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ABSTRACT
Purpose. There is plenty of evidence showing that autophagy plays an important
role in the biological process of cancer. The purpose of this study was to establish
a novel autophagy-related prognostic marker for lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC).
Methods. The mRNA microarray and clinical data in The Cancer Genome Atlas
(TCGA) were analyzed by using a univariate Cox proportional regression model
to select candidate autophagy-related prognostic genes. Bioinformatics analysis of
gene function using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) platforms was performed. A multivariate Cox proportional
regression model helped to develop a prognostic signature from the pool of candidate
genes. On the basis of this prognostic signature, we could divide LUAD and LUSC
patients into high-risk and low-risk groups. Further survival analysis demonstrated
that high-risk patients had significantly shorter disease-free survival (DFS) than low-
risk patients. The signature which contains six autophagy-related genes (EIF4EBP1,
TP63, BNIP3, ATIC, ERO1A and FADD) showed good performance for predicting the
survival of LUAD and LUSC patients by having a better Area Under Curves (AUC)
than other clinical parameters. Its efficacy was also validated by data from the Gene
Expression Omnibus (GEO) database.
Conclusion. Collectively, the prognostic signature we proposed is a promising
biomarker for monitoring the outcomes of LUAD and LUSC.

Subjects Bioinformatics, Oncology
Keywords Autophagy, Prognostic signature, TCGA, Lung adenocarcinoma, Lung squamous cell
carcinoma

INTRODUCTION
Lung cancer is a fatal malignancy worldwide and is one of the leading causes of death caused
bymalignant tumors. In 2019, themortality of lung cancer still ranks first among those of all
kinds of cancers in the United States (Siegel, Miller & Jemal, 2019). For worldwide, it is also
the leading cause of cancer death among men and the second leading cause of cancer death
among women (Torre, Siegel & Jemal, 2016). More than half (57%) of lung cancer patients
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are diagnosed at the time of the distant stage (Torre, Siegel & Jemal, 2016). Even patients
who underwent surgical resection, chemotherapy, radiotherapy and targeted therapy
did not have significantly improved survival times. The five-year survival varies from
4–17%, leads to a need to explore new therapeutic targets and treatments (Gray et al., 2019;
Hirsch et al., 2017). According to the histological classification, lung cancer is divided into
small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), the latter of which
accounts for approximately 85% of all cases (Neal, Hamilton & Rogers, 2014). Squamous
cell carcinoma and adenocarcinoma account for approximately 90% of the total NSCLC
cases, which make them the most common types of lung cancer (Neal, Hamilton & Rogers,
2014). The poor therapeutic effect of NSCLC is mainly due to the lack of effective indicators
for detecting the development of tumors at the early stage. Therapeutic progress of NSCLC
is approached by the advances in themolecular field and the development of new drugs that
target molecular abnormalities. But the existing treatment targets are prone to inducing
resistance. New treatment markers and targets are needed to achieve better prognosis. The
identification of aberrant genes has been a hot topic, in which the research on autophagy
has a great prospect. Autophagy is the phagocytotic process of engulfing cytoplasmic
proteins, complexes or organelles. The autophagosome, a cytoplasmic double-membrane
structure, can be transported into lysosome and fusion with lysosome to generate the
autolysosome (Galluzzi et al., 2015; Levine & Kroemer, 2008; Maiuri et al., 2007b). The
degradation products can be transported back and recycled for general cell metabolism.
Generally speaking, autophagy has a dual function in the apoptosis, which means it has
positive and negative effects. It is suppressed by carcinogenic proteins to prevent excessive
protein degradation in stressed tumor cells. Meanwhile, persistent autophagy activation
leads to apoptosis (White, 2015; Ye et al., 2012). According to the present understanding,
autophagy is involved in the innate and adaptive immune responses and can be induced
by immune receptors such as Toll-like receptors and NLRs (nucleotide oligomerization
domain-like receptors) (Cadwell, 2016). It takes part in the process of antigen presentation
and the development of lymphocytes (Zhong, Sanchez-Lopez & Karin, 2016), which makes
autophagy a possible target for improving immunotherapy in NSCLC. The relationship
between autophagy and NSCLC has not been fully revealed, and some studies have
suggested a role of autophagy in the targeted drug resistance. For example, in patients with
NSCLC, EGFR tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase
inhibitors (ALK) can be used as effective treatments. EGFR-TKIs can induce autophagy,
and high levels of autophagy after treatment with EGFR-TKIs may also lead to autophagic
death of the cells (Lee et al., 2015). Hence, the combination of EGFR-TKIs with autophagy
inducers may be beneficial. A similar synergistic effect can be observed with ALK inhibitor
resistance (Ji et al., 2014). In this study, we revealed an autophagy-related risk signature
involving six genes. This signature can be used as an independent prognostic marker for
LUAD and LUSC patients. Our study indicates that autophagy may be a promising target
for the treatment of NSCLC.
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MATERIAL AND METHODS
Autophagy-related gene datasets and patient samples
The gene expression datasets and clinical information of LUAD and LUSC patients
were downloaded from TCGA database on September 9, 2019. The supplementary
clinical information of corresponding patients was obtained from cBioPortal (http:
//www.cbioportal.org). An independent microarray NSCLC cohort was extracted from
the GEO database (accession number: GSE3141). Overall, the expression data from 1,102
samples (103 normal samples and 999 tumor samples) were obtained with the TCGA
dataset. A total of 111 samples from the GEO dataset GSE3141 were used in the verification
group. A total of 232 genes from the HADb (Human Autophagy Database) were identified
as autophagy-related genes.

