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ABSTRACT
In goal-directed web navigation, labels compete for selection: this process often
involves knowledge integration and requires selective attention to manage the
dizziness of web layouts. Here we ask whether the competition for selection depends
on all web navigation options or only on those options that are more likely to be
useful for information seeking, and provide evidence in favor of the latter alternative.
Participants in our experiment navigated a representative set of real websites of
variable complexity, in order to reach an information goal located two clicks away
from the starting home page. The time needed to reach the goal was accounted for
by a novel measure of home page complexity based on a part of (not all) web options:
the number of links embedded within web navigation elements weighted by the
number and type of embedding elements. Our measure fully mediated the effect of
several standard complexity metrics (the overall number of links, words, images,
graphical regions, the JPEG file size of home page screenshots) on information seek-
ing time and usability ratings. Furthermore, it predicted the cognitive demand of web
navigation, as revealed by the duration judgment ratio (i.e., the ratio of subjective
to objective duration of information search). Results demonstrate that focusing
on relevant links while ignoring other web objects optimizes the deployment of
attentional resources necessary to navigation. This is in line with a web party effect
(i.e., a cocktail party effect in the web environment): users tune into web elements
that are relevant for the achievement of their navigation goals and tune out all others.

Subjects Neuroscience, Psychiatry and Psychology, Statistics, Human–Computer Interaction
Keywords Attention, Web navigation, Information seeking, Web layout, Search time, Usability,
Cognitive load, Experienced duration, Complexity, Mediation

INTRODUCTION
The ability to tune into a single voice and tune out all others during a crowded party is

known as the cocktail party effect (Cherry, 1953). This effect demonstrates the selectivity of

human mechanisms that allow us “to attend”; i.e., to prepare ourselves for the extraction

of the relevant information from a cluttered environment (Broadbent, 1958; Treisman,

1964; Deutsch & Deutsch, 1963; Johnston & Heinz, 1978). The peculiar human ability to

successfully focus and shift attention to optimize information extraction is ascribable to a

rather general process controlling both visual and auditory inputs (Shinn-Cunningham,

2008). A visual analogue of the cocktail party effect can indeed be found in explicit

attentional capture phenomena (i.e., inattentional blindness) demonstrating a surprising
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degree of blindness to salient visual features (e.g., dynamic information; Simons & Chabris,

1999; Simons, 2000).

Also, navigation within web pages has several close relatives with the cocktail party

effect; it is indeed an information seeking activity performed within a cluttered environ-

ment, in which all web options competing for selection (i.e., links) behave as those noisy

voices at the cocktail party. In the case of web navigation, therefore, the achievement of an

information goal and the time required to achieve it (i.e., the information seeking time)

depend on the capacity of the user to tune into those web elements that are relevant for the

achievement of the goal and tune out all others. Consistently with such a commonality here

we ask whether a similar effect of selective attention might occur during web navigation

within ordinary websites; hence, we ask whether a web party, like a cocktail party, effect

exists. During goal-directed web navigation, is the competition for web selection entered

by all navigation options or by only those options that are more likely to be functional to

information seeking?

In this respect one can distinguish between navigation options embedded in conven-

tional elements that, according to internalized layout conventions, are more likely to be

functional to information seeking (e.g., navigation bar, footer, menu categories; Nielsen,

1999), and less conventional web options (e.g., images, banners, embedded links, words).

According to a web party effect, the information seeking time within the web should be

moulded by the former types of options but not the latter.

Our study corroborated this hypothesis by: (1) accounting for the role of selective atten-

tion in goal-directed navigation using an information seeking task within a representative

set of websites of Small and Medium Enterprises (SME)1; and (2) contrasting the predic-

1 Enterprises with less than 250 employees
and an annual turnover less than 50
million Euro (UE definition, L-124, 20
May 2003).

tive power of a novel measure of home page complexity based on a part of web options,

against several other candidate predictors of information seeking time that have been pro-

posed so far as valuable indices of web page complexity (e.g., the overall number of links,

words, images, and graphical regions, or the JPEG file size of the homepage screenshot).

Web information seeking behavior
Our idea reflects previous alternative approaches to the modeling of web information

seeking behavior: semantic- vs. knowledge-based approaches.

According to Pirolli & Fu (2003; but see also Chi, Pirolli & Pitkow, 2000; Card et al.,

2001; Katz & Byrne, 2003; Kitajima, 2003; Miller & Remington, 2004; Blackmon, Kitajima

& Polson, 2005; Kaur & Hornof, 2005) web information seeking behavior is a matter of

information scent (Pirolli & Card, 1999), which is grounded on semantic rather than

procedural knowledge, including an estimate of the relevance of all links within a web

page. CoLiDeS (Comprehension-based Linked model of Deliberate Search; Kitajima,

Blackmon & Polson, 2005) takes a step further; it assigns information scent for a user

goal to not only the links but also the sub-regions within a web page, according to the

users’ prior knowledge of layout conventions. Users select one patch of information

within the web page and ignore all the rest, through a mechanism of selective attention

optimizing attentional demand. Real websites, indeed, are not composed of labels and
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textual materials only, but also by different types of web objects (navigation bars, canvas,

footers, embedded links) placed in different page regions (top, bottom, central, left, right)

as used to display, group, and emphasize the relevance of labels.

Several studies have shown that an organization of web page layout reflecting the

hierarchical structure of information contents (Rosenfeld & Morville, 1998; Veen, 2000),

helps information seeking behavior; it reduces information seeking time and improves

information search accuracy (Tullis, 1998; Bernard, Hull & Drake, 2001; Pearson & Van

Schaik, 2003; Halverson & Hornof, 2004; Ling & Van Schaik, 2004; Rigutti & Gerbino, 2004).

Selection time has been found to increase as the target label deviates farther from the

top-left region of the web page (Van Schaik & Ling, 2001; Rigutti, Fantoni & Gerbino, 2007;

Tamborello II & Byrne, 2007; Rigutti, Gerbino & Fantoni, 2008). Eye movements during web

page scanning follow the reading direction from left-to-right and/or top-to-bottom paths

with a dominance of top and middle areas of the web page (Faraday, 2000; Goldberg et al.,

2002; Joachims et al., 2005; Nielsen, 2006; Buscher, Cutrell & Morris, 2009). Evidence from

the observation of how users interact with the web browser in the working environment

over a long period provides further support for the relevance of web page layout as well as

of users’ prior knowledge about layout conventions (Catledge & Pitkow, 1995; Cockburn &

McKenzie, 2001; Weinreich et al., 2006). Analyzing the clickstream Weinreich et al. (2006)

found that users did not take the time to read every page completely, but just glimpsed over

most of the information offered, by privileging links laying in the top/left region of the page

that are embedded within the principal navigation elements (i.e., horizontal and vertical

navigation bars).

