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Background Lower grade glioma (LGG) are a heterogeneous tumor that may develop into
high-grade malignant glioma seriously shortens patient survival time. The clinical
prognostic biomarker of lower-grade glioma is still lacking. The aim of our study is to
explore novel biomarkers for LGG that contribute to distinguish potential malignancy in
low-grade glioma, to guide clinical adoption of more rational and effective treatments.
Methods The RNA-seq data for LGG was downloaded from the UCSC Xena and Chinese
Glioma Genome Atlas (CGGA). By robust likelihood-based survival model, LASSO
regression and multivariate Cox regression analysis, we developed a three-gene signature
and established a risk score to predict the prognosis of patient with LGG. The three-gene
signature was an independent survival predictor compared to other clinical parameters.
Based on the signature related risk score system, stratified survival analysis was
performed in patients with different age group, gender, and pathologic grade. The
prognostic signature was validated in CGGA dataset. Finally, Weighted Gene Co-expression
Network Analysis (WGCNA) was carried out to find the co-expression genes related to the
member of the signature and enrichment analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway were conducted for those co-
expression network. To prove the superiority of the model, time-dependent ROC curves of
our model and other models are constructed. Results In this study, a three-gene signature
(WEE1, CRTAC1, SEMA4G) was constructed. Based on the model, the risk score of each
patient was calculated with LGG (low-risk vs. high- risk, hazard ratio[HR]=0.198, 95%CI=
0.120-0.325) and patients in the high-risk group had significantly poorer survival results
than those in the low-risk group. Furthermore，the model was validated in CGGA dataset.
Lastly, by WGCNA, we constructed the co-expression network of the three genes and
conducted the enrichment of GO and KEGG. Our study identified a three-gene model that
showed better performance in predicting the 1-, 3- and 5-year survival of LGG patients
compared to other models and may be promising independent biomarker of LGG.
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9 Abstract

10 Background

11 Lower grade glioma(LGG) are a heterogeneous tumor that may develop into high-grade 

12 malignant glioma seriously shortens patient survival time. The clinical prognostic biomarker of 

13 lower-grade glioma is still lacking. The aim of our study is to explore novel biomarkers for LGG 

14 that contribute to distinguish potential malignancy in low-grade glioma，to guide clinical 

15 adoption of more rational and effective treatments.

16 Methods

17 The RNA-seq data for LGG was downloaded from the UCSC Xena and Chinese Glioma 

18 Genome Atlas（CGGA）. By robust likelihood-based survival model、LASSO regression and 

19 multivariate Cox regression analysis，we developed a three-gene signature and established a risk 

20 score to predict the prognosis of patient with LGG. The three-gene signature was an independent 

21 survival predictor compared to other clinical parameters. Based on the signature related risk 

22 score system，stratified survival analysis was performed in patients with different age group，

23 gender，and pathologic grade. The prognostic signature was validated in CGGA dataset. 

24 Finally，Weighted Gene Co-expression Network Analysis (WGCNA) was carried out to find the 

25 co-expression genes related to the member of the signature and enrichment analysis of Gene 

26 Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway were 

27 conducted for those co-expression network. To prove the superiority of the model，time-
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28 dependent ROC curves of our model and other models are constructed.

29 Results

30 In this study，a three-gene signature(WEE1，CRTAC1，SEMA4G)was constructed. Based on 

31 the model，the risk score of each patient was calculated with LGG(low-risk vs. high- risk，

32 hazard ratio[HR]=0.198，95%CI= 0.120-0.325) and patients in the high-risk group had 

33 significantly poorer survival results than those in the low-risk group. Furthermore，the model 

34 was validated in CGGA dataset. Lastly，by WGCNA，we constructed the co-expression network 

35 of the three genes and conducted the enrichment of GO and KEGG. Our study identified a three-

36 gene model that showed better performance in predicting the 1-，3- and 5-year survival of LGG 

37 patients compared to other models and may be promising independent biomarker of LGG.