Procedures and statistical analysis
A Consensus Clustering Analysis and a Principle Components Analysis were performed by
the R programming language to verify the regulatory role of autophagy in LUAD and LUSC.
The R package limma was used to screen the differentially expressed autophagy-related
genes. Then, we carried out a series of gene functional enrichment analyses to determine
the major biological attributes, including the GO and KEGG analyses. The GOplot package
was employed to visualize the enrichment terms. A univariate Cox proportional hazard
regression analysis was used to evaluate the association between overall survival (OS)
or DFS and gene expression values. Next, a multivariate Cox proportional hazards
regression analysis was performed using the candidate prognostic genes identified by
the univariate regression analysis. The independent prognostic factors were determined by
themultivariate Cox proportional hazards regression analysis, the regression coefficient and
hazard ratios (HRs) were calculated by the Cox regression model. The prediction accuracy
of the risk model was determined by time-dependent Receiver Operating Characteristic
(ROC) analysis. Thus, we established an autophagy-related signature that could be a
prediction model in LUAD and LUSC patients. On the basis of the signature, patients were
classified into high-risk and low-risk groups according to their risk score, using the median
score as a cutoff point. The relationship between OS, DFS and risk grouping was verified by
the Kaplan–Meier method and log-rank test using the survival and survivalROC packages.
We considered a P < 0.05 significant for all comparisons.

RESULTS
Differentially expressed autophagy-related genes
After extracting the expression values of 232 autophagy-related genes in LUAD and
LUSC patients, 14 downregulated genes (DLC1, NRG3, NLRC4, DAPK2, MAP1LC3C,
CCL2, HSPB8, FOS, PPP1R15A, GRID1, DRAM1, PRKCQ, DAPK1, and ITPR1) and 27
upregulated genes (ATG4D, BAK1, DDIT3, EIF4G1, IFNG, HDAC1, P4B, FADD, EGFR,
VMP1, PARP1, ATC, SPHK1, BNIP3, TP73, IKBKE, PTK6, ATG9B, ERO1A, TMEM74,
GAPDH, ITGB4, and EIF4EBP1) were identified. Scatter plots revealed the expression
patterns of these differentially expressed genes between tumor and non-tumor tissues, as
shown in Fig. 1.
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Figure 1 The differentially expressed autophagy-related genes. (A) The heatmaps of these 41 differently
expressed autophagy-related genes. The expression level of 41 differentially expressed autophagy-related
genes was displayed. The orange color indicates the higher gene expression value while the blue color in-
dicated the lower gene expression value. N indicates non-tumor tissues; T indicates tumor tissues. (B) The
Volcano plot of the differentially expressed autophagy-related genes. The red dots indicates the high ex-
pression and the green for the low expression. (C) The boxplot of the differentially expressed autophagy-
related genes. The orange color indicates the higher gene expression value and the blue color indicated the
low gene expression vlaue. N indicates non-tumor tissues; T indicates tumor tissues.

