1966). Estimation of the mean floristic similarity between and within sets of
 vegetational relevés. Folia Geobotanica et Phytotaxonomica, 1(2), 93-100.
- 754 Chamberlain SA, Holland JN 2009. Body size predicts degree in ant-plant mutualistic networks.
- 755 *Functional Ecology* 23: 196-202.
- 756 Cohen JE, Jonsson T, Müller CB, Godfray HCJ, Savage VM. 2005. Body sizes of hosts and
- 757 parasitoids in individual feeding relationships. Proceedings of the National Academy of
- 758 Sciences of the United States of America 102:684–689.Cuautle M, Rico-Gray V. 2003. The
- r59 effect of wasps and ants on the reproductive success of the extrafloral nectaried plant
- 760 *Turnera ulmifolia* Turneraceae. *Functional Ecology* 17:417–423.
- 761 Cuautle M, Rico-Gray V, Díaz-Castelazo C. 2005. Effects of ant behaviour and presence of
- restrafloral nectaries on seed dispersal of the Neotropical myrmecochore *Turnera ulmifolia* L.
- Turneraceae. *Biological Journal of the Linnean Society* 86:67-77.
- 764 Dáttilo W, Guimarães PR, Izzo TJ. 2013b. Spatial structure of ant-plant mutualistic networks.
- 765 *Oikos* 122:1643-1648.
- 766 Dáttilo W, Rico-Gray V, Rodrigues DSJ, Izzo T. 2013a. Soil and vegetation features determine

- the nested pattern of ant-plant networks in a tropical rainforest. *Ecological Entomology*
- **38:374-380**.
- 769 Dáttilo W, Sánchez-Galván I, Lange D, Del-Claro K, Rico-Gray V. 2014d. Importance of
- 770 interaction frequency in analysis of ant-plant networks in tropical environments. *Journal of* 771 *Tropical Ecology* 30:165-168.
- 772 Dáttilo W, Marquitti FMD, Guimarães PR, Izzo TJ. 2014a. The structure of ant–plant ecological
- networks: is abundance enough? *Ecology* 95:475-485.
- 774 Dáttilo W, Fagundes R, Gurka CAQ, Silva MSA, Vieira MCL, Izzo TJ, Díaz-Castelazo C, Del-
- 775 Claro K, Rico-Gray V. 2014b. Individual-based ant-plant networks: diurnal-nocturnal
- structure and species-area relationship. *PLoS ONE* 9:e99838.
- 777 Dáttilo W, Díaz-Castelazo C, Rico-Gray V. 2014c. Ant dominance hierarchy determines the
- nested pattern in ant-plant networks. *Biological Journal of the Linnean Society* 113:405-414.
- 779 Davidson DW, Cook SC, Snelling RR. 2004. Liquid-feeding performances of ants (Formicidae):
- recological and evolutionary implications. *Oecologia* 139:255–266.
- 781 Díaz–Castelazo C, Rico–Gray V, Oliveira PS, Cuautle M. 2004. Extrafloral nectary-mediated
- 782 ant-plant interactions in the coastal vegetation of Veracruz, Mexico: richness, occurrence,
- seasonality and ant foraging patterns. *Ecoscience* 11:472–481.
- 784 Díaz-Castelazo C, Rico-Gray V, Ortega F, Ángeles G. 2005. Morphological and secretory
- characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. *Annals of Botany* 96:1175-1189.
- 787 Díaz-Castelazo C, Guimarães PR, Jordano P, Thompson JN, Marquis RJ, Rico-Gray V. 2010.
- 788 Changes of a mutualistic network over time: reanalysis over a 10-year period. *Ecology*789 91:793–801.
- 790 Díaz-Castelazo C, Seánchez-Galván IR, Guimarães PR, Raimundo RLG, Rico-Gray V. 2013.