Web page complexity
Despite these different perspectives on web information seeking behavior, scientists agree

to consider web page complexity as a valuable predictor of information seeking time,

which is the focus of the current study. Gwizdka & Spence (2006) defined the complexity of

a web page in term of the overall number of links within the page (i.e., navigation choices).

Several studies corroborated the predictive power of such a definition by finding that

increasing the number of links per page decreases link selection accuracy and increases

information seeking time (Pierce, Sisson & Parkinson, 1992; Mosenthal, 1996; Blackmon et

al., 2002; Usher, Olami & McClelland, 2002; Van Schaik & Ling, 2012). As an alternative

measure, recent works have proposed the number of bytes of the JPEG screenshot as

a valuable predictor of users’ overall experience of pleasantness, psychophysiological

responses as heart rate and electrodermal activity, performance (i.e., information seeking

time), and memory (Tuch et al., 2009; Stickel, Ebner & Holzinger, 2010). Other works (Ivory,

Sinha & Hearst, 2000; Ivory, Sinha & Hearst, 2001; Michailidou, Harper & Bechhofer, 2008;

Harper, Michailidou & Stevens, 2009; Miniukovich & De Angeli, 2014) provided compound

measures of web page complexity based on different weighted linear combinations of these

and other types of metrics such as the number of words, images, and segregated graphical

regions.
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A knowledge-based approach to web information seeking behavior as formalized by

CoLiDes sets the basis for an alternative hypothesis: information seeking time is accounted

for by the complexity of the home page, defined by those only options and links which

are more likely to be functional for information seeking, rather than by the entire set of

web features which are detectable within the page (i.e., number of words, images, links,

segregated graphical regions).

Rationale and expectations: a knowledge-based measure of
complexity
As the number of relevant links within a page generally covaries with most of the above

mentioned web page complexity metrics, there is no up-to-date evidence allowing to

establish whether information seeking time should be better predicted by the encoding

of all or just part of the information within the home page. Here we answer such a

question by testing a new measure of web page complexity (C) that formalizes three basic

constraints of a knowledge-based approach to web information seeking behavior: (1) only

links embedded within relevant web elements are encoded and contribute to web page

complexity; (2) their number is multiplied by a composite factor that takes into account

both the number of relevant web elements within the web page and (3) the weights of web

elements they belong to. Such constraints are formalized by the following equation:

C = NL
n

i=1

Eiωi (1)

where NL stands for the number of links embedded in relevant web elements, i is the web

element index between n = 1 and n = 5 (horizontal navigation bar, left vertical menu,

right vertical menu, menu within the canvas, footer), Ei is a dichotomous variable (1 for

presence and 0 for absence of the element), and ωi is the weight of the ith element in the

[0,∞] range.

According to state-of-the-art research on selection time within hierarchical menu trees

(Lee & MacGregor, 1985), we assumed that information seeking time (IST) increases as C

increases, as follows:

IST = αC + θ (2)

where α formalizes the individual search strategy, from exhaustive to self-terminating

(Paap & Roske-Hofstrand, 1986), and θ stands for the individual latency of the action

required by the task.

Figure 1 shows the predicted complexity of home pages for different combinations of

web elements and links, calculated according to our set of empirically extracted weights

(see ‘Data analysis’ subsection for details). Each combination defines a line with origin in

[NL = 0,C = 0] and a slope equal to the factor that sums up the weights of navigation

elements present in the home page.

Note that the model tolerates predictions that are both consistent and inconsistent

with a semantic-based approach to web information seeking behavior. Consistently with
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Figure 1 Predicted complexity (C) as a function of the number of links for different combinations
of web navigation elements. In (A) the color of the lines codes different combinations of navigation
elements as specified in the legend on top. The three dots refer to representative home pages used in our
experimental sample and discussed in the text. (B) Distribution of complexity scores for the home pages
of 1945 Friuli Venezia Giulia SME sites, from which our representative sample of home pages has been
extracted. ATECO categories are color-coded (see the ‘Stimuli and apparatus’ subsection for details).

a semantic-based approach, predicted complexity increases as NL grows larger (C of page

a smaller than C of page c). However, the model also includes strongly counterintuitive

predictions like the following: page c, with a small number of links and navigation

elements, scores a higher complexity than page b, with a larger number of links and

navigation elements. The numerous links embedded within the right bar of page b poorly

contribute to the overall complexity score, while those few links embedded in the central

categories of the page (i.e., canvas) c have a high impact on the overall complexity score.

As a result, the complexity scores for pages c and b, as well as their IST, are similar (with

c slightly larger than b) despite large differences in the number of selection choices and

graphical elements.

Our experiment considers and tests the following four hypotheses.

(H1) The time required to search for an information goal located at a given depth

(starting from the home page) does not depend on the number of links (NL) or web

elements (NE) considered in isolation, but rather on their weighted combination as

formalized by C in Eq. (1): independent and combined effects of NL and NE on IST should

be entirely accounted for by our synthetic C measure.

(H2) Consistently with a web party effect, our C measure should explain a larger

amount of variance of the IST distribution than alternative metrics of web page

complexity, which are not intended to formalize selective attention processing of the page

(e.g., overall number of links, bytes, words, images, segregated graphical regions).

(H3) C is expected to be negatively correlated with our explicit measure of website

usability (EU), given that one major goal of web designers is the making of usable and

beautiful graphical user interfaces while reducing artifact complexity.
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(H4) C is expected to be diagnostic of the cognitive effort involved in a web information

search task. According to the numerous studies on the distortions of time perception

produced by cognitive load (Eisler, 1976; Zakay, Nitzan & Glicksohn, 1983; Meyer et al.,

1996), we expect C to be inversely correlated with the ratio between the estimated duration

of the information search (i.e., Estimated Search Time, EST) and IST. This expectation

arises from predictions of attentional models of experienced duration (Thomas & Weaver,

1975; Zakay & Block, 1995; Zakay & Block, 1996); a proportional decrement in duration

estimates for increasing cognitive effort is indeed predicted when a prospective duration

paradigm is used, like in our study in which participants were informed in advance that

they should express a duration judgment.

METHOD
We tested our expectations by measuring IST, EST, and EU for a representative set of

home pages extracted from the population of SME sites of our regional district (Regione

Autonoma Friuli Venezia Giulia, FVG). The visual complexity of the starting home page of

selected sites displayed a large variability. Every participant was asked first to search for an

information goal located two clicks away from the home page, then to explicitly estimate

the duration of information seeking navigation and to evaluate his/her global view of

website usability on the System Usability Scale (SUS).