Full-size DOI: 10.7717/peerj.8288/fig-1

Confirmation of autophagy-related expression patterns via
consensus clustering analysis and principal components analysis
By setting a K value of 2, we obtained the optimal CDF value and classified the patients into
two clusters (Figs. 2A, 2B, 2C). Principal Components Analysis showed two significantly
different distribution patterns. The samples of cluster 1 and cluster 2 were distributed on
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the left side and the right side, respectively (Fig. 2D), suggesting that autophagy may play
a role in the occurrence and development of LUAD and LUSC.

Functional enrichment analysis of the differentially expressed genes
Functional enrichment analysis of the 41 differentially expressed genes offered a biological
understanding of these genes. The GO term functional enrichment and the KEGG pathway
enrichment analyses of these genes are summarized in Figs. 3 and 4.

The top enriched GO terms for biological processes were autophagy, processes
utilizing autophagic mechanisms, and the intrinsic apoptotic signaling pathway. Cellular
components included the autophagosome membrane, the autophagosome, and integral
components of the mitochondrial outer membrane. On the basis of molecular function,
genes were mostly enriched in terms of protein phosphatase binding, phosphatase binding,
and p53 binding. In the KEGG pathway enrichment analysis, these genes were shown to be
notably associated with pathways in the autophagy (animal), apoptosis, and bladder cancer
pathways. Most of the Z -scores of enriched pathways were more than zero, indicating that
most of the pathways were more likely to be enhanced.

Identification of an autophagy-related risk signature for the
prognosis of LUAD and LUSC
By revealing the distinct expression patterns found in LUAD and LUSC patients, we
considered that identifying an autophagy-related risk signature might be useful for
predicting prognosis. A univariate Cox regression analysis was performed to establish
a candidate pool of autophagy-related genes (Fig. 5A). Ultimately, five genes (HDAC1,
ATG4D, TP73, EIF4EBP1 and TP63) were identified as protective factors (HR < 1),
while another five genes (BNIP3, DAPK1, ATIC, ERO1A and FADD) were identified
as risk factors (HR > 1). Subsequently, a multivariate Cox analysis was conducted. As a
result, EIF4EBP1, TP63, BNIP3, ATIC, ERO1A and FADD were identified as independent
prognostic indicators for DFS and selected for development of the prognostic signature.

According to the multivariate Cox proportional hazards regression model, we obtained
the expression coefficient of each independent risk gene. Our prognostic model for
predicting prognosis based on the six genes was formed using the following formula:
prognosis index (PI) = (−0.170 * expression level of EIF4EBP1) + (−0.057 * expression
level of TP63) + (0.117 * expression level of BNIP3) + (0.170 * expression level of ATIC)
+ (0.214 * expression level of ERO1A) + (0.268 * expression level of FADD). We then
calculated the risk score of each patient and used the median risk value as a cutoff point for
classifying patients into high-risk group (n= 732) or low-risk group (n= 370), as shown
in Figs. 5D and 5E. The heatmap of these six signature-related genes and the Kaplan–Meier
curve depending on risk score are also displayed (Figs. 5B and 5C). A significant difference
in survival between the high-risk group and the low-risk group was observed. Patients in the
high-risk group had a shorter OS than patients in the low-risk group (five-year survival rate
= 36.7% vs. 44.9%, p = 0.0017). Similar results could also be seen with the DFS (median
time = 0.344 years vs. 0.512 years, p <0.001). The results of Kaplan–Meier analysis also
showed a prognostic ability of each single gene. The downregulation of EIF4EBP1 was
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Figure 2 The consensus clusterin analysis and the principle components analysis. (A) (B) (C) The con-
sensus clusterin cnalysis of the autophagy-related genes, infering the optimal number of clusters, the low-
est proportion of ambiguous clustering and the best CDF value by taking the K value of 2; (D) the princi-
ple components analysis of the autophagy-related genes in LUAD and LUSC patients.