38 Keyword: low-grade glioma，prognosis，WGCNA，risk score，robust likelihood-based survival 

39 model，biomarker，signature，better performance

40 Introduction

41   With the development of sequencing and bioinformatics technologies，accumulating studies 

42 have revealed that different patients may be similar in glioma grade but differ greatly in 

43 molecular characteristics，clinical prognosis，and treatment response. So many central nervous 

44 system tumors were named according to molecular parameters and histopathologic diagnosis，

45 especially gliomas，ependymomas，and medulloblastomas in the 2016 revision of the WHO 

46 classification(Zhang et al. 2019b). As we know，some molecular markers，such as MGMT(O6-

47 methylguanine DNA methyltransferase)(Binabaj et al. 2018)，IDH(isocitrate dehydrogenase)

48 (Kwon et al. 2019)，EGFR(epidermal growth factor receptor)(Chistiakov et al. 2017)，and 

49 PTEN(phosphatase and tensin homolog)(Koshiyama et al. 2017)that have contributed to 

50 personalized therapeutic approaches and targeted anti-glioblastoma therapies have been routinely 

51 tested in glioblastoma patients clinically. However there are few specific clinical indicators and 

52 therapeutic targets for LGGs compared to glioblastoma，so it is urgent to elucidate the 

53 mechanism of glioma development and progression，which can provide potential treatment 

54 targets for LGGs.

55   In this study, gene expression RNAseq data and corresponding clinical information of LGG 
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56 patients were downloaded from UCSC Xena(https://xenabrowser.net/hub/) and Chinese Glioma 

57 Genome Atlas（CGGA,http://www.cgga.org.cn/）.By analyzing data from UCSC Xena using 

58 robust likelihood-based survival model and Cox regression，we developed a three-gene signature 

59 that provides effective survival risk stratification of patients with LGG and validated the 

60 signature in the CGGA dataset. These results demonstrate the potential of the three-gene 

61 signature for survival prediction of patients with LGG and provide new potential molecular 

62 treatment targets for LGGs.

63 Materials and Methods

64 Dataset of Patients with LGG

65 The LGGs RNA sequencing（RNAseq）data and corresponding clinical information were 

66 downloaded from The Cancer Genome Atlas (TCGA) hub by the University of California, Santa 

67 Cruz, Xena browser(https://xenabrowser.net/hub/) and CGGA data 

68 portal(http://www.cgga.org.cn/) respectively. The TCGA RNAseq data (level 3) shows the gene-

69 level transcription estimates, as in log2(x+1) transformed RSEM normalized count. The CGGA 

70 data displays the gene expression level as fragments per kilobase transcriptome per million 

71 fragments(FPKM),which has been standardized. Expressed gene defined only if its expressed 

72 level is larger than 0 at half of samples. Only patients with a clear information of survival and 

73 detailed history of radiotherapy and chemotherapy/molecular therapy were included in the study. 

74 Finally,456 cases from TCGA dataset and 159 cases from the CGGA dataset were included in 

75 the training set and validation set respectively. Table 1 summarized the clinical characteristics 

76 and therapy information of the training set and validation set. The workflow presentation of this 

77 study is shown in Figure 1.

78 Identification of survival-related genes and construction of the prognostic model

79 By using the rbsurv package in R，a robust likelihood-based survival model was conducted to 

80 identify survival-related genes(Cho et al. 2009). The rbsurv package is a software program，which 

81 selects survival-associated genes based on the partial likelihood of the Cox model and adopts a 

82 cross-validation approach for robustness. According to the description of the rbsurv package，prior 
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83 gene selection such as univariate survival modeling can be performed if necessary and the 

84 univariate survival modeling can be performed in this software program. Compared to the survival 

85 modeling without an adjustment of risk factors，the robust likelihood-based survival model can 

86 improve the ability to discover truly survival-associated genes by modeling genes after adjusting 

87 for certain risk factor. Thus，we directly conduct a robust likelihood-based survival model to 

88 screen for the prognostic genes. The robustness test was performed on 20530 genes and 456 

89 samples. After 10 iterations, 29 prognostic related genes were selected. With the help of glmnet 

90 and survival package in R, least absolute shrinkage and selection operator (LASSO)regression and 

