

A new species of *Atrimitra* Dall, 1918 (Gastropoda: Mitridae) from seamounts of the recently created Nazca-Desventuradas Marine Park, Chile (#32763)

1

First submission

Editor guidance

Please submit by **24 Nov 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the location [described by the author](#).

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

6 Figure file(s)

Download and review all files from the [materials page](#).

Custom checks

Field study

- ! Have you checked the authors [field study permits](#)?
- ! Are the field study permits appropriate?

New species checks

- ! Have you checked our [new species policies](#)?
- ! Do you agree that it is a new species?
- ! Is it correctly described e.g. meets ICZN standard?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A new species of *Atrimitra* Dall, 1918 (Gastropoda: Mitridae) from seamounts of the recently created Nazca-Desventuradas Marine Park, Chile

Javier Sellanes^{Corresp., 1, 2, 3}, Richard A Salisbury⁴, Jan M Tapia⁵, Cynthia Asorey^{3, 6}

¹ Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

² Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

³ Sala de Colecciones Biológicas, Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

⁴ Orma J. Smith Museum of Natural History, The College of Idaho, Caldwell, Idaho, USA

⁵ Programa de Magíster en Ciencias del Mar., Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

⁶ Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Coquimbo, Coquimbo, Chile

Corresponding Author: Javier Sellanes

Email address: sellanes@ucn.cl

We describe *Atrimitra isolata* sp. n. (Gastropoda: Mitridae), collected on the summit of seamounts in the vicinity of Desventuradas Islands, Chile insular territory. Additionally, we provide some insight into the habitat of this new species based on underwater imagery taken with a remotely operated vehicle. *Atrimitra isolata* sp. n. is morphologically related to counterparts from shallow depths on the west coast of North, Central and South America, but has no affinities with species of the family found around Easter Island, on the far western side of the Salas y Gómez ridge, or with other Indo-Pacific species. The present contribution adds to the knowledge of the poorly studied fauna of the seamounts in the eastern portion of the Salas y Gómez ridge, an area characterized by a high degree of endemism, and now protected within the large and newly created Nazca-Desventuradas Marine Park.

1 **A new species of *Atrimitra* Dall, 1918 (Gastropoda:
2 Mitridae) from seamounts of the recently created
3 Nazca-Desventuradas Marine Park, Chile.**

4

5 Javier Sellanes^{1,2,3}, Richard A. Salisbury⁴, Jan M. Tapia^{3,5} and Cynthia M. Asorey^{3,6}

6

7 ¹ Departamento de Biología Marina. Facultad de Ciencias del Mar. Universidad Católica del
8 Norte. Coquimbo. Chile.

9 ² Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI),
10 Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile.

11 ³ Sala de Colecciones Biológicas Universidad Católica del Norte. Coquimbo. Chile.

12 ⁴ Orma J. Smith Museum of Natural History. The College of Idaho. Caldwell. Idaho, USA

13 ⁵ Programa de Magíster en Ciencias del Mar. Universidad Católica del Norte. Coquimbo. Chile

14 ⁶ Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Coquimbo, Chile.

15

16 Corresponding author:

17 Javier Sellanes

18 Universidad Católica del Norte, Larrondo 1281, 1780000 Coquimbo, Chile

19 Email address: sellanes@ucn.cl

20

21 **Abstract**

22 We describe *Atrimitra isolata* sp. n. (Gastropoda: Mitridae), collected on the summit of
23 seamounts in the vicinity of Desventuradas Islands, Chile insular territory. Additionally, we
24 provide some insight into the habitat of this new species based on underwater imagery taken with
25 a remotely operated vehicle. *Atrimitra isolata* sp. n. is morphologically related to counterparts
26 from shallow depths on the west coast of North, Central and South America, but has no affinities
27 with species of the family found around Easter Island, on the far western side of the Salas y
28 Gómez ridge, or with other Indo-Pacific species. The present contribution adds to the knowledge
29 of the poorly studied fauna of the seamounts in the eastern portion of the Salas y Gómez ridge, an
30 area characterized by a high degree of endemism, and now protected within the large and newly
31 created Nazca-Desventuradas Marine Park.