Participants
Twenty undergraduates of the University of Trieste participated in the experiment. The

sample consisted of 8 males (M 26.5 years, SD 7.7) and 12 females (M 24.3 years, SD

4.2). All had normal or corrected-to-normal vision and were naive as to the purpose of

the experiment. We administered a “user profile” questionnaire at the beginning of the

experimental session to obtain general user data regarding web experience and typical

online behavior patterns. All but two participants reported more than five years of general

computer usage, and all but one reported having used the web at least two hours per week

for more than one year. Regarding current web usage, all but two participants reported

at least five hours per week. Sixteen participants reported purchasing items online in the

past, with eleven reporting having purchased at least five items online and all of them using

regularly the email.

The study was approved by the Research Ethics Committee of the University of Trieste

(approval number 52) in compliance with national legislation, the Ethical Code of the

Italian Association of Psychology, and the Code of Ethical Principles for Medical Research

Involving Human Subjects of the World Medical Association (Declaration of Helsinki).

All participants provided their written informed consent prior to inclusion in the study,

accepted the response sheet of the SUS questionnaire used at the end of the navigation

session, and therefore behaved as active participants in the entire data collection. Response

sheets were filed as raw documents.
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Stimuli and apparatus
The experiment took place in the Active Vision Laboratory of the Department of Life

Sciences of the University of Trieste. The participant was seated in front of a 21′′ LCD

Computer Monitor (Sony Trinitron Color Graphic Display GDM-F520 1280 × 768 pixels),

at a comfortable viewing distance from the screen (about 60 cm), in a dimly lit room. The

participant controlled all the progress of the experiment using a computer mouse with

his/her right hand. To avoid problems due to the variability of web page load time and,

more in general, to online navigation (e.g., server crash, slowing down of TCP tuning

protocol) all navigation sessions were conducted off-line. The entire set of 26 websites

was downloaded through HTTrack Website Copier in a local directory and the Xampp

platform as supported by the Apache HTTP Server was customized so to trace logfiles

and store the navigation paths as well as the timing associated to each web page click with

millisecond precision. Each website was displayed and navigated using Google Chrome

browser. Real websites were used to assure a high ecological validity of the experiment.

Based on a previous analysis of the entire FVG SME website set (N = 1945), we selected

26 representative websites, so chosen to cover a good spread of standard visual types

normally encountered within the FVG SME website set (Fig. 1B). The selection of home

pages of live sites was based on a 3-level classification (simple, intermediate, and complex),

according to general principles of web usability design and considering standard metrics

of home page complexity: number of words (M = 227.6, range = 32–756, SD = 176.9),

number of segregated graphical regions computed by closely following the rationale for

chunk rendering evaluation described in Harper, Michailidou & Stevens (2009) (M = 9.15,

range = 1–19, SD = 4.4), number of links (M = 27.65, range = 6–84, SD = 17.6), number

of web navigation elements counted amongst four main types—horizontal navigation

bar, vertical menus, menu in the canvas, and footer—(M = 2.1, range = 1–3, SD = 0.8),

number of links embedded within the web navigation elements (M = 16.96, range = 6–56,

SD = 10.5), and number of dynamic and static images (M = 14.43, range = 2–33,

SD = 7.9), JPEG file size of the 1280 × 768 screenshots of the portion of the home page

viewable at first sight, computed by closely following the method described in Tuch et al.

(2009) (M = 240 byte, range = 154–391, SD = 57.5).

Experimental websites were selected so as to be representative of local SME sectors

according to the ATECO 2007 economical categorization (Official Journal, 20 December

2006, CE n.1893/2006, 20/12/2006) as provided by the Trieste’s Chamber of Commerce.

We categorized the subset of 26 experimental websites into the following types, corre-

sponding to the five most numerous categories within the entire FVG SME website set (as

shown by percentages within parentheses): hotels/restaurants (N = 1, 10%), constructions

(N = 2, 12%), commerce (N = 3, 13%), services (e.g., health, ICT, education; N = 7, 27%),

factories/manufactures (N = 14, 38%). The function relating the number of experimental

sites per ATECO category to the percentage of sites per ATECO category (within the entire

population of sites to which participants have been likely exposed) was close to linearity

(slope = 0.43, intercept = −3.27, r2
= 0.97). Such a linear relation guarantees for the

ecological validity of our experimental set and minimizes possible systematic biases due
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to an unbalance between individual familiarity with different site categories and their

presence/absence within the experimental set.

To keep the structural complexity of the task constant, we selected all information

goals two clicks away from the home page (a depth constraint related to information

architecture) and all links to the page displaying the information goal in the central

region of the intermediate page measuring 500 px horizontally × 360 px vertically (a

visuo-spatial constraint): 12% of target links in the intermediate page belonged to the

secondary horizontal navigation bar (displayed below the main horizontal navigation bar),

31% to the left vertical navigation bar, and 58% to the categories displayed in the central

region of the page.

In the home page, we avoided possible biasing effects of link visibility by selecting target

items included in the page portion displayed at the onset, without scrolling (Mx = 477 px;

SDx = 249; My = 187 px; SDy = 156): 65% of target items belonged to the horizontal

navigation bar placed in the top region of the page and 35% to the vertical navigation bar

placed in the top left side of the page. Furthermore, all target items were superordinate

meaning words (38% “products”; 27% among “catalogue,” “collections,” “systems”;

23% “services”; 11% among “rooms,” “calendars,” “industrial machinery”), as needed

to balance their semantic access.

The Italian translation of the SUS (Argentero et al., 2009) was administered at the end of

each navigation trial. The response form contained the 10 SUS items each flanked on the

right side by the 5-point agreement scale numbered and ordered from 1 (strongly disagree)

to 5 (strongly agree).

Procedure
The procedure included: (1) a session in which the general user data regarding web

experience and typical online behavior patterns were assessed through a “user profile”

questionnaire, (2) instructions, (3) a training with four sites, not included within the

set of 26 experimental websites, (4) the experimental navigation session including 26

information seeking trials within the randomized set of experimental websites, and the

explicit estimates of the information seeking time followed by a subjective assessment of

the navigated website usability.

Written instructions were displayed on screen using a standard Microsoft PowerPoint

(PPT) presentation. Each participant was tested individually. The participant was first

given a short introduction to the lab setup and to the psychological measurements used

throughout the experiment; then, s/he was instructed about the purpose of the experiment

(i.e., investigating how people find products on SME sites) and informed that neither

the search engine nor the browser tools were active to support navigation during the

information seeking task.

