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ABSTRACT

Background. Differentiating nonwear time from sleep and wake times is essential for
the estimation of sleep duration based on actigraphy data. To efficiently analyze large-
scale data sets, an automatic method of identifying these three different states is re-
quired. Therefore, we developed a classification algorithm to determine nonwear, sleep
and wake periods from accelerometer data. Our work aimed to (I) develop a new pattern
recognition algorithm for identifying nonwear periods from actigraphy data based on
the influence of respiration rate on the power spectrum of the acceleration signal and
implement it in an automatic classification algorithm for nonwear/sleep/wake states;
(II) address motion artifacts that occur during nonwear periods and are known to cause
misclassification of these periods; (III) adjust the algorithm depending on the sensor
position (wrist, chest); and (IV) validate the algorithm on both healthy individuals and
patients with sleep disorders.

Methods. The study involved 98 participants who wore wrist and chest acceleration
sensors for one day of measurements. They spent one night in the sleep laboratory
and continued to wear the sensors outside of the laboratory for the remainder of the
day. The results of the classification algorithm were compared to those of the reference
source: polysomnography for wake/sleep and manual annotations for nonwear/wear
classification.

Results. The median kappa values for the two locations were 0.83 (wrist) and 0.84
(chest). The level of agreement did not vary significantly by sleep health (good sleepers
vs. subjects with sleep disorders) (p =0.348, p=10.118) or by sex (p = 0.442, p = 0.456).
The intraclass correlation coefficients of nonwear total time between the reference
and the algorithm were 0.92 and 0.97 with the outliers and 0.95 and 0.98 after the
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outliers were removed for the wrist and chest, respectively. There was no evidence of an
association between the mean difference (and 95% limits of agreement) and the mean
of the two methods for either sensor position (wrist p =0.110, chest p=0.164), and the
mean differences (algorithm minus reference) were 5.11 [95% LoA —15.4-25.7] and
1.32 [95% LoA —9.59-12.24] min/day, respectively, after the outliers were removed.

Discussion. We studied the influence of the respiration wave on the power spectrum of
the acceleration signal for the differentiation of nonwear periods from sleep and wake
periods. The algorithm combined both spectral analysis of the acceleration signal and
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rescoring. Based on the Bland-Altman analysis, the chest-worn accelerometer showed
better results than the wrist-worn accelerometer.

Subjects Psychiatry and Psychology

Keywords Acceleration, Accelerometry, Sleep/Wake, Sleep scoring, Non-Wear detection,
Ambulatory assessment, Nonwear

INTRODUCTION

Accelerometers play an important role in psycho-sociological studies, especially in the fields
of sleep health (Wrzus et al., 2012; Hees et al., 2018) and sedentary behavior (Rosenberger
et al., 2013). To measure sleep via actigraphy, a device that can identify nonwear periods
and differentiate nonwear and sleep periods should be used (Choi et al., 2011; Winkler et
al., 2012; Gorman et al., 2014). To distinguish nonwear from sleep, studies often collect
supplemental data in the form of a diary (Edwardson et al., 2017). Such methods attempt to
capture the sleep/wake state of the participant, the sleep quality, and the times in which the
device was not worn in an effort to refine the actigraphy data. These methods place a large
burden on the participant and are often inaccurate. Participants are required to provide
written notes of their activity during the study and to note the start and the end of bedtime
by tapping on the sensor or pressing a button. The labor requirements of the researcher for
data processing remain an important consideration because such methods complicate the
implementation of batch analyses (Masse et al., 2005; Edwardson et al., 2017) . Problems
also arise when secondary parameters for physical activity (PA) are calculated, especially
in larger data sets that require automatic wear time detection algorithms (Matthews ef al.,
2002). The false classification of sleep or sedentary behavior as nonwear time distorts PA
estimates and results in invalid estimates of accelerometer-derived measurements of PA
(King et al., 2011).