91 the multivariable Cox proportional hazard regression method were used to further identify the 

92 survival-related prognostic model. The same approach was used to identify gene signatures for 

93 endometrial carcinoma (Ouyang et al. 2019). At last，three prognostic survival-related genes that 

94 were independent survival predictors and their regression coefficients were obtained at a threshold 

95 of P＜0.05. Based on the median expression value of each survival-related gene，we dichotomized 

96 456 LGGs patients into low and high expression groups and compare the survival rate between the 

97 two groups by Kaplan-Meier plots and Log-rank test. According to the estimated regression 

98 coefficients，a prognostic risk score for each patients was then calculated(Wang et al. 2019). The 

99 risk score=(0.4470×expression level of WEE1)＋(-0.1530×expression level of CRTAC1)＋(-

100 0.3723×expression level of SEMA4G). With the three-gene signature，456 LGGs patients were 

101 divided into high-risk and low-risk groups with the median risk score as the cut-off value. Kaplan-

102 Meier curves were performed to estimate and compare the survival for TCGA LGGs patients with 

103 a high score or a low score. The receiver operating characteristic(ROC) curve and area under the 

104 curve(AUC) were applied to evaluate the prediction accuracy of the risk score model. Furthermore 

105 stratified survival analysis was performed in patients with different age group(younger,old) ，

106 gender(male,female)，and pathologic grade(G2,G3). 

107 Univariate and multivariate Cox hazard regression analysis were conducted for the potential 

108 prognostic factors such as age group(younger vs. old)， gender(male vs. female)，pathologic 
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109 grade(G2 vs. G3)，radiation therapy(Yes vs. No)，molecular therapy(Yes vs. No) and risk 

110 score(High vs. Low).

111 Validation of the prognostic model in the CGGA

112 The prognostic model was validated in the CGGA mRNAseq_325 cohort. Only patients with a 

113 clear information of survival，detailed history of radiotherapy and chemotherapy were included 

114 in the study. Finally，159 cases from the CGGA mRNAseq_325 cohort were included in the 

115 validation set.

116 Exploring co-expression genes by WGCNA

117 To explore the regulatory network of the three genes，WGCNA was performed in training set by 

118 the R package WGCNA(Langfelder & Horvath 2008). The top 50% variance of genes were 

119 selected for WGCNA. In other words，WGCNA based on 456 samples and 10256 genes. First，

120 RNAseq data were filtered to reduce outliers. Using the absolute value of the correlation between 

121 the expression levels of transcripts，a co-expression similarity matrix was constructed. Then，the 

122 co-expression similarity matrix was transformed to the adjacency matrix by choosing 9 as a soft 

123 threshold. Co-expression gene module was established by the topological overlap measure. In 

124 order to identify the significance of each module，gene significance(GS) was calculated to 

125 estimate the correlation between genes and sample traits. Module significance(MS) was defined 

126 as the average GS within modules and was calculated to measure the correlation between 

127 modules and sample traits(vital status). Finally，the “vital status” related modules that contain 

128 the 3 genes as members and genes belong to such modules were identified. Genes interacted with 

129 those three genes were screened and the co-expression network was constructed by Cytoscape 

130 software(Shannon et al. 2003).

131 Functional enrichment analysis

132 Using Enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and 

133 Genomes(KEGG) pathway were conducted via the clusterProfiler package in R language(Yu et 

134 al. 2012) for those genes that belong to the “vital status” related modules associated with the 

135 three genes. Benjamini-Hochberg (BH)-adjusted p-value <0.05 were considered significant.
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136 Results

137 Three prognostic genes were identified in TCGA dataset and validated in CGGA dataset

138 456 patients and 20530 genes were included in the TCGA-LGG to train the prognostic model. 

139 The robust likelihood-based survival model found 29 survival-related genes，13 genes were 

140 obtained through LASSO Cox method(Fig.2). We further reduced the dimensionality of these 

141 high-dimensional data by multivariate Cox proportional hazard regression model. Finally，three 

142 genes that were independent survival predictors were identified as survival prediction signature. 