Full-size DOI: 10.7717/peerj.8288/fig-2

strongly correlated with inferior DFS in LUAD and LUSC patients (P < 0.05; Fig. 6A).
Similarly, low expression of TP63 led to inferior DFS (P < 0.05; Fig. 6B). In contrast, the
upregulation of ATIC, ERO1A and FADD indicated a decreased DFS (P < 0.05; Figs. 6D,
6E and 6F). However, we did not observe a significant difference in DFS with regard to
BNIP3 expression (P < 0.05; Fig. 5C). Considering that each gene had a different value in
the prognostic model, a statistical difference may not occur in each survival analysis of a
single gene. ROC curves of OS and DFS were used to reveal the predictive performance of
the six-gene risk signature (Fig. 7). The AUC values of the signature for OS and DFS were
0.656 and 0.671, which were obviously higher than those associated with age (AUC= 0.547
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Figure 3 The barplot and GO circle of functional enrichment analyses. The barplot and GO circle of
functional enrichment analyses. (A) BP indicated biological process; CC indicated cellular component; MF
indicated molecular function. (B) The circle shows the scatter map of each item of the logFC of the spec-
ified gene. The red circles displays up-regulation, and the blue ones displays down-regulation. The higher
the Z -score value indicated, the higher expression of the enriched pathway.

Full-size DOI: 10.7717/peerj.8288/fig-3

and 0.478, respectively), sex (AUC = 0.551 and 0.502, respectively), tumor stage (AUC
= 0.634 and 0.641, respectively), tumor T stage (AUC = 0.629 and 0.648, respectively),
tumor N stage (AUC = 0.578 and 0.633, respectively) and tumor M stage (AUC = 0.501
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Figure 4 The barplot and KEGG circle of functional enrichment analyses. The barplot and KEGG circle
of functional enrichment analyses. (A) The KEGG analysis of differentially expressed autophagy-related
genes. (B) The circle shows the scatter map of the logFC of the specified gene. The red circles display up-
regulation, and the blue ones display down-regulation. The higher the Z -score value indicated, the higher
expression of the enriched pathway.

Full-size DOI: 10.7717/peerj.8288/fig-4

and 0.489, respectively). These results indicated that the risk signature had a better ability
to predict the survival of LUAD and LUSC patients than did clinical factors.
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Figure 5 The autophagy-related prognostic index (PI) of LUAD and LUSC patients. The autophagy-
related prognostic index (PI) of LUAD and LUSC patients. (A) The univariate Cox regression analysis
(continued on next page. . . )

Full-size DOI: 10.7717/peerj.8288/fig-5
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Figure 5 (. . .continued)
revealed the pool of the prognosis-related genes. (B) The K-M plot represented that the high-risk group
had shorter DFS than the low-risk group; (C) the heatmap of the six signature genes expression profiles;
(D) the number of patients in different risk group; (E) the DFS of patients in the TCGA dataset. The or-
ange color indicates a higher risk score and the blue color indicates a lower risk score.

Associations between the autophagy-related risk signature and
clinicopathologic features in LUAD and LUSC patients
An analysis was performed to explore the associations between clinical parameters and the
risk signature (Fig. 8). The results showed that the signature was significantly associated
with tumor stage (p = 0.006), M stage (p = 0.004), and survival outcome (p< 0.001).
Additionally, Student’s t -test analysis also indicated that these signature-related genes were
differentially expressed across various clinicopathological parameters. As shown in Fig. 9,
differential ATIC expression was found across different tumor stages, M stages and survival
outcomes. Differential expression of BNIP3 was observed across different tumor stages
and M stages. EIF4EBP1 showed different expression across different sexes and survival
outcomes. ERO1A, showed differential expression across sexes, tumor stages and T stages.
A difference in the expression of FADDwas observed across ages and sexes. The differential
expression of TP63 was related to survival outcome, sex and M stage.