Existing algorithms classify acceleration data into wear and nonwear periods by applying
a threshold to a specific metric that is calculated from the acceleration signals for each
epoch (e.g., 30 s or 1 min) of a measurement. These metrics (often defined as ‘counts’) vary
substantially between device manufacturers (Sadeh, Sharkey ¢ Carskadon, 1994; Troiano
et al., 2008; Kripke et al., 2010). To refine this distinction, researchers have investigated
different numbers of consecutive epochs. Troiano et al. (2008) defined nonwear as a 60-
minute period of consecutive minutes containing low levels of activity. Choi et al. (2011)
indicated that a longer time frame of 90 min provided a better estimation of nonwear
time, taking into account motion artifacts occurring during nonwear periods. Evernson
& Terry (2009) observed that the propensity for low levels of physical activity to register
while sleeping or sitting motionless makes sedentary and nonwear periods similar. In
2016, Kosmadopoulos, Darwent and Roach (2016) proposed an algorithm that can discern
nonwear time from sleep or quiet wakefulness by comparing different periods of inactivity
for a wrist-worn accelerometer (Kosmadopoulos, Darwent & Roach, 2016). In the same year,
Winkler et al. (2016) presented an automated algorithm that can classify bouts of activity
as nonwear and sleep periods based on knowledge of the behaviors that differentiate sleep
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from nonwear. The algorithm presented by Zhou et al., (2015) used both acceleration and
surface skin temperature measurements to identify nonwear time. However, a temperature
threshold should be calibrated for regional climates as well as for indoor/outdoor activities.

In another context, some studies have focused on extracting new features from the
acceleration signal, such as the respiratory wave. With an acceleration signal that is
sufficiently sensitive, a detailed analysis of the power spectrum can reveal additional
features, particularly cyclical patterns such as breathing (Hung et al., 2008). Liu et al.
proposed an algorithm that can determine the dynamic respiration rate during various
physical activities using such an analysis. For our algorithm, we compared the existing
methods of deriving the respiration rate from 3D acceleration signals, such as wavelet
decomposition, non-adaptive bandpass filters and adaptive bandpass filters. Because
various body motions may affect the acceleration signal, researchers combined hybrid
principal component analysis (PCA) with adaptive bandpass filtering. They configured the
parameters of the bandpass filter according to the energy expenditure of the individual
during each physical activity (sleep, quiet sitting, sitting with minor movement, walking
and running). Liu et al. investigated through their algorithm the possibility of detecting
the respiration wave for different levels of activity (low, medium and high). The results
confirmed that the respiration rate derived from 3D acceleration signals can withstand
motion artifacts and thus can be used for ambulatory measurements (Liu et al., 2011).

After distinguishing nonwear from wear periods, the algorithm classifies remaining
time into sleep and wake periods. A number of studies have focused on the usefulness
of actigraphy in discriminating between sleep and wake as defined by the gold standard
of polysomnography (PSG) (Mullaney, Kripke ¢» Messin, 1980; Cole et al., 1992; Paquet,
Kawinska ¢ Carrier, 2007). The most commonly used algorithms for sleep/wake
classification compare the level of activity in a defined window with a threshold or a
regression algorithm based on statistical parameters derived from the acceleration signals.
Sadeh, Sharkey and Carskadon proposed a regression algorithm based on the sleep/wake
classification from PSG data. They used the following variables: the mean activity counts
during the scored epoch and the window of five epochs preceding and following it, the
standard deviation of activity counts during the scored epoch and the five epochs preceding
it, the natural logarithm of the number of activity counts during the scored epoch + 1,
and the number of epochs with an activity level with between 50 and 100 activity counts
in a window of 11 min that includes the scored epoch and the five epochs preceding and
following it (Sadeh, Sharkey & Carskadon, 1994). Cole et al. (1992) computed the weighting
factors from the activity scores for a given minute, the following minutes and the previous
minutes, and proposed rescoring rules to increase the accuracy rate of correct sleep/wake
classification. To improve those algorithms, different decision rules have previously been
proposed to differentiate bedtimes from wake times (Catrine et al., 2014) and waking
wear times (McVeigh et al., 2016; Winkler et al., 2016). We focused our definitions of the
rescoring rules on the common reasons behind the misclassification of sleep periods as
nonwear periods (the power spectrum not being examined for respiration signals during
sleep) and sleep periods as wake periods (short movements during bedtime).
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To discern nonwear from sleep, existing algorithms focus on activity counts derived
from the acceleration signal. The limitations of this approach include the misclassification
of nonwear periods when motion artifacts are present and the inability to classify long
periods of inactivity. Given the limitations of the algorithms described above, we aimed
to distinguish nonwear periods from sleep periods. Therefore, we extracted a new feature
from the acceleration signal and studied its ability to differentiate nonwear periods from
sleep and wake periods.