- 791 Long-term temporal variation in the organization of an ant-plant network. Annals of Botany
- 792 111:1285-1293.
- 793 Díaz-Castelazo C, Chavarro-Rodríguez N, Rico-Gray V. 2017. Interhabitat variation in the
- round recology of extrafloral nectar production and associated ant assemblages in Mexican
- 795 landscapes. In: Oliveira PS, Koptur S. Ant-Plant Interactions: Impacts of Humans on
- 796 Terrestrial Ecosystems. Cambridge University Press. Pp. 179-199.
- 797 Dixon P. 2009. VEGAN, a package of R functions for community ecology. Journal of Vegetation
- *Science* 14:927–930. DOI:10.1111/j.1654-1103.2003.tb02228.x.
- 799 Dormann CF, Fruend J, Blüthgen N, Gruber B. 2009. Indices, graphs and null models: analyzing
- 800 bipartite ecological networks. *The Open Ecology Journal* 2:7–24.
- Bormann CF, Gruber B. 2009. Package 'Bipartite': visualizing bipartite networks and calculating
 some ecological indices. R statistical software. 'R group'.
- 803 Dormann CF. 2011. How to be a specialist? quantifying specializes ation in pollination networks.
- 804 *Network Biology* 1:1–20. URL:http://www.iaees.org/publications/journals/nb/articles/2011-
- 805 1(1)/How-to-be-a-specialist.pdf
- 806 Dornhaus A, Powell S. 2010. Foraging and defence strategies in ants. In: Lach L, Parr CL,
- 807 Abbott KL eds. Ant ecology, Oxford, UK: Oxford University Press, 210–230.
- 808 Falcão JC, Dáttilo W, Díaz-Castelazo C, Rico-Gray V. 2017. Assessing the impacts of tramp and
- 809 invasive species on the structure and dynamic of ant-plant interaction networks. *Biological* 810 *Conservation* 209:517–523.
- 811 Frank MK, Fonseca CR. 2005. Abiotic factors and the conditional outcome of an ant-plant
- 812 mutualism. *Ecology* 86:2117–2126.
- 813 Guimarães PR, Guimarães P. 2006. Improving the analyses of nestedness for large sets of
- 814 matrices. *Environmental Modelling and Software* 21:1512-1513.

- 815 Guimarães PR, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN. 2007. Interaction
- 816 intimacy affects structure and coevolutionary dynamics in mutualistic networks. *Current*

Biology 17:1797–1803.

- Guimarães PR, Jordano P, Thompson JN. 2011. Evolution and coevolution in mutualistic
 networks. *Ecology Letters* 14: 877–885.
- Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. 2017. Indirect effects drive
 coevolution in mutualistic networks. *Nature* 550: 511–514.
- Guimerà R, Sales-Pardo M, Amaral LAN. 2004. Modularity from fluctuations in random graphs
 and complex networks. *Physical Review E* 70:025101.
- Guimerà R, Amaral LAN. 2005. Functional cartography of complex metabolic networks. *Nature*433:895–900.
- Herrera CM, Pellmyr O. 2009. Plant animal interactions: an evolutionary approach. John Wiley
 & Sons.
- Holland JN, Chamberlain SA, Horn KC. 2009. Optimal defence theory predicts investment in
 extrafloral nectar resources in an ant-plant mutualism. *Journal of Ecology* 97: 89–96.
- 830 Holway DA, Lach L, Suarez AV, Tsutsui ND, Casel TJ. 2002. The causes and consequences of
- ant invasions. Annual Review of Ecology and Systematics 33:181–233.
- Horvitz CC, Schemske DW. 1984. Effects of ants and an ant tended herbivore on seed production
 of a Neotropical herb. *Ecology* 65:1369-1378.
- 834 Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa
- 835 D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM, van Veen FJF,
- 836 Warren PH, Woodward G. 2009. Ecological networks-beyond food webs. Journal of Animal