143 Those three genes included in the model were WEE1，SEMA4G，CRTAC1. It has been reported 

144 that WEE1 is closely related to the growth, invasion and migration of glioma(Wu et al. 2019). 

145 Currently, there is no study revealing the role of SEMA4G and CRTAC1 in gliomas. After 

146 calculating the risk score, patients were divided into a high- and low-risk group based on the 

147 median cut-off point of the risk score. The three-gene signature risk score distribution is shown 

148 in Fig 3A. Besides，the relationship between risk score and the status of the LGGs was 

149 calculated(Fig.3B). As shown in the heat map of the Figure 3C，a remarkable high expression 

150 was noted for WEE1 in the high-risk group，while a lower expression was observed for the other 

151 genes in the high-risk group.(Fig.3C). Patients in the high-risk group were significantly worse off 

152 the overall survival time compared to the low-risk group(P＜0.0001)(Fig.4A). The area under 

153 ROC curve of the signature for 1-,3- and 5-year overall survival was 0.904,0.878 and 0.805，

154 respectively，in training set. (Fig.4B). A similar result can be noted in the validation 

155 dataset(Fig.4C). The area under ROC curve of the signature for 1-,3- and 5-year overall survival 

156 was 0.783,0.813 and 0.813，respectively，in validation set. (Fig.4D).Moreover，the predicting 

157 power of the risk score model was not decreased in subgroup analysis for age 

158 group(younger,P=0.00012;old,P＜0.0001) ，gender(male,P＜0.0001;female,P＜0.0001)，and 

159 pathologic grade(G2,P=0.00013;G3,P＜0.0001) in the training set(Fig.5A-5F). The same trend 

160 can be observed in the validation dataset(Fig.6A-6F).For the WEE1，the member of high 

161 expression group had significantly shorter survival than those in low expression group(P＜

162 0.0001)(Fig.7A). For the SEMA4G and CRTAC1，the member of high expression group had 
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163 significantly longer survival than those in low expression group(P＜0.0001)(Fig.7B-7C). The 

164 expression level of WEE1 was significantly higher in grade III compared to grade II(P＜

165 0.0001)，while the other are opposite(Fig.8A). These results can also be verified in the validation 

166 dataset(Fig.7D-7F、8B).

167 Multivariate Cox proportional hazard regression demonstrated that age group (HR=0.274，P= 

168 2.21E-09)，pathologic grade (HR=2.49，P=0.00011) and risk score(HR=0.198，P＜

169 0.000000000168) were independent prognostic factors in the training set，while pathologic 

170 grade(HR=3.799，P=0.00000151)，1p19q status(HR=4.566，P=0.0000388)，radiation therapy 

171 (HR=0.524，P=0.046)，and risk score (HR=0.415，P=0.000653)were independent prognostic 

172 factors in validation dataset(Table 2) .

173 Calculation of module-trait correlation in LGGs and module visualization of the network 

174 connections

175 Using the R package WGCNA，gene modules were identified based on the top 50% variance of 

176 genes. To analyze the relationship between gene modules and sample clinical information，we 

177 used the module eigengene(ME) as the overall gene expression level of the corresponding 

178 modules and calculated correlations with clinical phenotypes，for example，vital status. we 

179 obtained 16 gene modules (SupplementFigure1.A-D) with size ranging from 31 to 1501 genes. 

180 We assigned each co-expression module an arbitrary color for reference: black, blue, brown, 

181 cyan, green, greenyellow, lightcyan, magenta, midnightblue, pink, purple, red, salmon, tan, 

182 turquoise, and yellow. These modules contained 449, 1352, 850, 46, 519, 91, 31, 201, 43, 336, 

183 135, 462, 51, 90, 1501 and 845 genes, respectively. As a single group, the non-co-expressed 

184 group designated as ‘grey’ based on the WGCNA developer’s rationale. Vital status related 

185 modules，such as yellow，green，black modules that contain the 3 genes as members and genes 

186 belong to such modules were screened(SupplementFigure1.D). Finally，32 genes were 

187 discovered to be co-expressed with CRTAC1，181 genes were co-expressed with WEE1，6 