32

34 **Introduction**

35

36 In 2015 Chile created the large Nazca-Desventuradas Marine Park (NDMP), covering 300,035
37 km² of this remote part of the SE Pacific. Comprising San Ambrosio and San Félix Islands
38 (known as Desventuradas Islands), and the seamounts located NW of them, at the intersection of
39 the Salas y Gómez Ridge and the Nazca Ridge, this park aims to protect the unique marine fauna
40 inhabiting this area, recognized as a hotspot of species endemism (Fernández et al. 2014,
41 Friedlander et al., 2016). As an example, estimated endemism of fishes, one of the few groups
42 for which enough information exists, is about 40% (Friedlander et al., 2016). Conversely,
43 information for invertebrates in the area is sparse, and most of the existing references are
44 associated with studies carried out between 1973 and 1987 by the former Soviet Union, and
45 limited to the area beyond Chilean jurisdiction east of ~83°W (Mironov and Detinova 1990, 46 Parin et al. 1997). Even with this limited information, endemism estimations in general are
47 outstandingly high, reaching ~46% for the benthic biota in general (Parin et al. 1997). For
48 mollusks, this author reports, for the 22 seamounts along the Salas y Gómez and Nazca ridges
49 explored, one species of Polyplacophora, 27 species of gastropods (most of them of the family
50 **Turridae**), seven species of bivalves, and seven species of cephalopods, the latter most probably
51 pelagic. In this, as well as in subsequent studies of mollusks of the area, no representatives of the
52 family Mitridae have ever been mentioned. However, in the westernmost side of Salas y Gómez
53 ridge, at Rapa Nui (Easter Island), the three species reported are *Strigatella flavocingulata*
54 (Lamy, 1938), *Imbricariopsis punctata* (Swainson, 1821) and *Neocancilla takiisaoi* (Kuroda,
55 1959), all of them mentioned in the review of Osorio (2018). For continental Chile, the two
56 species of the family reported are *Mitra orientalis* Griffith and Pidgeon, 1834 (see Marincovich
57 1973) and *Mitra semigranosa* Von Martens, 1897 (see Keen 1971), both for northern Chile, ~20-
58 22°S. In the present study, we revise the Mitridae reported for the continental and insular marine
59 jurisdictional areas of Chile and we describe a new species of *Atrimitra* collected on the summit
60 of seamounts within the NDMP. Insight into the habitat of the new species, based on underwater
61 imagery, ~~which~~ is also provided.

62

63 **Materials & Methods**

64

65 **Material collection and in situ observations:** From October to November 2016, a
66 multidisciplinary oceanographic cruise (CIMAR 22 “Oceanic Islands”) was carried out on the
67 research vessel *AGS61 Cabo de Hornos*. The aim of the cruise was to study benthic **habitat** and
68 fauna of unexplored seamounts of the Juan Fernández and Desventuradas Ecoregion (Fig. 1)
69 (Spalding et al. 2007; ecoregion number 179). Within the newly created NDMP, six seamounts
70 were visited and six stations were also studied around San Ambrosio and San Félix islands (i.e.,
71 Desventuradas Islands) (Fig. 1). Unless weather or sea condition precluded it, the protocol for
72 the benthic survey consisted of a first visual observation of the study site using a ROV
73 (Commander MK2; Mariscope Meerestechnik, Kiel, Germany) equipped with a HD Camcorder

74 (Panasonic SD 909) and laser pointers (10 cm apart), followed by sampling with an Agassiz
75 trawl. The latter consisted of a metal frame with a mouth of 1.5 m × 0.5 m (width × height) fitted
76 with a net of 12-mm mesh at the cod end, operated in 10-min. hauls (bottom contact), at ~3 knots.
77 Collected specimens were preserved in 100% ethanol. Type material as voucher specimens were
78 deposited in the **MHNCL, SCBUCN, ANSP and CIDA**, including specimens prepared for
79 SEM analysis. Sample collection was performed under permission Res. Ext N°41/2016 from
80 SERNAPESCA (Chile) to Universidad Católica del Norte.