837	Ecology	78:253-	-269.
-----	---------	---------	-------

- 838 Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of
- 839 plant–animal interactions. *Ecology Letters* 6:69-81.
- Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Martin Schaefer H, Stang M. 2013.
- 841 Specialization on traits as basis for the niche-breadth of flower visitors and as structuring
- 842 mechanism of ecological networks. *Functional Ecology* 27(2):329-341.
- 843 Kaspari M, Weiser MD. 1999. The size-grain hypothesis and interspecific scaling in ants.
- 844 Functional Ecology 13:530–538.
- 845 Koptur, S. 1992. Interactions between insects and plants mediated by extrafloral nectaries. In:
- Bernays E. Insect-Plant Interactions (4), p. 85-132. Insect/Plant Interactions. CRC Press.
 Formatted: Font: Italic
- Lach L, & Hooper-Bui, LM. 2010. Consequences of ant invasions. In: Lach L, Parr CL, Abbott
 KL eds. Ant ecology, Oxford, UK: Oxford University Press, 261-286.
- 850 Lange D, Dáttilo W, Del-Claro K. 2013. Influence of extrafloral nectary phenology on ant-plant
- 851 mutualistic networks in a neotropical savanna. *Ecological Entomology* 38:463-469.
- LeBrun EG. 2005. Who is the top dog in ant communities? Resources, parasitoids, and multiple
 competitive. *Oecologia* 142:643–652.
- 854 López-Carretero A, Díaz-Castelazo C, Boege K, Rico-Gray V. 2014. Evaluating the Spatio-
- 855 Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions. *PLoS*856 *ONE* 9: e110430.
- 857 Majer JD. 1993. Comparison of the arboreal ant mosaic in Ghana, Brazil, Papua New Guinea and
- 858 Australia its structure and influence on arthropod diversity. In: LaSalle J, Gauld ID eds.
- 859 *Hymenoptera and biodiversity*, Wallingford, UK: CAB International, 115-141.
- 860 Marquitti FMD, Guimaraes PR, Pires MM, Bittencourt LF. 2014. MODULAR: Software for the

861	autonomous computation of modularity in large network sets. <i>Ecography</i> 37:221–224.	
862	Martínez-Adriano CA, Aguirre-Jaimes A, Díaz-Castelazo C. 2016. Floristic survey of flowering	
863	plants in a tropical coastal ecosystem in Veracruz, Mexico. Botanical Sciences 94:185-197.	
864	Martínez-Adriano CA. 2017. Fenología reproductiva de angiospermas, producción de flores y	
865	visitantes florales en un ecosistema costero en Veracruz, México. Ph.D. Thesis, Instituto de	
866	Ecología, A. C.	
867	McGlynn TP. 1999. The worldwide transfer of ants: geographical distribution and ecological	
868	invasions. Journal of Biogeography 26:535–548.	
869	Memmott J, Waser NM, Price MV. 2004. Tolerance of pollination networks to species	
870	extinctions. Proceedings of the Royal Society of London B: Biological Sciences, 271(1557):	
871	2605-2611.	
872	Moreno-Casasola P. 1982. Ecología de la vegetación de dunas costeras: factores	
873	físicos. <i>Biotica</i> 7:577–602.	
874	Moreno-Casasola P, Travieso-Bello AC. 2006. Las playas y dunas. In: Moreno-Casasola ed.	
875	Entornos Veracruzanos: la costa de La Mancha. Instituto de Ecología, A.C., México.	
876	Nepi, M. 2007. Nectary structure and ultrastructure. In Nectaries and nectar. pp. 129-166.	Formatted: Font: Italic
877	Springer, Dordrecht.	
878	Ness JH, Bronstein JL. 2004. The effects of invasive ants on prospective ant mutualists.	
879	Biological Invasions 6:445–461.	
880	Oksanen J. 2009. Vegan: an introduction to ordination. R statistical software. 'R group'.	
881	Olesen JM, Bascompte J, Dupont YL, Jordano P. 2007. The modularity of pollination networks.	
882	Proceedings of the National Academy of Sciences of the United States of America	
883	104:19891–19896.	
884	Oliveira PS, Rico-Gray V, Díaz-Castelazo C, Moreno-Casasola -Guevara C. 1999. Interaction	
	38	

885	between ants, extrafloral nectaries and insect herbivores in Neotropical coastal sand dunes:
886	herbivore deterrence by visiting ants increases fruit set in Opuntia stricta Opuntia stricta
887	Cactaceae Functional Ecology 13:623-631.
888	Parr CL, Gibb H. 2010. Competition and the role of dominant ants. In: Lach L, Parr CL, Abbott
889	KL eds. Ant ecology, Oxford, UK: Oxford University Press, 77-96.
890	Pérez-Maqueo O. 1995. Análisis del efecto de los disturbios en la dinámica de la playa de El
891	Morro de La Mancha, Veracruz. México DF: UNAM.
892	Pimm SL, Lawton JH. 1980. Are food webs divided into compartments?. The Journal of Animal
893	<i>Ecology</i> 49:879–898.
894	Poisot T, Stouffer DB, Gravel D. 2015. Beyond species: why ecological interaction networks
895	vary through space and time. Oikos 124(3): 243-251.
896	Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge
897	University Press.
898	R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for
899	Statistical Computing, Vienna, Austria. URL: <u>http://www.R-project.org/</u> .
900	Radhika V, Kost C, Mithöfer A, Boland W. 2010. Regulation of extrafloral nectar secretion by
901	jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences
902	of the United States of America 107(4):17228–17233.
903	Ramos-Robles M, Andresen E, Díaz-Castelazo C. 2016. Temporal changes in the structure of a
904	plant-frugivore network are influenced by bird migration and fruit availability. PeerJ
905	4:e2048. doi:10.7717/peerj.2048.
906	Rezende, EL, Jordano P, Bascompte J. 2007. Effects of phenotypic complementarity and
907	phylogeny on the nested structure of mutualistic networks. Oikos 116(11): 1919-1929.
908	Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J. 2007. Non-random