188 genes with SEMA4G. We exported the screened genes and three prognostic survival-related 

189 genes into Cytoscape and constructed the co-expression network(Fig.9).
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190 GO and KEGG analysis of screened genes interacted with three-gene signature

191 For the “biological processes”(BP)，chromosome segregation，nuclear division，mitotic nuclear 

192 division，organelle fission，mitotic sister chromatid segregation were the commonly enriched 

193 categories(Fig.10A). For the “cellular component”(CC)，the enriched categories were correlated 

194 with condensed chromosome，chromosome/centromeric region，chromosomal region，

195 kinetochore，condensed chromosome/centromeric region(Fig.10B). For the “molecular function”

196 (MF)，these screened genes mainly enriched in microtubule binding，tubulin binding，histone 

197 kinase activity，DNA-dependent ATPase activity，protein serine/threonine kinase 

198 activity(Fig.10D).KEGG pathway enrichment analysis suggested that cell cycle was the most 

199 important pathway for these selected genes. The following pathway also involved many screened 

200 genes，including，oocyte meiosis，progesterone-mediated oocyte maturation，fanconi anemia 

201 pathway，homologous recombination(Fig.10C).Additionally，For the Gene Ontology analysis, 

202 these 3 co-expression gene modules (yellow, green, black) enriched results can been seen in 

203 supplemental files(SupplementalFigure2、3). 

204 A comparison between our and other models

205 Recently，Chen X.P et al reported a model containing 3 genes(EMP3、GSX2、EMILIN3) based 

206 on integrative analysis of DNA methylation and gene expression in TCGA dataset(Zeng et al. 

207 2018).Chuang Zhang et al also reported a 4-gene(EMP3、GNG12、KIF2C、IFI44) prognostic 

208 signature based on genes encodes by chr1p/19q(Zhang et al. 2019a). To compared the prognostic 

209 values of our prognostic signature and their model，we performed time-dependent ROC curve 

210 analysis in our model and other models based on the risk score calculated by the regression 

211 coefficients which obtained by themselves and the expression level of members in their signature 

212 showed in the TCGA dataset, which has a larger number of samples compared to CGGA dataset, 

213 that might be able to ensure the credibility of the comparison results. The results exhibited that 

214 our model displayed a better predictive value in predicting 1-，3- and 5-year overall survival 

215 compared to other models，especially in 1-，3-year overall survival(Fig.11A-11C). In other 

216 words，our 3-gene model had a better efficiency in predicting both short- and long-term 
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217 prognosis.  

218 Discussion

219 From the perspective of traditional pathology，the diagnosis of low-grade glioma depends on 

220 pathological type and pathological grade. With the development of sequencing technology，

221 molecular biomarkers for the diagnosis of LGG have attracted widespread attention(Cancer 

222 Genome Atlas Research et al. 2015). Prognostic factors for the low-grade glioma that are well 

223 known include IDH mutations(Batsios et al. 2019)，1p/19q co-deficiency(Zhang et al. 2019a)，

224 ATRX mutation(Ren et al. 2019)，TERT promoter mutations(Chan et al. 2015)，CIC loss(Sahm 

225 et al. 2012)，FUBP1 loss(Sahm et al. 2012) and PTEN loss(Sabha et al. 2014) and the above 

226 prognostic marker contribute to clinicians to understand the mechanism of low-grade gliomas. 

227 The complex pathogenesis of LGG encourages us to explore more prognostic markers for further 

228 understand it and develop an efficient treatment.