Each experimental trial included the following ordered sequence of events (Fig. 2

depicts events from 3 to 8):

(1) the participant was informed that a cross would have been shown to him/her for

about 15 s and that, at the end of the information seeking task, s/he should estimate
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Figure 2 The information seeking task. Temporal sequence of main events included in an information seeking trial of our experiment. The PPT
slide on the left specifies the information goal “Search Shidosha scissors” (center) and the link to the home page of the Leader Cam company
(bottom). The home page includes the relevant link “Collections” in the top horizontal bar. A click on “Collections” activates a subordinate page,
which contains several clickable regions. The upper right contains the name and a representative picture of the Shidosha collection. Clicking on this
region terminates the task and activates the third page (i.e., the information goal located two clicks away from the home page).

the information seeking time (IST) using such a duration as a reference;

(2) a 30-px-wide green cross was displayed at the center of the white screen for about 15 s;

(3) a static PPT slide displayed black on white the items to be found, together with a

brief purposive description of the website within which the participant was going to

navigate through, and a hyperlink to the destination site;

(4) the participant read the text within the PPT slide aloud and the experimenter clarified

all doubts about the goal raised by the participant;

(5) a white blank screen was displayed for about 500 ms after hyperlink selection;

(6) the home page of the selected website was displayed within the browser;

(7) the navigation was interrupted by the experimenter when the target link was selected

from the correct target page, which was always one click away from the starting page;

(8) the participant provided a verbal estimate of the amount of time spent to get the

required information;

(9) the SUS form was provided and the participant rated the amount of agreement with

each of the 10 items of the questionnaire;

(10) the next trial followed.

The random sequences of 4 training sites and 26 experimental sites differed across

participants. Each experimental session lasted about 90 min.

RESULTS AND DISCUSSION
Data analysis
We analyzed three measures of web navigation proficiency. The individual information

seeking time IST (taking as valid values those below 150 s, which led to the removal

of 10 out of 520 trials), the duration judgments of the information seeking navigation

EST, and the EST/IST ratio (i.e., duration judgment ratio). Following attentional models
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of experienced duration (Thomas & Weaver, 1975; Zakay & Block, 1995), the ratio of

subjective to objective duration is a standard synthetic measure of the cognitive load

involved in the task. Measuring it in our navigation task thus allowed us to afford a

comparison between duration judgments made in conditions that entailed different levels

of load due to the different duration of each navigation trial.

Our empirically grounded knowledge-based measure of complexity C was calculated for

each website in order to investigate the main hypothesis that only part of web elements

(i.e., those relevant for information seeking) affects the information seeking time.

Following Eq. (1) we first solved the nonlinear curve-fitting problem of extracting the set of

5 weights (one for each web element) that best accounted for the obtained distribution

of individual ISTs using a least-squares procedure constrained to yield positive real

solutions. The best-fitting combination of weights was the following: ωhorizontal bar = 0.31;

ωleft vertical bar = 0.12; ωright vertical bar = 0.001; ωfooter = 0.017; ωcanvas = 0.80.

Notably, such weights closely resemble the relative frequencies of occurrence of the 5

web elements within the entire set of 1945 FVG SME sites from which they were selected,

as described by a second order polynomial fit (β1 = −2.4; β2 = 2.9; intercept = 0.07;

r2
= 0.99). This preliminary result supports the normative validity of our combination of

weights. For each tested home page, we thus calculated its C value entering into Eq. (1) the

corresponding NL, the presence/absence of each web element Ei, and the corresponding

weights (see panel A of Fig. 1 for a plot of the model according to our weights).

Individual synthetic self-assessment measures of website usability were extracted from SUS

agreement ratings following the procedure indicated by Brooke (1996), yielding scores on

a 0–100 scale.

We analyzed our indices of web navigation proficiency using a step-wise procedure

that contrasted linear mixed-effect (lme) models of increasing complexity (Bates et al.,

2014), depending on the number of fixed effects, modelled by our candidate continuous

predictors (C, NL, NE and/or standard complexity indices: number of words, number of

segregated graphical regions, overall number of links, number of images, file size of JPEG

screenshot) and their meaningful combinations. Models were fitted by minimizing the

restricted maximum likelihood criterion (Laird & Ware, 1982). The participants and the

ATECO-based website categories were treated as random effects, to control for both the

individual variability in the latency of task execution and its dependency on individual

knowledge of the navigated domain of information. We followed Bates (2010) and used

this statistical procedure to obtain two-tailed p-values by means of a likelihood ratio

test based on χ2 statistics (for a discussion of advantages of a lme model over the more

traditional mixed-model analysis of variance see Kliegl et al., 2010). We calculated type 3

like two-tailed p values using the Kenward-Rogers approximation for degrees-of-freedom

implemented in KRmodcomp’s function, R Package pbkrtest. Among the indices that

have been proposed as reliable measures of the predictive power and goodness of fit of lme

models we selected the concordance correlation coefficient, rc, providing a measure of the

degree of agreement between observed and predicted values, in the −1 to 1 range (Vonesh,
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Figure 3 Predicting information seeking time. (A) Mean information seeking time as a function of the average numerosity of links embedded in
web elements: small (8.0), medium (16.2), large (27.9). The average number of links is also coded by bubble size. The three numerosities of web
elements are color-coded (see legend on top). Error bars represent ±1 SE. (B) Plot of the same data as a function of our complexity measure C. (C)
Plot of the average observed IST for each of the 26 experimental sites as a function of the IST predicted by the model in Eq. (2). Bubble size codes
the number of links embedded in web elements and bubble color codes the three web element numerosities. The three representative sites discussed
in Fig. 1A are evidenced by home pages (a, b, c): as predicted by C, the observed IST for site c was larger than for site b although site c included both
a smaller number of links (smaller bubble) and a smaller number of navigation elements (orange vs. red). The blue line is the lme model regression
line and the shaded region corresponds to ± standard error of the regression. The dotted line is the reference line standing for an optimal prediction
of observed IST based on Eq. (2) (i.e., null intercept and unitary slope).

Chinchilli & Pu, 1996). Post-hoc tests were performed using Welch two sample t-tests with

unequal variance and Cohen’s d as a measure of significant effect size.

Knowledge-based complexity vs. NL and NE
In order to understand how the structural elements of a web page relevant for information

seeking can determine the speed of web information search, we first analyzed the

independent and conjoined effects of the number of web navigation elements, and of

the number of links embedded in web navigation elements. Figure 3A shows the average

information seeking time as a function of the number of links embedded in web navigation

elements, averaged within three categories: small (M = 8.0, range = 6–12), medium

(M = 16.2, range 13–21), large (M = 27.9, range 22–56), based on cutoffs at the 33rd

and 66th percentiles. Values on the x-axis are also coded by bubble size, to facilitate the

comparison with Fig. 3B. The number of web elements is color-coded as shown in the

legend on top.