909	coextinctions in phylogenetically structured mutualistic networks <i>Nature</i> 448:9257–9259.
910	Rico-GrayV, Barber JT, Thien LB, Ellgaard EG, Toney JJ. 1989. An Unusual Animal-Plant
911	Interaction: Feeding of Schomburgkia tibicinis (Orchidaceae) by ants. American Journal of
912	Botany 76:603-608.
913	Rico-Gray V. 1993. Use of plant-derived food resources by ants in the dry tropical lowlands of
914	coastal Veracruz, Mexico. Biotropica 25:301-315.
915	Rico-Gray V, Oliveira PS. 2007. The ecology and evolution of ant-plant interactions. University
916	of Chicago Press.
917	Rico-Gray V, Díaz-Castelazo C, Ramírez-Hernández A, Guimarães PR, Holland JN. 2012.
918	Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod-
919	Plant Interactions 6:289-295.
920	Rudgers JA, 2004. Enemies of herbivores can shape plant traits: selection in a facultative ant-
921	plant mutualism. <i>Ecology</i> 85:192–201.
922	
923	Rudgers JA, Gardener MC. 2004. Extrafloral nectar as a resource mediating multispecies
924	interactions. Ecology 85:1495–1502.
925	Sánchez-Galván IR, Díaz-Castelazo C, Rico-Gray V. 2012. Effect of Hurricane Karl on a plant-
926	ant network occurring in coastal Veracruz, Mexico. Journal of Tropical Ecology 28:603-609.
927	Schultz TR, McGlynn TP. 2000. The interactions of ants with other organisms. In: Agosti D,
928	Majer J.D. Alonso LE, Schultz TR. Ants: standard methods for measuring and monitoring
929	biodiversity. Washington: Smithsonian Institution Press,35-44.
930	Stang M, Klinkhamer PGL, van der Meijden E, Memmott J. 2006. Size constraints and flower
931	abundance determine the number of interactions in a plant-flower visitor web. Oikos
932	112:111-121.

- 933 Stang M. 2007. Asymmetric specialization and extinction risk in plant-flower visitor webs: a
- matter of morphology or abundance? *Oecologia* 151:442-453.
- 935 Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of
- 936 mutualistic and trophic networks. *Science* 329:853–856.
- Thompson JN 2005. The geographic mosaic of coevolution. University of Chicago Press,Chicago.
- 939 Vázquez DP, Aizen MA. 2004. Asymmetric specialization: a pervasive feature of plant-
- 940 pollinator interactions. *Ecology* 85:1251–1257.
- 941 Vázquez DP, Morris WF, Jordano P. 2005. Interaction frequency as a surrogate for the total
- 942 effect of animal mutualists on plants. *Ecology Letters* 8:1088–1094.
- 943 Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R. 2007. Species
- abundance and asymmetric interaction strength in ecological networks. *Oikos* 116:1120–
 1127.
- 946 Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP. 2009. The determinants of patterns in
- 947 mutualistic networks: a review. Annals of Botany 103:1445-1457.
- 948 Vázquez DP, Chacoff NP, Cagnolo L. 2009. Evaluating multiple determinants of the structure of
- 949 plant–animal mutualistic networks. *Ecology* 90:2039–2046.
- 950 Wäckers FL, Bonifay C. 2004. How to be sweet? Extrafloral nectar allocation by Gossypium
- *hirsutum* fits optimal defense theory predictions. *Ecology* 85:1512–1518.
- 952 Yamawo A, Hada Y. 2010. Effects of light on direct and indirect defences against herbivores of
- 953 young plants of *Mallotus japonicus* demonstrate a trade-off between two indirect defence
- 954 traits. *Annals of Botany* 106:143–148.
- 955
- 956