METHODS

Participants and procedure

The study included 98 participants. The healthy subjects were recruited by word of mouth.
The subjects with sleep disorders (insomnia, sleep apnea, parasomnia and restless legs
syndrome) were patients in the sleep medicine clinic at the University of Albert-Ludwig
Freiburg Medical Center. The Ethics Committee of the University of Albert-Ludwig
Freiburg granted ethical approval to carry out the study within the university facilities
(Ethical Application Ref: 141/15). Written consent was obtained from the participants.

We recorded acceleration data using the activity sensor Move3 (movisens GmbH,
Karlsruhe, Germany), which was worn by the participants on both wrist and chest for one
day of measurements. The accelerometers sampled the data at 64 Hz with a measurement
range of +8 g. Polysomnographic recordings were scored using the standard AASM rules
(Iber et al., 2007). The participants spent one night in the sleep laboratory at the University
of Albert-Ludwig Freiburg Medical Center. In the morning, an assistant recorded the
nonwear periods while the participants were taking a shower. For the remainder of the
day, the participants continued to wear the sensors outside of the laboratory. To identify
nonwear periods occurring outside of the sleep laboratory, we referred to a change in
the temperature signal from the sensor from the constant room temperature (detecting a
decreasing exponential function at the beginning and an increasing exponential function
at the end of a nonwear period) and a visual evaluation of acceleration signal (Boyne et al.,
2013). The PSG results served as a reference for the sleep and wake periods.

In this work, we defined an “epoch” as a basic time segment with a fixed length of
30 s, a “window” as a time segment composed of a fixed number of consecutive epochs
(e.g., 10 min or 20 min), and a “period” as an undefined number of consecutive epochs
(e.g., a period of sleep, a period of wake).

Statistical analysis

The statistical analyses were performed in R (Version 3.4.1). The normality of the data
was tested for each study group separately using the Anderson-Darling normality test. To
describe the demographic data, the categorical variables were summarized as counts, and
the continuous variables with nonnormal distributions were expressed as medians and
IQRs. To compare the two study groups (healthy subjects vs. patients with sleep disorders),
the chi-square test was used for nominal data, and the Mann—Whitney U test was used for
continuous data with a nonnormal distribution.
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The goal of the study was to investigate the agreement between the actigraphy-based
algorithm and nonwear annotations. Therefore, we evaluated the kappa values for each
participant (reported as median and 25th and 75th percentiles because these data were
skewed): agreement was “poor” if kappa <0, “slight” if 0 <kappa <0.20, “fair” if 0.21
<kappa <0.40, “moderate” if 0.41 <kappa <0.60, “substantial” if 0.61 <kappa <0.80,
and “almost perfect” if kappa>0.80 (Landis ¢ Koch, 1977). We then compared the kappa
values across different groups (sex, healthy subjects/patients with sleep disorders) using the
Mann-Whitney-U test with a significance level of p < 0.05. Furthermore, we compared the
total nonwear time from the actigraphy-based algorithm versus the annotation using the
Bland-Altman approach (Bland ¢ Altman, 1986) to calculate the mean of the difference
and the 95% limits of agreement. We also presented the linear regression results of the
difference in the mean and 95% limits of agreement. Finally, we determined the intraclass
correlation coefficient (ICC) (model “two-way”, type “agreement”, effect “random”) to
assess the interrater reliability (Koo ¢ Li, 2016) and the Pearson correlation coefficient
to evaluate the linear relationships of total nonwear time between the algorithm and the
reference.

For the sleep/wake analysis, as the PSG is the gold standard, we evaluated sensitivity,
specificity, the positive predictive value, the negative predictive value, informedness
(two-class analysis), accuracy, and the kappa value. We also performed an epoch-by-epoch
(30 s) analysis by computing the confusion matrix (Kohavi ¢ Provost, 1998).

Algorithm

Structuring the proposed algorithm required precise observations of sleep and nonwear

periods and considered the main differences between them. The composition of the

algorithm consisted of the following steps:

1. Collect raw 3D accelerometer data at a sampling rate of 64 Hz and resolution of 4 mg.

2. Preprocess the signal by using bandpass filters (Butterworth filter: frequency = 0.25—
3 Hz, order = 4), threshold-crossing (threshold = 0.015 over 30 s).

3. Apply the nonwear detection algorithm.

4. Apply the sleep detection algorithms.

5. Apply the rescoring rules to correct misclassifications.

We used five sets of measurements that were acquired during the study but were not
included in the evaluation to graphically determine the thresholds by trial and error. The
participants wore the same devices and followed the same protocol as described in the
study. These measurements were chosen randomly.