Consider home pages with 2 and 3 web elements. Participants spent a larger amount of

time to find information within sites with a larger number of relevant web options; overall,

information seeking time increased of about 6.3 s (t = −5.32, df = 288.29, p = 0.000,

d = 0.57) as the number of web options increased from small to medium, and further
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increased of about 2.6 s, though not significantly (t = −1.37, df = 264.77, p = 0.07), as the

number of web elements increased from medium to large. This is consistent with previous

results showing that website complexity as modelled by the number of navigation choices is

negatively correlated with navigation accuracy.

However, taking all web element conditions together, the present results do not provide

evidence of a mere effect of the number of web options. Information seeking time was

strongly dependent also on the number of web elements displayed on the page; it increased

about 7.9 s as the number of web elements increased from 1 to 2 (t = −7.6, df = 269.27,

p = 0.000, d = 0.67) and kept increasing of about 3.0 s as the number of web elements

increased from 2 to 3 (t = −1.76, df = 319.18, one tailed, p = 0.04). A semantic-based

approach to web information seeking behavior cannot predict the overall effect of web

elements, given that only active web links should enter the competition for web selection.

The likelihood of selecting the correct link should not be affected by those structural

components of the artifact, like web navigation elements, that are both inactive (i.e., acting

on them does not cause any variation in the status of the interface) and void of an explicit

semantic meaning (e.g., being graphic elements).

These results corroborated H1, and are consistent with a model of information

seeking time based on our knowledge-based account of home page complexity, C. This

is shown in Fig. 3B, where we recoded the 6 conditions corresponding to different NL–NE

combinations in term of C, and replotted the average information seeking time as a

function of C. Information seeking time proportionally increased with C regardless of the

number of web elements and the number of links. Our C measure indeed accounts for the

overall trend of information search speed while accounting for both the lack of a significant

difference between conditions with an equal number of links (i.e., largest number group)

but different number of web elements (MN3 = 22.8 s ± 2.57 s vs. MN2 = 18.31 s ± 1.44 s;

t = −1.52, df = 123.17, p = 0.13), and the lack of a significant difference between

conditions with equal number of web elements (NE = 2) but different number of links

(Msmall = 15.9 s±1.59 s. Mmedium = 17.4 s±1.4 s; Welch t = −0.74, df = 127.9, p = 0.46),

which are both critical for an additive model independently weighting the effects of the

number of links and elements.

This is confirmed by the results of the lme analysis testing the effects of web elements and

web links, once the effect of C is controlled. In a first lme model, disregarding the effect of

C, we thus asked how individual information seeking times were affected by the number

of web elements and the number of links. In this model information seeking time resulted

to be positively affected by the number of web elements (β = 5.42 ± 1.47, F1,426.25 = 13.7,

p = 0.000) and the number of links (β = 0.66 ± 0.31, F1,429.68 = 4.2, p = 0.04), but not

their interaction (β = −0.21 ± 0.11, F1,428.28 = 3.32, p = 0.07). More interesting, however,

was to repeat the same analysis including C as a third independent covariate so to control

for its effects. Both main effects of web elements (β = −6.76 ± 3.80, F1,425.13 = 2.31,

p = 0.13) and web links (β = −1.21 ± 0.63, F1,427.92 = 3.1, p = 0.08) became non

significant when C was included in the model. In this second model, the likelihood

of information seeking times was thus completely explained by C (β = 0.92 ± 0.27,
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F1,430.33 = 10.27, p = 0.001). In the present investigation, therefore, there is no evidence

that the actual number of navigation choices and web elements per se contribute to the

perceptual response beyond what C can explain.

Furthermore, no significance decrement of fit was found when contrasting this second

lme model with a model with C as the only covariate (rc slightly decreases from 0.356

to 0.353; χ2
2 = 0.34, p = 0.84) with slope = 0.50 ± 0.07 and intercept = 8.87 ± 1.34.

According to Paap & Roske-Hofstrand (1986) and our Eq. (2), the lme estimated slope

stands for the individual search strategy that, being equal to 0.5, denotes an exhaustive

search strategy consisting in reading all links embedded within relevant web elements,

while the intercept stands for the information search latency.

As depicted in panel Fig. 3C, our model finely describes the metric of information

seeking times obtained in our experiment as the best linear fit describing the relationship

between predicted and average observed search times (r2
= 0.55; F1.24 = 29.58, p = 0.00)

is a line with unitary slope (1.11 ± 0.20 vs. 1, t = 0.549, p = 0.58) and null intercept

(−1.69 ± 3.52, t = −0.48, p = 0.63). Surprisingly, as shown by the insets in Fig. 3C, the

model also accounts for cases that are at odds with a semantic-based approach to web

information seeking behavior and with the commonly held idea that information seeking

time should be a monotonic function of the number of navigation choices; as predicted by

C, site c required a larger information seeking time than site b (t = 1.9, df = 21.52, one

tail p = 0.04, d = 0.61), although it included a dramatically smaller number of navigation

choices (21 vs. 56 number of links, and 2 vs. 3 navigation elements; see Fig. 1A for details).

Knowledge-based complexity vs. standard complexity metrics
A causal mediation analysis using lme as mediator model types was performed to

verify if, according to H2, a web party effect did occur in our study: to what extent the

effects of multiple standard metrics of page complexity on information seeking time can be

accounted for by their effects on C as a mediator, which in turn affects information seeking

time? If a web party effect does occur, then information seeking time variability should

be accounted for similarly by C as well as by standard metrics of web page complexity.

The standard metrics we considered were the following: the overall number of links, the

JPEG file size of the home page screenshot (bytes), the number of segregated graphical

regions, the number of words, and the number of images. The implemented versions

of mediation analysis used as default simulation type a quasi-Bayesian Monte Carlo

method based on normal approximation (Imai, Keele & Tingley, 2010). We used White’s

heteroskedasticity-consistent estimator for the covariance matrix from the sandwich

package (Zeileis, 2006) and a bootstrapping method with 2000 re-samples to compute

confidence intervals for the indirect effect, as well as—specifically—to determine whether

the mediator completely or partially mediated the effect of predictor variables on the

outcomes.

We summarized the result of the mediation in Fig. 4. The analysis allowed us to infer

the Total Effect of multiple predictor variables on the IST(rightmost coefficients in Fig. 4),

whether these predictors contribute to the variance of C as mediator (leftmost coefficients
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Figure 4 Causal lme mediation analysis on information seeking time (IST) using standard indices of
complexity as predictor variables and C as the mediator. Color codes the different variables and their
effects, with the mediator and the outcome variable in black, the Links × Segregated Graphical Regions
interaction in grey and the 5 predictor variables in chromatic colors. Unstandardized estimates ±1 SEM
are included in the model. Coefficients marked with two or three asterisks are significant at p < 0.001 or
p < 0.0001 level. The effect of predictor variables on the C mediator variable is shown above the arrow
lines connecting the 5 leftmost boxes and the grey outlined circle coding the Links × Segregated Graphical
Regions interaction with the black outlined C box at the top of the model. The lme estimates of the Total
Effects of the 6 predictor variables on IST are included in the righmost part of the model next to the IST
black outlined box. The direct effects (with C as mediator) for IST are depicted above the arrow lines
connecting 5 leftmost boxes and the grey outlined circle with the IST black outlined box. The proportion
of effect mediated by C for the 6 predictor variables is depicted above the black arrow line connecting the
C box to the IST box.

in Fig. 4), and to what extent the mediator contributes to the variance of the IST, Indirect

Effect (top right coefficients in Fig. 4). Finally, the inferred Direct Effect (middle coefficients

in Fig. 4) provided a measure of whether predictor variables continued to predict the IST

with the mediator in the model.