957	Table 1. EFN-bearing plant species within the network and its attributes. Plant species code as follows:
958	CorSpi= Cordia spinescens, TurUlm= Turnera ulmifolia, CrotIn= Crotalaria indica, CedOdo= Cedrela
959	odorata, CallAc= Callicarpa acuminata, CaeCri= Caesalpinia crista, BidPil= Bidens pilosa, CanRos=
960	Canavalia rosea, CalCae= Calopogonium caerulium, TerCat= Terminalia catappa, SenOcc= Senna
961	occidentalis, OpuStri= Opuntia stricta, HibTil= Hibiscus tiliaceus, AmphPa= Amphilophium
962	paniculatum, IpoPes= Ipomoea pescaprae, ConEre= Conocarpus erectus, FicObt= Ficus obtusifolia,
963	CorGra= Cornutia grandiflora, MacAtr= Macroptilium atropurpureum, CisRho= Cissus rhombifolia,
964	IpoSp= Ipomoea sp., ManHym= Mansoa hymenaea, TabRos= Tabebuia rosea, AcaMac=Acacia
965	macracantha, TriHav= Trichilia havanensis, AruDon= Arundo donax, PetVol= Petrea volubilis,
966	ChaCha= Chamaecrista chamaecristoides, IreCel= Iresine celosia, CorDen= Cordia dentata, BunLin=
967	Bunchosia lindeliana. Plant attributes considered also in Figure 2 are: EFN= Distribution of extrafloral
968	nectaries within a plant species ('C' are circumscribed glands and 'D' are disperse glands), Habitat=
969	Distribution of plant species between habitats with contrasting vegetation structure ('S' is shaded
970	vegetation and 'O' is open vegetation). Abundance (% cover) = Percent cover of EFN-bearing plant
971	species.

_

Plant species Distribution of EFNs Habitat structure Abundance (%cover)

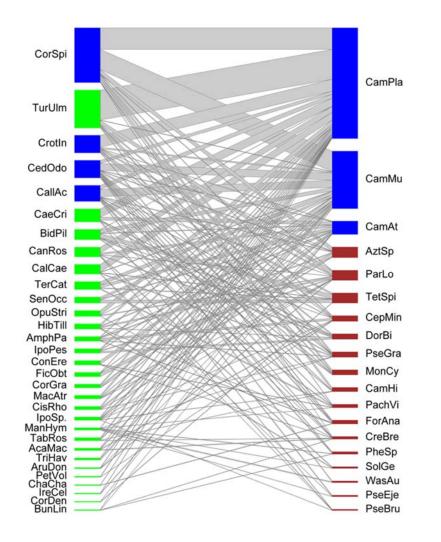
CorSpi	D	S	38.833
TurUlm	С	О	6.66
CrotIn	С	О	12.38
CedOdo	D	S	36.143
CallAc	D	В	68.797
CaeCri	С	О	27.15
BidPil	С	S	27.95
CanRos	С	О	76.057

CalCae	С	Ο	16.85
TerCat	С	S	0.35
SenOcc	С	S	3.717
OpuStri	D	О	64.35
HibTill	С	О	2.4
AmphPa	D	0	17.55
IpoPes	С	0	49.1
ConEre	С	S	16.383
FicObt	С	S	8.15
CorGra	D	0	2.5
MacAtr	С	0	16.3
CisRho	С	0	3.55
IpoSp.	С	S	12.167
ManHym	С	S	16.3
TabRos	D	S	6.66
AcaMac	С	В	2.75
TriHav	С	S	28.33
AruDon	С	0	151.66
PetVol	D	0	74.1
ChaCha	С	О	32.4
IreCel	С	0	16.55
CorDen	D	S	3.615
BunLin	С	S	1.7