Nonwear algorithm

We evaluated the power spectrum of the three-dimensional acceleration signal to identify
nonwear epochs. The power spectrum for wake and sleep periods showed a high amplitude
in the 0.1 Hz—0.4 Hz frequency range (representing the range of respiration frequencies),
and the power spectrum of the nonwear periods showed a low intensity across the total
frequency range. We used this observation to discern nonwear epochs by identifying a
reduced power spectrum in the 0.1 Hz to 0.4 Hz range. The power within this frequency
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band was computed for each signal (x,y,z) over a 10-minute window. Afterwards, the
maximum power Pmax was determined as the maximum power over the three axes. We
classified the event as nonwear if the maximum power Pmax fell below the threshold PO =
21072

If Pmax > PO, then the epoch is classified as a wear epoch

If Pmax < PO, then the epoch is classified as a nonwear epoch

Sleep algorithm

After applying a 0.25-3 Hz bandpass filter to the accelerometer signal, a specific metric (we
used threshold-crossing) was calculated over each 30-second epoch. Within each sliding
window of 20 min, the number of epochs with zero metrics were summed and compared
with the threshold Th0 = 15. If the resulting value was above Th0, the window was classified
as a sleep window. For the longest sleep period in the day (from noon to noon), sleep onset
was defined as the first ten consecutive sleep epochs.

Rescoring rules
To develop the automated sleep time and nonwear time detection algorithm, we used the
calculations for nonwear and sleep time and then implemented the following rescoring

criteria (Fig. 1):

1. Incorrectly classified nonwear epochs occurring during sleep were rescored. First, we
identified the nonwear period (surrounded by sleep periods). Then, we analyzed the
power spectrum of the period, and if 75% of the nonwear period indicated respiration,
we reclassified the period as a sleep period. This verification step prevented the
misclassification of a real nonwear period during sleep, where the subject removed the
sensor for a short period and replaced it.

2. Misclassifications of a nonwear period occurring at bedtime or just before bedtime
(i.e., the participant removing the sensor just before or after entering the bed) were
corrected. After identifying the period (presenting unusually high activity from one
side), the whether the power spectrum indicated respiration for over 75% of the period
was assessed.

3. Movements lasting longer than one minute during sleep were considered as movements

occurring during wake.

RESULTS

The study involved 98 participants: 55 males and 43 females with a median age of 28.5
years (range 19-63 years, IQR 15.7 years). We split the data into three subsamples for the
analyses. The first sample contained all subjects (98), the second only healthy subjects (48),
and the third consisted of patients with sleep disorders (50). We excluded 5 subjects due
to a lack of annotation of the sleep periods.

The median measurement duration was 952.7 min (IQR 89.2 min) per day, with a
median estimated total nonwear time of 49.7 min/day (IQR 49.3 min) and a median total
sleep time of 412.2 min/day (IQR 49.1 min) (Table 1). For the epoch-by-epoch analysis,

Barouni et al. (2020), PeerJ, DOI 10.7717/peer|.8284 6/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.8284

Peer

Epoch n
Respiration
detected?

No Non-Wear

Rescoring

Sleep/Wake
rules I?

|

Rescoring

rules II?

Rescoring No

rule I11?

No

Sleep

Figure 1 Flowchart of the classification algorithm. Classification of the three states: nonwear, sleep,
wake.

Full-size &4 DOI: 10.7717/peer;j.8284/fig-1

we used an epoch length of 30 s and compared the concordance of the actigraphy-based
classification algorithm with the PSG data and nonwear annotations. The rows of the
confusion matrix present the wake, sleep and nonwear classes as determined by the PSG
data and nonwear annotations, and the columns contain the classes of the epochs as
determined by the actigraphy data. Among all the nonwear epochs, 90.1% and 93.5% were
identified as nonwear, 2.0% and 0.0% as sleep, and 7.8% and 6.4% as wake for the wrist
and chest, respectively. Of all the sleep epochs, 92.2% and 97.1% were classified as sleep,
0.2% and 0.02% were classified as nonwear, and 7.5% and 2.8% were classified as wake
for the wrist and chest, respectively. Moreover, among all of the wake epochs, 87.9% and
85.4% were classified as wake, 10.8% and 13.8% as sleep, and 1.2% and 0.6% as nonwear
for the wrist and chest, respectively (Table 2, Table 3).
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Table 1 Demographic data of participants.