229 In this study，we identified three genes that were closely correlated with LGG prognosis. 

230 Considering the differentially expressed genes(DEGs) between tumor and normal tissue might 

231 not be associated with survival(Liu et al. 2019) and the univariate survival modeling can be 

232 performed in rbsurv package，the robust likelihood-based survival model was performed using 

233 the rbsurv package in R as the first step instead of screening for DEGs and conducting the 

234 univariate Cox regression. LASSO and Cox proportional hazard regression model are widely 

235 used to generate prognostic genes in the context of high dimensional data，thus were adopted in 

236 subsequent analysis. Compared to a single predictive biomarker，integrating multiple biomarkers 

237 into a signature is believed to be more predictive. The risk score calculated by the risk model was 

238 considered to have good predictive capabilities and was demonstrated to be an independent 

239 prognostic factor after adjusting the effects of age，sex，tumor grade，molecular therapy and 

240 radiation therapy. The risk score was confirmed to be effective in different age groups、gender 

241 and pathologic grade. Regardless of the training set or the validation set，the AUC value of 1-，

242 3- and 5-year was greater than 0.75. The pathologic grade and the risk level were confirmed to 

243 be independent prognostic factors both in training set and validation set. 
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244 In order to construct a co-expression network of the three genes，WGCNA was used in the 

245 training set. We found the survival related modules to which these three genes belong，and 

246 extracted the genes of these three modules to construct a co-expression network. Finally，32 

247 genes were discovered to be co-expressed with CRTAC1，181 genes were co-expressed with 

248 WEE1，6 genes with SEMA4G. The co-expression network of the three genes is visualized by 

249 Cytoscape in Figure 9.

250 Based on the result of GO and KEGG enrichment analysis of these co-expression genes，

251 “condensed chromosome” was the most significant enrichment in CC. Coincidentally，Rebecca 

252 C et al. found that interference with chromatin condensation results in failure to fully activate 

253 DNA damage response(Burgess et al. 2014) and the DNA damage response triggers multiple 

254 cellular events including activation of DNA repair pathway，arrest of the cell cycle to allow time 

255 for repair，and，in certain cases，initiation of senescence or apoptosis programs(Ciccia & 

256 Elledge 2010). For the BP category，chromosome segregation was the most enrichment and 

257 research has proven that chromosome instability contributes to the development of genetic 

258 heterogeneity in tumors and allows the outgrowth of tumorigenic cells with advantageous 

259 karyotypes(Conde et al. 2017). Regarding the MF category，microtubule binding was the most 

260 influential and the drug targeted microtubule was proven effective in glioma.  For example，the 

261 drug EM011 functions by disrupting microtubule dynamics and modules several oncogenic 

262 mediators causing a decrease in cell viability，proliferation and migration/invasion in the 

263 astrocytoma cell lines(Ajeawung et al. 2013). For KEGG pathway enrichment analysis，cell 

264 cycle was the most significant pathway. Stephen D has explained that signaling pathway 

265 converge on the cell cycle machinery to regulate developmental genes and execute cell fate 

266 decisions(Dalton 2015).

267 The three-gene signature provided a wealth of potential biological and therapeutic information 

268 about LGG.WEE1(WEE1 G2 checkpoint kinase)，located on the short arm of human 

269 chromosome 11(11p15.4)，encodes a nuclear protein，which is a tyrosine kinase belonging to the 

270 Ser/Thr family of protein kinases. The protein catalyzes the inhibitory tyrosine phosphorylation 
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271 of CDC2/cyclin B kinase，and appears to coordinate the transition between DNA replication and 

272 mitosis by protecting the nucleus from cytoplasmically activated CDC2 kinase. WEE1 has been 

273 confirmed that its protein expression increases with malignancy grade(Music et al. 2016). 

274 Moreover，patients with high WEE1 expression had poor survival than did patients with low 

275 WEE1 expression in grade III gliomas(Music et al. 2016).CRTAC1，cartilage acidic protein 1，a 

276 novel human marker which allowed discrimination of human chondrocytes from osteoblasts and 

277 mesenchymal stem cells in culture can be divided into CRTAC1-A and CRTAC1-B two 

278 subtypes according to the last exon. Previous study found that inhibition of CRTAC1 reduces 

279 ultraviolet B irradiation induced-apoptosis through P38 mitogen-activated protein kinase and jun 

280 Amino-Terminal kinase pathway(Ji et al. 2016). It means that the relationship between the 

281 expression of CRTAC1 and apoptosis is positively correlated after ultraviolet B irradiation. To 

282 some extent，this is consistent with our finding that CRTAC1 high expression prolongs survival 

283 time in LGG patients. However，its detailed mechanism in LGG remains to be further explored. 