The autophagy-related signature is an independent prognostic factor
for LUAD and LUSC patients
We performed a univariate Cox regression analysis and a multivariate Cox regression
analysis to verify the independent predictive value of the autophagy-related signature
for DFS (Figs. 10A and 10B) and OS (Figs. 10C and 10D). The univariate Cox analysis
showed that the autophagy-related signature, tumor stage, and T and N stages were
all correlated with the survival of LUAD and LUSC patients. Then, those factors were
included in a multivariate Cox analysis, which showed the autophagy-related signature to
be an independent predictive factor. Thus, our results confirmed that the autophagy-related
signature could be used as an independent prognostic factor in clinical practice.

Validation of the autophagy-related signature via an independent
cohort
We calculated the risk score for each patient in the GEO dataset GSE3141 as an independent
external validation using the same formula. The patients were divided into high-risk and
low-risk groups based on the median risk score. The Kaplan–Meier analysis confirmed the
prognostic ability of our signature once again (Fig. 11A). As expected, the high-risk patients
had a lower DFS than the low-risk patients (four-year survival rate = 25.6% vs. 52.3%,
p= 0.0079). The ROCs also showed a good ability of the signature to predict survival
(Fig. 11B). Specifically, the AUC of our signature was 0.615. Because of the lack of clinical
data such as sex, age, and tumor stage, we could not perform ROC analysis of other clinical
factors. These validation experiments confirmed the valuable ability of our risk signature
to predict the prognosis of LUAD and LUSC patients. A combined application of the risk
signature and other clinical features would improve prognostic prediction of LUAD and
LUSC outcomes.
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Figure 6 The correlation between six genes involved in the signature and DFS. The correlation between
six genes involved in the signature and DFS. The K-M plots revealed (A) the expression level and DFS of
EIF4EBP1, using median separation; (B) the expression level and DFS of TP63, using median separation;
(C) the expression level and DFS of BNIP3, using median separation; (D) the expression level and DFS of
ATIC, using median separation; (E) the expression level and DFS of ERO1A, using median separation; (F)
the expression level and DFS of FADD, using median separation.

Full-size DOI: 10.7717/peerj.8288/fig-6
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Figure 7 The ROC analysis. (A) The ROC analysis of OS for the signature and the clinicopathologic pa-
rameters; (B) the ROC analysis of DFS for the signature and the clinicopathologic parameters.

Full-size DOI: 10.7717/peerj.8288/fig-7

DISCUSSION
Autophagy is a process carried out by cells to address nutritional deficiency and other
cellular stresses. It is involved and regulated by a series of proteins and is closely correlated
with a variety of cell processes and reactions. In recent years, a large number of studies
have shown that autophagy is a ‘‘double-edged sword’’ in the occurrence and treatment of
tumors. On the one hand, as a survival mechanism of tumor cells facing pressure, it plays
a role in protecting cells. On the other hand, autophagy can result in killing tumor cells
under certain conditions. Therefore, autophagy is considered to be a possible regulatory
point for improving the therapeutic effects of tumor-targeted drugs and reducing drug
resistance.

Autophagy has promise for improving the survival of NSCLC, but most studies usually
focus on the role of a particular gene related to autophagy. The large-scale databases,
such as TCGA and GEO, provide us with effective measures to explore gene signatures,
thus providing a better understanding of the relationship between autophagy and tumors.
In this study, based on the existing gene data of patients with NSCLC, we screened
autophagy-related genes and identified six key prognostic genes, all of which may be
possible molecular biomarkers of prognosis and potential therapeutic targets. We verified
the autophagy-related genes in multiple datasets, which proved that the signature had very
good prognostic ability across data from multiple centers.

The GO and KEGG analyses were also conducted to show the molecular and biological
pathways enriched. The results suggested that the top enriched GO terms in terms of
biological processes and cellular components were highly correlated with autophagy. On
the basis of molecular function, p53 binding is closely related with the autophagy-related
gene TP63 which will be discussed in detail later.
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Figure 8 The autophagy-related signature in the cohorts. (A) The autophagy-related signature in the
cohorts stratified by survival outcome (fustat= 0 indicated alive, fustat= 1 indicated dead); (B) the
autophagy-related signature in the cohorts stratified by M stages (M= 0 indicated M0, M= 1 indicated
M1); (C) the autophagy-related signature in the cohorts stratified by tumor stages (1–4).