Characteristics Overall Healthy Patient with P
(n=98) (n=48) sleep disorders
(n=50)
Sex (Male/Female) 43/55 23/25 20/30 0.558"
Age (years) 28.5(15.7) 25.5(9.2) 33.5(18.2) 0.006"
Total sleep time (min) from PSG 412.2(49.1) 419.7(44.7) 410(56.6) 0.682"
Total nonwear time (min) from manual reference 49.7(49.3) 32.7(15.7) 78.5(50.0) <0.001°
Length of measurement (min) from accelerometer sensor 952.7(89.2) 959.5(36.0) 949(208.2) 0.009"
Notes.
Median (IQR).

IQR, interquartile range.
2Chi-square test.
YMann-Whitney-U test.
*p for difference between participants with and without sleep disorders (p < 0.05 considered statistically significant).

Table2 Confusion matrix for wrist-worn activity sensor.

Reference: number of epochs (30-sec) (% of column)

Algorithm Wake wear Sleep wear Nonwear Total

Wake wear 74,735 5,562 855 81,152
(87.91%) (7.50%) (7.83%)

Sleep wear 9,219 68,372 222 77,813
(10.84%) (92.26%) (2.03%)

Nonwear 1,054 168 9,841 11,063
(1.23%) (0.22%) (90.13%)

Total 85,008 74,102 10,918 170,028

Table 3 Confusion matrix for chest-worn activity sensor.

Reference: number of epochs (30-sec) (% of column)

Algorithm Wake wear Sleep wear Nonwear Total

Wake wear 73,077 2,094 676 75,847
(85.47%) (2.82%) (6.48%)

Sleep wear 11,856 71,992 0 83,848
(13.86%) (97.15%) (0%)

Nonwear 567 16 9,747 10,330
(0.66%) (0.02%) (93.51%)

Total 85,500 74,102 10,423 170,025

The algorithm achieved a median sensitivity of 0.92 and 0.95 for the wrist and chest,
respectively, and a specificity of 1, 0.99 for nonwear; a median sensitivity of 0.90 and 0.87,
respectively, and specificity of 0.94, 0.98 for sleep; and a median sensitivity of 0.93 and
0.97, respectively, and specificity of 0.90, 0.88 for wake (Tables 4 and 5). The median
accuracy was 0.90 and 0.91 for the wrist and chest, respectively, and the median kappa
values were 0.83 and 0.84, respectively. “Almost perfect agreement” occurred for 63.4%
and 67.7% of the participants, 33.3% and 27.9% of the participants had “substantial
agreement”, and 3.2% and 4.3% of the participants had “moderate agreement” for the
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Table4 Agreement between the algorithm and the reference: wrist.

Automated algorithm Automated algorithm Automated algorithm
wrist nonwear wrist sleep wrist wake
median [25th;75th median [25th;75th median [25th;75th
percentile] percentile] percentile]
N 93 93 93
Sensitivity 0.92[0.85;0.94] 0.90[0.83;0.93] 0.93[0.88;0.98]
Specificity 1.00[0.99;1.00] 0.94[0.90;0.98] 0.90[0.85;0.93]
PPV 1.00[0.96;1.00] 0.95[0.87;0.98] 0.89[0.84;0.93]
NPV 0.99[0.98;0.99] 0.91[0.87;0.94] 0.94[0.88;0.98]
Informedness 0.92[0.85;0.94] 0.83[0.75;0.89] 0.82[0.73;0.87]
Table5 Agreement between the algorithm and the reference: chest.
Automated algorithm Automated algorithm Automated algorithm
chest nonwear chest sleep chest wake
median [25th;75th median [25th;75th median [25th;75th
percentile] percentile] percentile]
N 93 93 93
Sensitivity 0.95[0.92;0.97] 0.87[0.81;0.93] 0.97[0.94;0.98]
Specificity 0.99[0.99;1.00] 0.98[0.9630.99] 0.88[0.82;0.93]
PPV 0.97[0.91;1.00] 0.98[0.96;0.99] 0.86[0.80;0.91]
NPV 0.99[0.98;0.99] 0.89[0.82;0.93] 0.97[0.96;0.98]
Informedness 0.95[0.92;0.97] 0.85[0.78;0.89] 0.84[0.78;0.89]

wrist and chest, respectively. There were no occurrences of “poor agreement” and “fair
agreement” (Landis ¢» Koch, 1977) . We compared the performance of the classification
algorithms across several participant characteristics. Agreement did not vary significantly
by sex (p=0.215 and p = 0.456 for the wrist and chest, respectively) or by study group
between the healthy subjects and patients with sleep disorders (p =0.348 and p=0.118)
(Table 6).