As regards the estimation of the Total Effect, we tested a first lme model inspired from

previous works providing a compound measure of the artifact complexity based on a

weighted linear combination of each single standard metric of web page complexity (Ivory,

Sinha & Hearst, 2000; Ivory, Sinha & Hearst, 2001; Michailidou, Harper & Bechhofer, 2008;

Harper, Michailidou & Stevens, 2009; Miniukovich & De Angeli, 2014). The simplest lme

model accounting for the largest quote of variance (χ2
7 = 48.34, p = 0.000; rc = 0.354)

amongst all candidate lme models combining all alternative metrics to C as fixed effects

resulted to be one including significant main effects for the number of segregated graphical

regions (F1,278 = 19.00, p = 0.000), the overall number of links (F1,426.6 = 9.76, p = 0.002),
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and the number of words (F1,426.5 = 8.15, p = 0.005), as well as a significant number

of segregated graphical regions × overall number of links interaction (F1,419.4 = 8.65,

p = 0.008). All predictor variables contributing to the variance of IST also contributed

to the variance of the mediator C. The C value decreased as the number of words

(β = −0.11 ± 0.002; F1,423.2 = 26.02, p = 0.000) and the combination of links × graphical

regions (β = −0.013 ± 0.008; F1,417.9 = 229.30, p = 0.000) grew larger; while it increased

with the JPEG file size (β = 0.012±0.003; F1,411.8 = 12.59, p = 0.000), the number of links

(β = 1.33 ± 0.068; F1,427.3 = 358.1, p = 0.000) and the number of segregated graphical

regions (β = 4.27 ± 0.28; F1,235.1 = 191.7, p = 0.000).

However, consistently with the occurrence of a web party effect and with H2, when C

was added as a covariate all effects of standard complexity metrics on IST became non

significant, with their coefficients getting statistically equal to zero (middle coefficients in

Fig. 4). All Total Effects were thus accounted for by C, demonstrating a full mediation of C

of the effects of multiple metrics of page complexity on IST. All proportions of C mediated

effects indeed resulted to be strongly significant: with C mediating about 31% the effects of

the number of words, 109% the effect of the number of links, 53% the effect of the number

of segregated graphical regions, and 101% the link × graphic interaction.

Again C resulted to be the only significant predictor of IST (β = 0.47 ± 0.11;

F1,409.88 = 16.55, p = 0.000). Furthermore, no significant loss in the fit was found when

contrasting an lme model with C as the only covariate vs. an lme model including all the

effects of multiple metrics of page complexity (χ2
6 = 10.73, p = 0.09).

This result, together with the one discussed in the previous subsection, further

demonstrates the occurrence of a web party effect. The web components of the home

page accounting for the time to reach an information goal within a website are the links

embedded within relevant web navigation elements. All other links and web objects do

not affect search time, once the effect of our knowledge-based measure of home page

complexity C is controlled.

Knowledge-based complexity and website usability
Previous results demonstrated that C has a strong impact on information search efficiency.

According to H3, navigating within a low C site provides the user with a more rewarding

experience, which should enhance the global experience of both pleasantness and

usability. Following this hypothesis, we expected that C impacts the subjective estimates

of the pleasantness of user-site interaction thus affecting website usability, with a larger

effectiveness than alternative metrics of artifact complexity. To test this expectation, we

compared C against users’ usability rating and contrasted its predictive power against that

of other standard complexity metrics.

Usability scores were strongly predictive of information seeking time, which decreased

at an lme estimated rate of about −0.389 ± 0.03 s every unit of the SUS scale (χ2
1 = 138.61,

p = 0.000, rc = 0.54). Such a strong relationship demonstrated that usability experience,

as measured through the SUS scale, well reflects the easiness of interaction which in turn is

operationalized by the time needed to reach the information goal within a site.
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Figure 5 Usability judgments (SUS score) as a function of the number of segregated graphical regions,
for three levels of C. Average SUS scores [±SEM] for the 26 experimental sites as a function of the
number of segregated graphical regions (NG), subdivided into three equal C intervals (A, B, and C
panels include data for 4.9, 17.3, and 25.2 average C values, respectively). The home page complexity
C is color-coded as shown in the vertical legend. The blue line is the lme model regression line and the
shaded region corresponds to ± standard error of the regression. Horizontal dotted lines represent the
grand average SUS scores [±SEM] for each C level (panel A → green; panel B → cyan; panel C → pink).
The inset in (D) represents the average SUS score as a function of the average number of segregated
graphical regions (NG), computed within three equal percentile intervals within the 3–10 range.

In a further lme model we showed that usability ratings were finely predicted by our C

index. SUS scores decreased at an estimated rate of about −0.66 ± 0.080 for every unit of C

increment (χ2
1 = 58.9, p = 0.000, rc = 0.56). No improvement of fit was found if all other

standard metrics, with the exception of the number of segregated graphical regions, were

added to such a model (χ2
4 = 6.72, p = 0.15, rc = 0.56). The goodness of fit significantly

improved when usability ratings were analyzed using an additive model with C and the

number of segregated graphical regions as fixed effects (χ2
1 = 17.37, p = 0.000, rc = 0.58).

As shown in Fig. 5, average ratings indeed decreased, at an almost constant rate, as the

number of graphical regions increased, irrespective of whether C was small (Fig. 5A),

medium (Fig. 5B), or large (Fig. 5C).

The net effect of the number of segregated graphical regions on usability judgments

is depicted in Fig. 5D, showing that the SUS score significantly decreased as the average

number of segregated graphical regions increased from 3.5 to 5.8 (83.5 ± 1.17 vs.