284 Semaphorins are a large family of conserved secreted and membrane associated proteins which 

285 possess a semaphoring(Sema) domain and a PSI domain in the N-terminal extracellular portion. 

286 Based on sequence and structural similarities，semaphorins are put into eight classes: 

287 invertebrates contain classes 1 and 2，viruses have class 8，and vertebrates contain class 3-7. 

288 Semaphorins serves as axon guidance ligands via multimeric receptor complexs，some 

289 containing plexin proteins. Semaphorins and Plexins are cognate ligand-receptor families that 

290 regulate important steps during nervous system development(Maier et al. 2011). A low-

291 expression of SEMA4G was detected in colorectal cancer tissues compared with normal tissues. 

292 It means that SEMA4G might be a tumor suppressor gene related to colorectal cancer(Wang et 

293 al. 2008). However，little work has been done to elucidate the role of SEMA4G in glioma. Our 

294 study demonstrated that SEMA4G was significantly down-regulated in grade III patients 

295 compared to grade II and the high-expression of SEMA4G was associated with a good prognosis 

296 in LGG patients. Further work is needed to explore its functions in LGG. To sum up，the three-

297 gene signature could predict LGG survival based on a risk score model. We firmly believed that 

PeerJ reviewing PDF | (2019:09:41271:1:1:NEW 29 Oct 2019)

Manuscript to be reviewed



298 these genes are potential prognostic markers or therapeutic targets for LGG patients. 

299 Nevertheless，the molecular mechanisms how the three-gene signature affected the prognosis of 

300 LGG patients should be further elucidated by a series of experiments. 

301 Conclusion

302 In conclusion，Our study identified a 3-gene model that showed better performance in predicting 

303 short- and long-term survival of LGG patients compared to other models. Moreover，our finding 

304 provided new insights into the pathogenesis and prognosis of LGG. 
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Figure 1
Study outline.

The outline indicates the exploration process.
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Figure 2
The LASSO regression used to reduce the dimensionality of survival related genes.
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Figure 3
Risk score analysis, survival status and survival time between two risk group and
expression distribution of the three-gene signature in TCGA dataset.

(A) The three-gene signature risk score distribution. (B) Scatterplot of patient survival status
ordered by risk score. (C) The heat-map of the three-gene expression profiles after
standardized and centralized.
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Figure 4
Establishment and verification of the risk model in the training set and validation set.

(A) Patient in high-risk group displayed significantly shorter survival time compared to those
in low-risk group in training set(P < 0.0001). (B)The ROC for predicting the 1-, 3- and 5-year
survival and AUC for the risk score model showed good accuracy in training set. (C, D)The
same result can be observed in the validation set.
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Figure 5
Stratified survival analysis based on the risk model in the training set.

Based on the risk score model, stratified survival analysis performed in patients with different
age group(A、D)，gender(B、E)，and pathologic grade(C、F) in the training set.
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Figure 6
Stratified survival analysis based on the risk model in the validation set

Based on the risk score model, stratified survival analysis performed in patients with different
age group(A、D)，gender(B、E)，and pathologic grade(C、F) in the validation set.
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Figure 7
The expression level of the three genes can divided the patients into different
prognostic group in both training set and validation set.

For the WEE1，the member of high expression group had significantly shorter survival than
those in low expression group (P＜0.0001) (A、D). For the CRTAC1，the member of high
expression group had significantly longer survival than those in low expression group(P
＜0.0001)(B、E). For the SEMA4G，the member of high expression group had significantly
longer survival than those in low expression group(P＜0.0001)(C、F).
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Figure 8
Expression of the three genes between grade II tumor and grade III tumor in training set
and validation set.

In the training set,the expression level of WEE1 was significantly higher in grade III compared
to grade II(P＜0.0001)，while the other are opposite(A). These results can also be verified in
the validation dataset(B).
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Figure 9
Co-expression network of the three-gene signature.