Then, we constructed Bland-Altman plots for each sensor position to assess the
differences in nonwear time per day between the algorithm and the reference (Figs. 2
and 3). For wrist- and chest-worn accelerometers, the mean differences (algorithm minus
reference) were 0.7 [95% LoA —29.7-31.3] and —0.5 [95% LoA —16.9-15.9] min/day,
respectively. The linear regression results of the difference in the mean and the 95% LoA
showed an upward trend for higher measurements. The intraclass correlation coefficient
between the algorithm and the reference was 0.92 (95% CI [0.88-0.94], p < 0.001) for the
wrist and 0.97 (95% CI [0.95-0.98], p < 0.001) for the chest (Table 7). We also investigated
the Bland-Altman plots after removing 12 and 8 outlier measurements for the wrist and
chest, respectively, that had inaccurate counts of nonwear epochs (Figs. 4 and 5). These
inaccuracies occurred due to misclassifications of short nonwear periods that were directly
adjacent to sleep periods and were thus considered as sleep periods and misclassifications
of nonwear periods with unusual high levels of activity that were thus classified as wake
periods. For the wrist- and chest-worn accelerometers, the slopes of the linear regressions
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Table 6 Effect of sex and study group on agreement between the algorithm and the reference for wrist and chest.

Statistic

Automated
algorithm wrist
median [25th, 75th percentile]

Automated
algorithm chest
median [25th, 75th percentile]

Accuracy (overall)

0.90[0.87;0.93]

0.91[0.88;0.94]

Kappa (overall) 0.83[0.75;0.88] 0.84[0.78;0.89]
Slight/ Poor agreement (k <=0.2), n(%) 0(0%) 0(0%)

(Landis & Koch, 1977)

Fair agreement (0.2 < k <= 0.4), n(%) 0(0%) 0(0%)
Moderate agreement (0.4 < k <= 0.6), n(%) 3(3.23%) 4(4.30%)
Substantial agreement (0.6 < k <= 0.8), n(%) 31(33.33%) 26(27.96%)
Almost perfect agreement (0.8 < k), n(%) 59(63.44%) 63(67.74%)
Kappa, men 0.81[0.75;0.87] 0.83[0.78;0.89]
Kappa, women 0.84[0.78;0.88] 0.85[0.78;0.89]
P? for difference sex 0.215 0.456

Kappa, healthy 0.83[0.76;0.88] 0.85[0.80;0.90]
Kappa, patient 0.81[0.74;0.87] 0.82[0.76;0.88]
P* for difference study group 0.348 0.118

Notes.
*Mann—Whitney-U test.

of the difference in the mean and the 95% LoA were 0.05 (p =0.110) and 0.02 (p =0.164),
respectively, and the mean differences (algorithm minus reference) were 5.11 [95% LoA
—15.4-25.7] and 1.32 [95% LoA —9.59-12.24] min/day, respectively. The ICC between the
algorithm and the reference after the outliers were removed was 0.95 (95% CI [0.90-0.97],
p <0.001) for wrist and 0.98 (95% CI [0.97-0.99], p < 0.001) for chest (Table 8).

DISCUSSION

This study evaluated a newly developed automated algorithm for nonwear/sleep/wake
classification based on acceleration data recorded from different locations on the body
(wrist and chest). A frequency spectrum-based algorithm (Liu et al., 2011), which combined
hybrid PCA and adaptive bandpass filtering, was designed to estimate the respiratory rate
according to body activities (sleep, quiet sitting, sitting with minor movements, walking and
running) within the range 0.2-0.7 Hz. In our work, we implemented the same principle
to discern nonwear epochs from wear epochs by studying the power spectrum of the
acceleration signal and determining an estimation of the respiration rate. We found that
a power spectral analysis within the range 0.1-0.4 Hz was sufficient for nonwear/wear
classification, as the spectrum presented a low power in this range when the sensor was not
worn. However, we noted from the confusion matrix of the epoch-by-epoch classification
of the three states nonwear/sleep/wake (Tables 2 and 3) that nonwear was more often
wrongly classified as wake (7.8%, 6.4%) than as sleep (2.0%, 0.0%). The misclassification
of nonwear as wake could also occur via the accumulation of long movements during
nonwear periods, with participants relocating the sensor, especially at the beginning and
end of a nonwear period, resulting in the appearance of a high power in the range 0.1-0.4
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Figure 2 Bland-Altman plot of individual differences between algorithm and reference for total non-

wear time: wrist (before removing the outliers). Bland-Altman plots with dotted lines indicating the