75.43 ± 1.28, t = 4.7, df = 409.40, p = 0.000, d = 0.45) as well as from 5.8 to 9.0

(75.43 ± 1.28 vs. 65.48 ± 2.35, t = 3.7, df = 156.9, p = 0.000, d = 0.48). The independent

effect of C on SUS scores was supported by post-hoc analyses of usability judgments

averaged across the three equal C intervals, each defining a panel of Fig. 5: websites were

judged to be increasingly less usable as the average C increased from small (C = 4.9; green

dotted line in Fig. 5A) to medium (C = 17.3; blue dotted line in Fig. 5B) (84.15 ± 1.84 vs.
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75.63 ± 2.36, t = 4.67, df = 326.67, p = 0.000, d = 0.49), as well as from medium to large

(C = 25.2; pink dotted line in Fig. 5C) (75.63 ± 2.36 vs. 68.27 ± 3.84, t = 3.13, df = 302.7,

p = 0.001, d = 0.35).

In summary, the present results reveal that, consistently with H3, C is predictive of both

information search efficiency and the subjective experience of pleasantness of user-website

interaction, as represented by a usability judgment. Furthermore, we unexpectedly found

that, once the effect of C is controlled, experienced usability is affected also by the number

of segregated graphical regions. This unexpected effect is consistent with previous studies

revealing a strong relation between the number of segregated graphical regions and the

aesthetic appraisal of a webpage (Michailidou, Harper & Bechhofer, 2008). In our task, the

subjective experience of pleasantness measured by the SUS might have been affected by the

aesthetic components of the webpage, independent of C.

Knowledge-based complexity and cognitive load
Several studies have shown that time estimation is a reliable and valid measure of cognitive

load, with experienced duration decreasing as the task gets increasingly difficult or

attention-demanding (Block, George & Reed, 1980; Block & Zakay, 2008; Brown, 2008).

These effects have been shown to be particularly strong under a time estimation paradigm

similar to the one we used; i.e., under a prospective, rather than retrospective, paradigm in

which the participant is aware, prior to the onset of the primary (information seeking) task

that a duration judgment will be asked as a secondary task.

The rationale behind H4 arises from the influential scalar expectancy theory (Gibbon,

1977), which models prospective timing as a pacemaker-accumulator. According to such

a theory we expected that, as the processing demands involved in the navigation task

increase (as represented by C), experienced duration decreases, given that a larger part of

attentional resources dedicated to the accumulator that counts the internal clock pulses

should be invested in the primary task. Information seeking time is thus expected to be

accounted for by a lme model including a significant effect of both C and estimated time.

Such an expectation should be synthesized by the duration judgment ratio (i.e., ratio of

subjective duration to objective duration), which should decrease as C increases.

Average information seeking times, shown in the top panels of Fig. 6 (panels A, B and

C) together with the prediction of an lme model with both C and duration estimates as

fixed effects, are in good agreement with our expectations (H4). Information seeking time

proportionally increased with participants duration estimates (rc = 0.94) at an average rate

of about 1.36 ± 0.025 s every estimated second (F1,474.8 = 2,764, p = 0.000), consistent

with a global underestimation of duration congruent with previous results (Tractinsky &

Meyer, 2001; Rau, Peng & Yang, 2006; Wood, Griffiths & Parke, 2007; Tobin & Grondin,

2009), with constant increments of about 0.756 ± 0.55 s, in small C sites relative to

medium C sites, and 2.98 ± 0.57 s, in small C sites relative to large C sites (F1,375.2 = 13.87,

p = 0.000). Such increments reflected the significant effect of C over duration judgments

reveled by a no-intercept model with C as the only predictor, (β = 0.226 ± 0.047,

F1,391.022 = 22.10, p = 0.000): as depicted by the colored dashed lines in Fig. 6, duration
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Figure 6 The duration judgment ratio depends on C. (A, B, C) Average information seeking time [±SEM] as a function of the duration of
information seeking [±SEM] for each of the 26 experimental websites, subdivided into the same three C intervals used in Fig. 5. The color of the
dots codes the C value as described in the vertical legend. The blue line is the lme model regression line and the shaded region corresponds to
± standard error of the regression. Horizontal dotted lines represent the grand average estimated duration [±SEM] for each C level (panel A →

green; panel B → cyan; panel C → pink). (D) Average duration judgment ratio as a function of C level (color-coded as the horizontal lines and
shaded regions in the upper panels).

judgments increased by about 2.94 s (t = −3.76, df = 354, p = 0.0002, d = 0.40) as C

increased from small to medium, and by about 2.28 s (t = −1.74, df = 330, p = 0.082,

d = 0.20) as C increased from medium to large.

This result demonstrates that C is a determinant of duration judgments but does not

provide direct evidence on how C affects the cognitive load involved in our information

seeking task, given that in our experiment the duration of the task necessarily co-varied

with the information-processing (attentional or working-memory) demands. In order to
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analyze the effects of C when the levels of cognitive load were controlled, we conducted a

further analysis of duration judgment ratios. The pattern shown in the graph of Fig. 6D

corroborated our expectation: duration judgment ratios decreased as C increased from

small to large (0.69 ± 0.021 vs. 0.63 ± 0.023, t = 1.88, df = 330, p = 0.031, d = 0.30). Such

effect is further confirmed by the results of a no-intercept lme model with C as the only

predictor: the rate of decrement −0.0026 ± 0.001 was significant (χ2
1 = 5.25, p = 0.02,

rc = .65).

These results provide an empirical and theoretical foundation for our C measure. We

can conceive C as an intrinsic feature of a website, directly inferable from the starting

web page, reflecting the extent to which information seeking will involve time-shared

attentional, executive, or working-memory resources.

In summary, we obtained four findings: (a) consistently with H1, information seeking

time was accounted for by only the subset of navigation elements whose effectiveness is

formalized by C (a weighted combination of web options and elements available in the

start page that, according to the user’s knowledge of layout conventions of websites, are

more likely to be relevant for the achievement of information goals); (b) consistently with

H2, and with the occurrence of a web party effect, all other elements and metrics of artifact

complexity do not affect search time beyond what relevant elements can explain (full

C mediation effect); (c) consistently with H3, the usability appraisal of the user-artifact

interaction is similarly moulded by C, which in turn (d) reflects the cognitive load involved

in the information search task (consistently with H4).

CONCLUSION
Navigation within websites poses intriguing problems about what do users do, and how do

users decide what to do when searching information within a structured environment. The

present study provides relevant insights to answer both questions.

Many website designs (implicitly) and the semantic-based approach to web information

seeking behavior (explicitly) share the expectation that site search is faster when the home

page of a website includes a smaller number of web options. Our study did not provide

clear empirical support for such an expectation. Similar search times were indeed found for

sites whose start page included a different number of selection choices but equal number of

web navigation elements, while different search times were found for sites whose start page

included an equal number of selection choices but a different number of web navigation

elements. This is consistent with a web party effect as information seeking time in our

experiment was dependent on part of (not all) web elements and links: those embedded

within navigation elements that are more likely to be useful for information seeking.