Full-size DOI: 10.7717/peerj.8288/fig-8

In addition, in the KEGG analysis, the most significant pathway was also enriched in
autophagy processes. Because of this result, we speculated that specific autophagy pattern
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Figure 9 The signature-related genes in the cohorts. (A, B, C) ATIC in the cohorts stratified by M stages
(M= 0 indicated M0, M= 1 indicated M1), survival outcome (fustat= 0 (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8288/fig-9
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Figure 9 (. . .continued)
indicated alive, fustat= 1 indicated dead) and tumor stages(1–4); (D, E) BNIP3 in the cohorts stratified by
M stages (M= 0 indicated M0, M= 1 indicated M1), tumor stages(1–4); (F, G) EIF4EBP1 in the cohorts
stratified by survival outcome (fustat= 0 indicated alive, fustat= 1 indicated dead) and gender (gender=
0 indicated female, gender= 1 indicated male); (H, I, J) ERO1A in the cohorts stratified by gender (gen-
der= 0 indicated female, gender= 1 indicated male), tumor stages(1–4) and T stages (1–4); (K, L) FADD
in the cohorts stratified by age and gender (gender= 0 indicated female, gender= 1 indicated male); (M,
N, O, P) TP63 in the cohorts stratified by survival outcome (fustat= 0 indicated alive, fustat= 1 indicated
dead), gender (gender= 0 indicated female, gender= 1 indicated male), M stages (M= 0 indicated M0,
M= 1 indicated M1) and tumor stages (1–4).

Figure 10 The univariate andmultivariate Cox regression analyses. (A, B) The univariate and
multivariate Cox regression analyses verify the independent value of the autophagy-related signature for
DFS; (C, D) the univariate and multivariate Cox regression analyses verify the independent value of the
autophagy-related signature for OS.

Full-size DOI: 10.7717/peerj.8288/fig-10

may act as tumor promoters in the occurrence and development of NSCLC. The results of
the univariate survival analysis showed that ten autophagy-related genes were associated
with DFS. Further multivariate survival analysis helped to identify six autophagy-related
genes (EIF4EBP1, TP63, BNIP3, ATIC, ERO1A and FADD) to establish a prognostic
signature, which could be used as an independent prognostic marker for NSCLC patients.
However, the effects of autophagy are not immutable; they are not the same in different
kinds of tumors or at different stages. Further research is still needed to explore the specific
mechanism. Existing research and data reveal some roles of these related genes in autophagy
or tumors.

The protein encoded by EIF4EBP1 binds to eukaryotic translation initiation factor 4e
(EIF4E) and suppresses the EIF4E complex, thus affecting themTOR (mammalian target of
rapamycin) signaling pathway, which has been shown to promote tumorigenesis (Karlsson
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Figure 11 The K–M curves for DFS in the high-risk and the low-risk groups. (A) The K-M curves for
DFS in the high-risk and the low-risk groups stratified by the autophagy-related signature in the GEO
dataset GSE3141; (B) the ROC analysis in the GEO dataset GSE3141.

Full-size DOI: 10.7717/peerj.8288/fig-11

et al., 2013; Karlsson et al., 2011). EIF4EBP1 may promote or inhibit the development of
tumors as a bi-functional factor (Armengol et al., 2007; Cai, Ye & She, 2014; Martineau
et al., 2013). In general, phosphorylated EIF4EBP1 is considered to be an indicator of
tumor activity, indicating a worse prognosis. Unphosphorylated EIF4EBP1 (Cai, Ye & She,
2014), on the other hand, is thought to inhibit tumor activity (Martineau et al., 2013). The
TP63 gene is located on chromosome 3q27/29 and is closely related to human head, neck,
esophagus, lung and skin squamous cancers (Massion et al., 2003; Senoo et al., 2001).