The co-expression networks of WEE1(A), CRTAC1(B) and SEMA4G(C) were showed. Yellow
nodes showed key genes and blue nodes are genes which co-expressed with the key genes.
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Figure 10
The most significantly enriched GO annotations and KEGG pathways of co-expressed
genes. The length of the bars and the size of the dots represents the numbers of genes,
and the color of the bars/dots corresponds to the P-value according to legend.

(A)Top 5 significantly enriched biological process. (B) Top 5 significantly enriched cellular
component. (C) Top 5 significantly enriched KEGG pathways. (D) Top 5 significantly enriched
molecular function.
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Figure 11
Comparison of our 3-gene model and other literature models.

The-dependent ROC analysis was performed to compare the three models in predicting 1-
year(A), 3-year(B) and 5-year(C) overall survival.
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Table 1(on next page)

Clinical parameters of patients in the training set and validation set.
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1

2 Table1:

3  Clinical parameters of patients in the training set and validation set.

Variables
Training 

set(n=456)

Validation 

set(n=159)
Pvalue

Age group(Median) 0.5448

younger 232 86

old 224 73

Sex 0.1894

Female 210 63

Male 246 96

Grade 0.09385

G2 221 90

G3 235 69

Molecular therapy

Yes 263 /

NO 193 /

Chemoterapy

Yes / 80

NO / 79

Risk level 1

High 228 79

Low 228 80

IDH_status

Wildtype / 43

Mutant / 116

1p19q_status

Non_codel / 52

Codel / 107

Radiation therapy
3.52E-

10

Yes 280 141

NO 176 18

Age(years)

Mean±SD 43.4±13.3 40.7±10.9 0.989

Median 41 40

Vital status

Alive 341 77

Dead 115 82

Survival time(days)

Mean 998.6±953.8 2024.7±1334.3 5.27E-
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24

Median 714.5 2340

Histologic type

Astrocytoma 162 34

Oligodendroglioma 171 21

Oligoastrocytoma 123 35

Anaplastic astrocytomas / 26

Anaplastic oligoastrocytomas / 32

Anaplastic 

oligodendrogliomas
/ 11

4
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Table 2(on next page)

Univariate and multivariate Cox regression analyses of the risk score and other
clinicopathological factors in training set and validation set.
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Variables Training set(n=456) Validation set(n=159)

Univariate Multivariate Univariate Multivariate

HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value

Age 

group(Median)

younger vs 

old

0.27

8

0.184-

0.420
1.3E-09

0.27

4

0.179-

0.418

2.21E-

09

0.81

7

0.530-

1.261
0.363 1.051

0.654-

1.691
0.837

Sex
Male vs 

Female

1.04

3

0.721-

1.509
0.823

1.08

1

0.743-

1.572
0.686

0.64

1

0.416-

0.989
0.044 0.651

0.412-

1.028
0.066

Grade G3 vs G2
3.30

1

2.196-

4.963
9.3E-09 2.49

1.568-

3.953
0.00011

3.59

0

2.292-

5.625
2.4E-08 3.799

2.205-

6.545
0.00000151

Molecular 

therapy
Yes vs No

1.36

6

0.924-

2.018
0.117

0.89

3

0.578-

1.379
0.608 / / / / / /

Chemoterapy Yes vs No / / / / / /
2.21

6

1.409-

3.485
0.00057 1.041

0.614-

1.765
0.881

Risk level Low vs High
0.18

8

0.118-

0.299
2.1E-12

0.19

8

0.120-

0.325

1.68E-

10

0.24

6

0.153-

0.394
5.7E-09 0.415

0.251-

0.688
0.000653

IDH_status
Wildtype vs 

Mutant
/ / / / / /

2.49

6

1.582-

3.937
8.4E-05 0.995

0.600-

1.650
0.983

1p19q_status
Non_codel 

vs Codel
/ / / / / /

6.55

4

3.358-

12.790
3.6E-08 4.566

2.215-

9.414
0.0000388

Radiation 

therapy
Yes vs No

1.99

6

1.278-

3.118
0.00236

0.81

4

0.488-

1.358
0.43

0.47

5

0.262-

0.861
0.0141 0.524

0.277-

0.990
0.046

1
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