All other web elements (images, words, segregated graphical regions) and links do not

contribute to information seeking time beyond what the part of web elements and links

functional to web navigation can explain.

Such a result was accounted for by C, a composite measure of home page complexity

based on the knowledge of layout conventions. C is an objective measure of the complexity

of the start page, based on the number of links weighted by the number and type of
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embedding web elements. We indeed found that C fully mediated the effect of standard

complexity metrics on information seeking time. Importantly, our C measure is consistent

with a mechanism of selective attention that does not necessarily include an estimate

of the relevance of all links within the web page. The predictive power of C revealed by

our study demonstrates that participants can optimize the deployment of attentional

resources necessary to navigation by focusing on links that are more likely to conduct to

the information goal (i.e., those embedded within navigation elements). Following such

a process, the likelihood that the correct link will be in the attended region is maximized

through statistical knowledge, and wasting effort on attending to information patches that

are statistically unlikely to conduct to the goal is minimized, so that selective attention will

foster a fast and pure forward search.

Applied computational theory and research in human computer interaction have

provided several techniques for the estimation of label relevance as based on alternative

models of attention process in web navigation (Chi, Pirolli & Pitkow, 2000; Card et al., 2001;

Katz & Byrne, 2003; Miller & Remington, 2004; Blackmon, Kitajima & Polson, 2005; Kaur

& Hornof, 2005). These models are generally grounded on semantic and spatial factors.

Semantic aspects refer to the similarity between the narrative description of user’s goal and

labels meaning; spatial aspects refer to label positions expected on the basis of scanning

habits (like reading direction). Here we showed that also the knowledge of web layout

conventions matters, given that links belonging to web navigation elements that are more

likely to be encountered within the home page (e.g., within the horizontal navigation

bar) are weighted more heavily than links belonging to elements that are less likely to be

encountered (e.g., right vertical menu).

This calls for an update of current semantic-based approaches to web information

seeking behavior (Card et al., 2001; Katz & Byrne, 2003; Miller & Remington, 2004; Budiu

et al., 2006; Wu & Miller, 2007), which should go beyond the narrative description of user’s

goals and consider the user’s knowledge of web layout conventions. Our results indeed

suggest that users exploit their knowledge about web layout conventions and search for

labels in web elements consistent with their goals according to the implicit knowledge of

web layout conventions.

Relative to the debate (Rieman, Young & Howes, 1996; Pirolli & Fu, 2003; Miller &

Remington, 2004; Brumby & Howes, 2004) on whether labels are processed sequentially or

hierarchically, heuristically or rationally, our results together with our composite measure

of labels’ relevance call for an integrated approach. Web information search behavior

could be modeled as a dynamic/recursive process where candidate labels collected during

the parsing of the page (into web objects based on perceptual attributes such as closure,

continuity, and similarity) compete for visual attention. The guidance of visual attention

would depend, in its turn, by a complex interplay between top-down and bottom-up

attentional processes, where both top-down factors (e.g., knowledge of the goal and of

layout conventions) and bottom-up factors (e.g., the web page layout) contribute to the

competition for web selection. Following Paap & Roske-Hofstrand (1986), the optimal

fitting values of the parameter of our information seeking time model (Eq. (2)) standing
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for the search strategy (i.e., indicating the proportion of items that need to be read before

the user terminates the search) denoted an exhaustive search strategy: participants in our

experiment thus tend to read all of the links embedded within the web element most

relevant to their goal before switching their attention to the next web element. This result

has several close relatives with pioneering cognitive models of web navigation like the

CoLiDeS (Kitajima, Blackmon & Polson, 2000) or SNIF-ACT (Fu & Pirolli, 2007), as it

shows the need to integrate sequential and hierarchical processing of labels, to account for

the variability of information search times over the dizziness of web layouts.

In sum, our C measure provides a convenient and general way to model the label

relevance, being free from user-dependent parameters and requiring a minimal amount

of knowledge about web information seeking behavior. Moreover, our C measure is con-

sistent with an efficient search strategy that avoids the large computational effort necessary

for a selection based on an assess-all strategy, as used by several web navigation models.

Our results also shed light on the factors best contributing to the usability and appraisal

of a site on the basis of information included in the home page. This is a particularly

relevant topic for web design, since visual complexity of the home page may play a

decisive role in the formation of the first impression, as relating to experienced pleasure

and arousal, thus being a crucial determinant of the choice to continue exploring a site

on behalf of the user. Our C measure, being strongly correlated with estimated usability,

proved to be diagnostic of how the artifact design, regardless of content, was judged to

attract the user. Importantly, C provides a novel way to model artifact complexity and

usability from the home page; a way that is rather simpler than most of current proposals

for the quantitative analysis of several attributes of web page layout and composition, as

well as their relation to usability. A C-based tool might be relevant to software dedicated to

support universal usability (Shneiderman & Hochheiser, 2001), as we think that algorithms

for automated usability assessment might incorporate it to improve their predictive power.

Finally, the obtained inverse relation between C and duration judgment ratio (i.e., ratio

of subjective to objective task duration) suggests that C can be conceived as an easy way

to quantify the cognitive load involved in searching an information item within a website.

This finding is in line with the predictions of models of experienced duration (Zakay,

1993; Macar, Grondin & Casini, 1994; Zakay & Block, 1995; Block & Zakay, 1996; Brown,

1997), conceiving prospective timing as a dual task in which signals reflecting the passage

of time are accumulated in a cognitive counter (Wearden, 2004). The smaller the amount of

cognitive load involved in the primary navigation task (represented by C), the larger will be

the amount of time signal processed, given that more attentional resources will be available

for the secondary temporal estimation task. Our finding is relevant within the experienced

duration literature, as to date most studies using prospective timing have failed to use

long durations and tasks with an adequate degree of ecological validity. The present

study instead assessed the effect of cognitive load on web navigation in a naturalistic

environment (SME websites), achieving results that are consistent with recent evidence on

gamers (Rau, Peng & Yang, 2006; Wood, Griffiths & Parke, 2007; Tobin, Bisson & Grondin,

2010): users underestimate interaction duration and the amount of underestimation
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proportionally increases as complexity (Sanders & Cairns, 2010) and interaction duration

increase (Tobin & Grondin, 2009). Similar underestimation of duration and dependency of

experienced duration on task complexity were found in participants searching for a target

information within hierarchical menus (Tractinsky & Meyer, 2001).

Our work is in line with the recent proposal by Van Schaik & Ling (2012): it indeed

supports the need for an integrated approach to the study of cognitive and experiential

factors in HCI for the modeling of web navigation. Consistently with Van Schaik & Ling

(2012), we found that cognitive and experiential factors together do indeed influence

information search speed in web navigation. In particular, home page complexity has an

effect on search speed, experienced complexity, usability, and cognitive load.
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