95% limits of agreement (LoA) and straight line indicating the mean. Dashed lines represent the regres-
sion functions of mean of difference (tenne), upper 95% LoA (dark cyan-lime green), and lower 95% LoA
(cerulean) (n=93).
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Hz. The analysis of total nonwear time indicated that the upper 95% LoA is half as large
for chest-worn sensors versus wrist-worn sensors. As other studies have noted that wrist
monitors are less biased than waist monitors (Choi et al., 2012), the algorithm based on
the spectral analysis of the respiration wave may be more appropriate for chest-worn
sensors. The 95% LoA was shorter than 32 min for both the wrist- and the chest-worn
sensors. This result means that wear periods were classified as nonwear periods due to
the absence of the respiration wave by the spectral analysis. Those periods were mostly
present during sleep when the sensor was removed. As different studies have suggested
the use of 90 min (Choi et al., 2012) or 60 min (Keadle et al., 2014) of consecutive zeros
as the criterion, we can conclude that the bias had no practical significance. According to
the comparison of the Bland-Altman plots before (Figs. 2 and 3) and after the removal
of the outliers (Figs. 4 and 5), the bias was not constant over the range of values before

the outliers were removed. When short nonwear periods were directly adjacent to sleep
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Figure 3 Bland-Altman plot of individual differences between algorithm and reference for total non-
wear time: chest (before removing the outliers). Bland-Altman plots with dotted lines indicating the
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sion functions of mean of difference (tenne), upper 95% LoA (dark cyan—lime green), and lower 95% LoA
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periods, the algorithm considered them to be sleep periods due to the lack of large changes
in activity between the two periods. In fact, the investigated period included both sleep
and nonwear. Therefore, after the second rescoring rule was applied, the respiration signal
derived from the power spectrum covered more than 75% of the period and thus enabled
the classification of the period as sleep. This result led to the conclusion that the second
rule should be revised either by adjusting the percentage value from 75% or by defining a
new method to adjust the limits of the period suspected to be a nonwear period.

Annotating the nonwear periods using only a diary as a reference required the verification

of compliance and whether the time-stamps in the diary matched those derived from the
acceleration signal (Masse et al., 2005) . To improve the quality of nonwear annotations,
we referred to visual assessments of the acceleration signal (to find long continuous bouts
of inactivity) (McVeigh et al., 2016) and a visual examination of the temperature signal,
which showed a decreasing exponential function at the beginning of the nonwear period
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Table 7 Bland-Altman statistic parameters for total nonwear time for wrist and chest (before removing the outliers).

Characteristic Algorithm Reference Mean of the 95% limits Intraclass Pearson
mean(sd) mean(sd) difference* of agreement correlation correlation
coefficient
ICC
Nonwear min/day 59.47(42.65) 58.69(36.31) 0.77 —31.30;29.75 0.92 0.93
(wrist) (n=93) [—2.42;3.98]° [0.88;0.94]° [0.90;0.95]"
p-value=0.630" p-value p-value
<0.001 <0.001
Nonwear min/day 55.53(35.99) 56.03(33.65) —0.5 —16.96;15.96 0.97 0.97
(chest) (n="93) [—2.23;1.23]° [0.95;0.98]" [0.95;0.98]"
p-value = 0.567" p-value p-value
<0.001 <0.001

Notes.
295% Confidence interval.
®One sample ¢-test.
“algorithm minus reference.

and an increasing exponential function immediately after the activity sensor was donned.
This finding introduces the question of why researchers do not use temperature instead
of acceleration to identify nonwear from wear periods or combine both methods. Zhou
et al. presented the performance of classification algorithms based on acceleration and
temperature data, first separately and then combined. While the classification algorithm
based on temperature showed a higher value for sensitivity (0.93) than for specificity (0.64),
the classification algorithm based on acceleration had a sensitivity of 0.76 and a specificity
of 0.89. By combining both methods, a sensitivity of 0.94 and a specificity of 0.91 were
achieved (Zhou et al., 2015). However, the variation in temperature from situations such
as indoor or outdoor activities can impact the performance of the combined classification
algorithm. The performance depended on the temperature, which makes it difficult to
use the algorithm in different climate conditions. On the other hand, our classification
algorithm, based only on acceleration data, achieved similar sensitivity and specificity as
the classification algorithm based on a combination of acceleration and temperature data.