81 The radula and protoconch were examined with a Hitachi SU3500 scanning electron microscope
82 (SEM) at the Microscopy Laboratory of the Facultad de Ciencias del Mar, Universidad Católica
83 del Norte, Coquimbo, Chile. A radula from an adult specimen, that was broken for this purpose,
84 was extracted by dissection of the soft parts and cleaning in 1:50 commercial bleach. The
85 examined protoconch was from the same specimen. The radula and the protoconch were dried in
86 a Tousimis, Samdri-780A critical-point dryer using CO₂, mounted on bronze stubs and coated
87 with gold in a JEOL JFC-100 evaporator. Description of the radula followed the formula
88 proposed by Cernohorsky (1970), which uses the number of cusps on the lateral and central
89 rachidian plates.

90

91 **Nomenclature:** The electronic edition of this article conforms to the requirements of the
92 amended International Code of Zoological Nomenclature, and hence the new name contained
93 herein is available under that Code from the electronic edition of this article (ICZN, 1999; ICZN,
94 2008). This published work and the nomenclatural acts it contains were registered in ZooBank
95 (LSID: urn:lsid:zoobank.org:pub:787A4D2A-260C-49BC-B8B0-0665F2BF6108). The
96 electronic edition of this work is available from the following digital repositories: PubMed
97 Central, LOCKSS.

98

99 **Results**

100

101 **Systematics account**

102

103 Superfamily: Mitroidea Swainson, 1831

104 Family: MITRIDAE Swainson, 1831

105 Subfamily: Mitrinae Swainson, 1831

106 Genus: *Atrimitra* Dall, 1918

107 Type species: *Mitra idae* Melvill, 1893 by original designation

108

109 *Atrimitra isolata* sp. n. Sellanes and Salisbury

110 Figs. 2(A–H), 3(A–E), 5(C), 6

111

112 **Diagnosis:** Main characteristics of the shell are the small size to 26 mm, elongate-ovate shape,
113 solid, with smooth appearance. Base color brown with some specimens tan or yellow in color.

114

115 **Description:** Medium sized shell up to 26 mm, solid, elongate-ovate. Protoconch of 4-5 large
116 brown glassy bulbous whorls (Fig. 2D, 3C-D). Spire whorls convex, post nuclear whorl with
117 numerous weak, beaded, axial ribs, with 3-4 strong, deep punctate grooves, spiral grooves bisect
118 the axial ribs giving the first whorl a fenestrated sculpture, sculpture changes rapidly on the early
119 whorls, axial ribs become nearly obsolete with spiral punctate grooves varying in number and
120 spacing (Fig. 3E). Penultimate whorl with 6 to 8 spiral grooves of which 3 to 4 are deeply
121 punctate, the axial ribs are flattened. Suture distinct but not deeply incised, body whorl with 12-
122 14 shallow spiral grooves, half with punctations in the grooves, body whorl sculpture changes on
123 the lower half to wide, 10-12 flat spiral cords separated by spiral grooves, the spiral cords are
124 oblique on the fasciole. Aperture of medium width, outer lip gently rounded and smooth, interior
125 of aperture smooth, columella with 4 columellar folds, siphonal canal short and wide, lacking a
126 siphonal notch. Aperture length greater than half the shell length. Base color brown with some
127 specimens tan or yellow in color. Aperture brown with a faint purple tint. Live animal (Fig. 5 C),
128 **after observations when fresh collected and images taken on seamount SF2**, milky white,
129 becoming black when fixed in ethanol. **No further details of the siphon, eye stalks and foot are**
130 **available due to low quality of the *in situ* images.** **Based on the cusp number the formula of the**
131 **radula is; 15-5-15, with the lateral rachidian cusp number +/- 1 count (Fig. 3E).** **No specimens**
132 **with intact protoconch have been found so far, in general lacking parts of the nuclear whorl (Fig.**
133 **3C-D).**

134

135 **Type material:**

136 Holotype. MHNCL 203730 (Fig. 2 A-D), L: 20.4 mm, W: 7.3, AL: 10.2; Seamount off Coast
137 of Chile, CIMAR 22 cruise, Station SF 9, Seamount, Lat. -25.7774°, Long. -83.163°, October 27,
138 2016, specimen 3 of 6, C22 SSF9 A, trawled, 200 m depth.