It encodes many subtypes of p63 transcription factors, which are members of the p53
protein family, an important hub in the transcriptional and signaling networks of the
epithelial cells. Therefore, the dysregulation of TP63 is closely related to the occurrence
of squamous cell carcinoma (Romano, Solomon & Sinha, 2012). The genome-wide analysis
suggests that the genetic variant of TP63 may affect susceptibility to LUAD (Hu et al., 2014;
Hu et al., 2011; Miki et al., 2010). However, there is still a lack of research on the specific
mechanism.

BNIP3 was shown to be one of the most important players involved in autophagy.
It encodes proteins belonging to the Bcl-2 family, which can regulate programmed cell
death under some circumstances and may impart some pro-death activity (Vande Velde
et al., 2000). It is linked to autophagy through three potential mechanisms. First, it can
induce mitochondrial dysfunction to activate autophagy (Scherz-Shouval & Elazar, 2011).
At the same time, through competitive binding with the BCL2 complex, BNIP3 can
liberate Beclin-1 to induce autophagy (Bellot et al., 2009;Maiuri et al., 2007a). In addition,
by inhibiting Rheb, an upstream activator of mammalian target of rapamycin (mTOR),
BNIP3 may activate autophagy by repressing mTOR (Li et al., 2007). A study on early,
operable NSCLC showed that the high expression of BNIP3 was an independent predictor
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of poor OS (Giatromanolaki et al., 2004). In vitro experiments also confirmed that BNIP3
participated in lung cancer cell migration by interacting with aryl hydrocarbon receptor
(AhR) (Tsai et al., 2017). ATIC is a protein enzyme that acts on the last two steps of the
de novo purine biosynthetic pathway (Martinez-Outschoorn et al., 2017; Yamaoka et al.,
1997). Little has been revealed in regard to its function in lung cancer. Recent studies
have shown that inhibiting the activity of ATIC metabolites may be important for the
anti-tumorigenic effects of the drug pemetrexed, which is used against NSCLC (Racanelli
et al., 2009).

ERO1A is a main regulatory factor of protein disulfide isomerase (PDI), which is one of
the most abundant proteins in the endoplasmic reticulum. Endoplasmic reticulum stress
is reported to be associated with tumorigenesis in a variety of cancers, including NSCLC
(Kim et al., 2012; Cancer Genome Atlas Research, 2008). As an important component of
the endoplasmic reticulum, PDI is believed to be a marker of poor prognosis in patients
with tumors, such as glioblastoma, breast cancer and hepatocellular carcinoma (Shai et al.,
2003; Thongwatchara et al., 2011; Xia et al., 2017). It is not surprising that ERO1A, as the
main regulator of PDI, is also associated with poor prognosis in NSCLC (Hsu et al., 2016).

FADD was originally described as an adapter molecule for apoptosis and is the key to
transmitting death signals from cell surface receptors (Mouasni & Tourneur, 2018). It is
closely related to autophagic cell death and tumor development. Similarly, high expression
of FADDwas observed in NSCLC, and it was considered to be associated with the increased
invasive behavior of the tumor and a marker for predicting prognosis (Chen et al., 2005;
Luo et al., 2018).

We summarized the relevant information of the six autophagy-related genes (Table 1). It
can be seen that half of them have a two-side role in the development of cancer (in addition
to BNIP3, FADDandERO1A, a consistent tumor-promoting effect is present). These results
are in agreement with the current consensus that autophagy plays a bi-functional role in
tumors. As we mentioned previously, most of the current studies only target an individual
gene. However, in view of the complex effect of autophagy, it may not be appropriate
and beneficial to simply inhibit or induce some of the autophagy-related genes based on
these findings. Our study suggests that autophagy-related genes may affect the cancer
development through special pattern, and by which autophagy may show a consistent
effect. Revealing these specific patterns can help the clinicians identify the high-risk types
and use them as new therapeutic targets. Our signature based on autophagy-related genes
also confirms this conjecture.