After defining nonwear epochs, we discerned sleep from wake based on the level
of activity within a defined timeframe using a simple threshold-based algorithm. The
thresholds of the algorithm were determined using PSG, which is the gold-standard
measure of sleep parameters for laboratory research and is the best method for validating
other classification methods, such as activity sensors. At the end of the algorithm, we
proposed rescoring rules based on visual assessments to correct the misclassifications
accrued by traditional classification algorithms due to issues such as motion artifacts that
occur during nonwear periods (e.g., when the sensor is nudged or touched while being
placed on a table or nightstand) and long motionless periods with sporadic movements
during sleep.

Nonwear/sleep/wake classification studies differ in how the reference is collected. In
(McVeigh et al., 2016), in-bed periods (the period from when the participants went to bed
to the time at which they arose from the bed) were identified by two independent raters,
and these periods included the time the participant spent trying to fall asleep, the time he
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or she was asleep, and the duration of wakefulness after sleep onset. When PSG is used
as a reference, sleep time can be accurately identified, as PSG reports in-bed time as well
as sleep time. However, PSG remains restricted to sleep laboratories, and sleep periods
during the day (e.g., napping) cannot be classified. Thus, visual identification or diaries
remains essential for determining the reference data for sleep/wake analyses from data in
real world environments outside of the lab. We also found that 10.8% (for the wrist) and
13.9% (for the chest) of the wake epochs, e.g., epochs occurring during long motionless
periods of wakefulness (insomnia) or between the beginning of an in-bed time period
and sleep onset, were misclassified as sleep epochs. Nevertheless, an additional feature is
needed to accurately determine sleep onset times, even though we defined sleep onset as
the beginning of ten consecutive sleep epochs.
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wear time: chest (after removing the outliers). Bland-Altman plots with dotted lines indicating the 95%
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LIMITATIONS OF THE STUDY

The wrist- and chest-worn accelerometer data were collected in a sleep laboratory, which
can influence the behavior of the participants. We had no additional information about

sleep periods occurring during the day, as the sleep reference data was defined based only
on PSG measurements, which is the gold-standard method of assessing sleep. The rest of
the day was thus considered as wake time. The annotations of the nonwear reference was
performed manually based on knowledge of the study procedure (report of the assistant in
the sleep laboratory), the visual assessments of acceleration signal and temperature signal
and were therefore inaccurate. However, the combination of both methods allowed more
accurate nonwear references. The thresholds presented in the algorithm were determined
from data that was collected as part of the study from different participants but was not

used in the analyses. The acceleration signal was collected from one sensor brand, which
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Table 8 Bland-Altman statistic parameters for total nonwear time for wrist and chest (after removing the outliers).

Characteristic Algorithm Reference Mean of the 95% limits Intraclass Pearson
mean(sd) mean(sd) difference® of agreement correlation correlation
coefficient
ICC
Nonwear min/day 67.45 (39.00) 62.34 (37.15) 5.11 —15.49;25.73 0.95 0.96
(wrist) (n=81) [2.80;7.42]° [0.90;0.97]° [0.94;0.97]°
p-value p-value p-value
<0.001" <0.001 <0.001
Nonwear min/day 59.20 (35.35) 57.87 (34.51) 1.32 —9.59;12.24 0.98 0.98
(chest) (n=85) [0.12;2.52]° [0.97;0.99]° [0.98;0.99]°
p-value=0.031" p-value p-value
<0.001 <0.001

Notes.
295% Confidence interval.
®One sample ¢-test.
“algorithm minus reference.

can influence the choice of the thresholds and the results when using the algorithm with
other sensors presenting different noise levels.

CONCLUSION

Using accelerometers yields new insights and opportunities in a wide range of psycho-
sociological studies, especially in the field of sleep health. We propose an algorithm that can
differentiate nonwear periods from sleep and wake periods based on the detection of the
respiration wave. Future studies should focus on sleep and wake classification using other
complementary methods besides threshold-based methods, such as frequency analysis of
the acceleration signal and differences in respiration patterns, during sleep and wake states
as well as during sedentary behaviors, as this information is especially valuable when short
nap periods are of interest in the context of ambulatory studies. These methods could also
be used to determine the exact start and end times of sleep using acceleration data.
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