139

140 Additional Type Material:

141 paratype 1 MHNCL 203731 (Fig. 2E-F), L: 25.8, W: 9.2, AL: 13.4, same as holotype.

142 paratype 2 CIDA **XXXX** (Fig. 2G-H), L: 21.5, W: 8.1, AL: 11.4 mm, same as holotype.

143 paratype 3 ANSP **XXXX**, L: 16.1, W: 6.0, AL: 8.1, same as holotype.

144 paratype 4 MHNCL 203732, L: 19.1, W: 7.0, AL: 10.8 (with predator holes in shell and
145 Capulidae scars on the columella and aperture), same as holotype.

146 paratype 5: SCBUCN **XXXX**, L: 11.8, W: 4.9, AL: 6.7, same as holotype.

147 paratype 6 SCBUCN 6953, L: 20.4, W: 7.5, Seamount SF9.

148 paratype 7 SCBUCN 7029, L: 20.1, W: 7.42, Seamount SF9.

149 paratype 8 SCBUCN 7033, L: 22.9, W: 8.4, Seamount SF9 (with attached Capulidae, Fig. 6).

150 paratype 9 SCBUCN 7038, L: 19.6, W: 7.5 mm, Seamount SF5.

151 paratype 10 SCBUCN 6952a, L: 21.2, W: 7.5 mm, Seamount SF9.

152 paratype 11 SCBUCN 6952b, L: 21.7, W: 8.0, Seamount SF9.

153 paratype 12 SCBUCN 7031, L: 17.1, W: 7.0, Seamount SF6.

154 paratype 13 SCBUCN 7030 (Fig. 3A-E), L: 21.4, x 8.0, Seamount SF9.

155 paratype 14 SCBUCN 6946a , L:16.2, W: 6.2, Seamount SF9.
156 paratype 15 SCBUCN 6946b, L: 19.1, W: 7.0, Seamount SF9.
157 paratype 16 SCBUCN 6946c , L: 20.2, W: 7.6, Seamount SF9.
158 paratype 17 SCBUCN 6946d, L: 18.8, W: 7.7, Seamount SF9.
159 paratype 18 SCBUCN 6947a , L: 22.4, W: 8.8, Seamount SF5.
160 paratype 19 SCBUCN 6947b, L: 22.9, W: 8.8, Seamount SF5.
161 paratype 20 SCBUCN 6947c , L: 23.4, W: 9.0, Seamount SF5.
162

163 **Comparative material:** *Atrimitra idae*, holotype NMW 1955.158.00100, Point Loma, Lower
164 California, USA , *Strigatella coronadoensis*, holotype SDMNH 44409-667, Southeastern end of
165 Los Coronados Islands, Lower California, Mexico (Fig. 4A–C) , *Atrimitra semigranosa*,
166 collected Near Arica, Parinacota Region, Chile, RAS collection (Fig 4D–F) , *Atrimitra*
167 *orientalis*, Lobos de Afuera Islands, Peru, RAS collection (Fig. 4G–I) , two lots of specimens
168 including *Atrimitra orientalis* and *Atrimitra semigranosa*, SCBUCN-7617, Caleta Los Verdes,
169 Iquique, and SCBUCN-7618, El Ñajo, Iquique, Chile.
170

171 **Type locality:** Seamount SF9, Lat. -25.7774°, Long. -83.3163°, Sta. C22SSF9-A, 27 October
172 2016, at 200 m depth.
173

174 **Distribution and habitat:** Specimen samples come from the summit of three seamounts within
175 the NDMP: SF5 (Lat. -25.4272°, Long. -81.8806°, 180 m depth), SF6 (Lat. -25.5535°, Long. -
176 82.3963°, 176 m depth), and SF9 (Lat. -25.7774°, Long. -83.3163°, 200 m depth). ROV images
177 suggest that the species is also present at a nearby seamount SF2 (Lat. -24.7424°, Long. -
178 82.5226°, 280 m depth). All these seamounts are located within the NDMP.