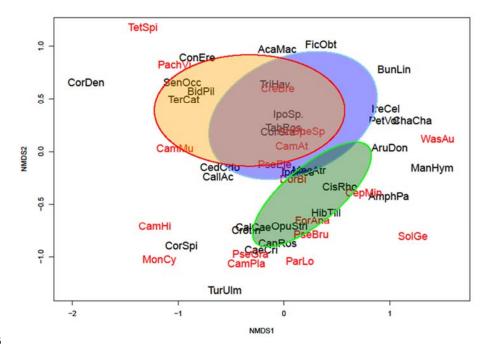
975	Table 2. Ant species within the network and its attributes. Ant species code as follows: CamPla=
976	Camponotus planatus, CamMu= Camponotus mucronatus, CamAt= Camponotus atriceps, AztSp=
977	Azteca sp. 1, ParLo= Paratrechina longicornis, TetSpi= Tetramorium spinosum, CepMin= Cephalotes
978	minutus, DorBi= Dorymyrmex bicolor, PseGra= Pseudomyrmex gracilis, MonCy= Monomorium
979	cyaneum, CamHi= Camponotus mucronatus hirsutinasus, PachVi= Pachycondyla villosa, ForAna=
980	Forelius analis, CreBre= Crematogaster brevispinosa, PheSp= Pheidole sp., SolGe= Solenopsis
981	geminate, WasAu= Wassmannia auropunctata, PseEje= Pseudomyrmex ejectus, PseBru= Pseudomyrmex
982	brunneus. Ant attributes considered also in Figure 2 are: Invasive status = status as invasive/tramp ant
983	species (INV or NO), Dominance = hierarchies of behavioral dominance (from the most dominant to the
984	least) are: A= Dominant Dolichoderine, B= Specialized Predators, C= Generalized Myrmicine, D=
985	Subordinate Camponotini, E= Hot Climate Specialist, F= Opportunistic; Head length= length (mm) from

head apex to anterior clypeal margin of species (minor worker).

_


Ant species	Invasive status	Dominance hierarchy	Head length
CamPla	NO	D	1.198
CamMu	NO	D	1.418
CamAt	NO	D	1.946
AztSp	NO	E	1.471
ParLo	INV	С	0.638
TetSpi	INV	D	0.968
CepMin	NO	С	1.155
DorBi	NO	С	0.973
PseGra	NO	В	1.738
MonCy	NO	D	0.482

CamHi	NO	D	1.076
PachVi	NO	В	2.88
ForAna	NO	Е	0.631
CreBre	NO	D	1.031
PheSp	NO	Е	0.553
SolGe	INV	D	0.684
WasAu	INV	D	0.479
PseEje	NO	В	0.8


1006 FIGURE LEGENDS

1007		
1008	Figure 1. Quantitative mutualistic networks between EFN-bearing plants (lower trophic level,	
1009	green nodes) and ant visitor species (higher trophic level, red nodes). Blue-colored nodes depict	
1010	species constituting the core of the network. Species codes as in Tables 1 and 2.	
1011		
1012	Figure 2. Ordination of NMDS representing the assemblage of interactions given the ant-plant	
1013	distances (Bray-Curtis) at the network: ant species in red, plant species in black, codes for species	
1014	names and attributes as in Table 1. Stress = 0.17 (fourth iteration) indicates a good two-	
1015	dimensional solution of the ordination suitably representing ant-plant assemblage dissimilarity.	
1016	This configuration having as wellalso has very low residuals (max res = 0.0004) indicating a	
1017	good concordance between the calculated dissimilarities and the distances among objects. Distant	
1018	Non-overlapping ellipses (i.e. orange and green) circle the attribute (factor) that significantly	Formatted: Not Highlight
1019	explained (r^2 =0.24, P = 0.005) the pairwise interaction pattern (habitat types).	Commented [MS40]: rather than having ant and plant names
 1019 1020	explained (r^2 =0.24, P = 0.005) the pairwise interaction pattern (habitat types).	Commented [MS40]: rather than having ant and plant names on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self- explanatory at the momento.
	explained ($r^2 = 0.24$, $P = 0.005$) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020	explained ($r^2 = 0.24$, $P = 0.005$) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023	explained ($r^2 = 0.24$, $P = 0.005$) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024	explained (r^2 =0.24, P = 0.005) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024 1025	explained ($r^2 = 0.24$, $P = 0.005$) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024 1025 1026	explained ($r^2 = 0.24$, $P = 0.005$) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024 1025	explained (r^2 =0.24, P = 0.005) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024 1025 1026	explained (<i>r</i> ² =0.24, <i>P</i> = 0.005) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024 1025 1026 1027	explained (<i>r</i> ² =0.24, <i>P</i> = 0.005) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-
1020 1021 1022 1023 1024 1025 1026 1027 1028	explained (<i>r</i> ² =0.24, <i>P</i> = 0.005) the pairwise interaction pattern (habitat types).	on nMDS - which are difficult to read – could you better explain the factors and habitat types show on the nMDS. Its not very self-

1032 Figure 1.