In summary, the molecular mechanisms play an important role in the relationship
between autophagy and NSCLC. Our results are expected to be applied to clinical practice,
which means it may suggest potential targeted autophagy therapies for NSCLC. Further
investigations will provide more information of internal mechanisms. Our study first
reveals that autophagy-related pattern may affect the prognosis of patients with LUAD and
LUSC. And a signature is presented to help distinguish the high-risk patients. However,
a limitation of this study is its retrospective nature. More prospective studies should be
conducted to validate the prognostic function of autophagy-related signatures. We also
encourage multi-center data to confirm our findings. More laboratory data based on the
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Table 1 Introduction and summary for the six autophagy-related genes.

Gene Encoding protein Functional pathway Function Recent Report in cancer

EIF4EBP1 a translation repressor protein
binding to EIF4E

the mTOR signaling pathway inhibit EIF4E complex and
the cap-dependent translation
to regulate mRNA translation

promote or inhibit the development of
tumors as a bifunctional factor/ asso-
ciate with poor prognosis in breast can-
cer (Karlsson et al., 2011)/ act as tumor
suppressor in SCC (Spilka et al., 2012)

TP63 the multiple isoforms of the
p63 transcription factor

the metabolic pathways, like
glucose metabolism, activa-
tion of TIGAR and HK II,
degradation of PGM, fatty
acid oxidation and mitochon-
drial respiration (Maddocks &
Vousden, 2011)

activate the autophagy gene
network

tumorigenesis and tumor suppression/
relate to the oncogenic potential role of
SCC/ the genetic variant rs10937405 in
TP63 have been found in various ethnic
populations like Japanese, Korea, north
Indian and British (Wang et al., 2011)
population and to be associated with the
lung cancer risk

BNIP3 a proapoptotic protein be-
longs to the Bcl-2 family

the mitochondrial dysfunc-
tion/ the production of ROS/
the repression of mTOR

regulate programmed cell
death and impart the pro-
death activity/ induce au-
tophagy

a progression marker in primary human
breast cancer/ be linked with poor OS in
NSCLC

ATIC a cytosolic enzyme in the de
novo purine biosynthetic
pathway

the production of the inter-
mediate FAICAR and IMP
(Chan et al., 2015; Greasley et
al., 2001)

unknown play a significant role in the anti-
tumorigenic effects in the drug of
NSCLC/ be related to the poor prognosis
of HCC (Jiang et al., 2019; Li et al., 2017)

ERO1A a major regulator of PDI PDI dysfunction/ unfolded
protein response/ ER stress

participate in tumorigenesis a marker of poor prognosis in some tu-
mors, such as glioblastoma, breast can-
cer and hepatocellular carcinoma/ a poor
prognostic factor for OS in NSCLC (Kim
et al., 2018)

(continued on next page)
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Table 1 (continued)

Gene Encoding protein Functional pathway Function Recent Report in cancer

FADD a key adaptor protein trans-
mits apoptotic signals

a bridge between DRs and
initiator pro-caspase-8/10
(Kischkel et al., 1995)/ apop-
tosis (Mouasni & Tourneur,
2018)/ interaction with ATG5
(Pyo et al., 2005)/ a negative
regulator of necroptosis (Os-
born et al., 2010)

regulate cell cycle progression
and proliferation

a cancer driver in oral, esophageal, laryn-
geal, and breast carcinomas (Callegari et
al., 2016; Chien et al., 2016; Prapinjum-
rune et al., 2010)/ a marker for predicting
prognosis in NSCLC (Cimino et al., 2012)

Notes.
EIF4E, eukaryotic translation initiation factor 4E; mTOR, mammalian target of rapamycin; SCC, squamous cell carcinomas; TIGAR, TP53- induced glycolysis and apoptosis regulator; HK II, hex-
okinase II; PGM, phosphoglycerate mutase; ROS, reactive oxygen species; OS, overall survival; NSCLC, Non-small-cell lung cancer; FAICAR, formyl-5-Aminoimidazole-4-carboxa-mide-1- β-D-
ribofuranoside; IMP, inositol monophosphate; HCC, hepatocellular carcinoma; PDI, protein disulfide isomerase; DRs, death receptors; ATG5, autophagy-related 5.
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thought of autophagy pattern can further develop our study and provide the internal
mechanisms of autophagy-related network.
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