179 For the three seamounts on which the species was collected, the summits of two of them (SF6
180 and SF9) were explored using a ROV. The summit of SF2 was surveyed with the ROV but
181 roughness of the terrain precluded trawling. The bottom at SF6 and SF9 was dominated by
182 coarse sand and the presence of maërl-rhodoliths (Fig. 5A and 5B, respectively), scattered rocky
183 outcrops were also spotted at both sites. Habitat at SF2 differed by the predominance of hard
184 substrates (Fig. 5C). Although about 20 pooled mollusc taxa were found at the three collection
185 sites (SF5, SF6 and SF9), species that co-occurred with *A. isolata* sp. n. at all sites were
186 *Architectonica karsteni* Rutsch, 1934 and *Chryseofusus kazdailisi* (Fraussen and Hadorn, 2000).
187

188 **Etymology:** From *isolatus* (Latin for isolated) in reference to the remote and isolated
189 geographical location of the four seamounts on which the new species has been found.
190

191 **Species comparisons:** Compared with *Atrimitra isolata* sp. n. the holotype of *Atrimitra idae*
192 (Melvill, 1893) (Fig. 2I), that is the type species of the genus *Atrimitra* Dall, 1918, is a much
193 larger species recorded at 72.1 mm (Cernohorsky 1976), versus *A. isolata* sp. n. maximum
194 recorded size of 25.8 mm. *Atrimitra idae* is covered with a thick black periostracum which
195 obscures the sculpture and color pattern of the shell. With the periostracum partially removed *A.*

196 *idae*, is brown to tan in color. The early whorls are almost always eroded and often covered with
197 a thick encrustation. *Strigatella (Atrimitra) coronadoensis* Baker and Spicer, 1930 (holotype,
198 Fig. 4A–C) has been listed as a synonym of *Mitra idae* (Cernohorsky 1976), however, this has
199 not yet been verified. The **protoconch** of *S. coronadoensis* has a tiny bullet-shaped, **glassy** white
200 protoconch of 4–5 whorls. *Atrimitra isolata* sp. n. also has a protoconch of 4–5 whorls but these
201 are large brown, glassy and bulbous. Unlike *A. idae*, the new species has a thin, nearly
202 transparent periostracum, and the sculpture can be seen through it. Sculpture also differs from *A.*
203 *idae*, which is ornamented with fine, spiral grooves, unevenly spaced on the early whorls, with
204 strong axial grooves and growth lines giving the shell a fenestrated appearance. The spiral grooves
205 grow wider on the body whorl and the spiral cords also grow wider on the upper body whorl.
206 The spiral cords are more uniform in size on the lower body whorl and not bisected with as many
207 axial grooves or growth lines. *Atrimitra isolata* sp. n. is sculptured with widely spaced punctate
208 spiral grooves with fine spiral grooves, usually not punctate that alternate with the deeper
209 punctate grooves. The early whorls are ornamented with shallow axial grooves which form
210 close-set axial ribs. The axial ribs widen and flatten on later whorls. This smoothes the sculpture
211 and makes the shells slippery. The two species live in entirely different habitats, while *Atrimitra*
212 *idae* can be found **at scuba depths** and in subtidal habitats such as rocks and rubble, the new
213 species lives at depths between 180 to 280 meters on seamounts associated with rocky bottoms.
214 Two other Mitridae species have been reported from Chile (Cernohorsky 1976), both formerly in
215 the genus *Mitra* but now placed in *Atrimitra* (Fedosov et al., 2018). Both *Atrimitra semigranosa*
216 (von Martens, 1897) (Fig. 4D–F) and *Atrimitra orientalis* (Griffith and Pidgeon, 1834) (Fig. 4G–
217 I), are found in intertidal and subtidal zones associated with rocks, gravel and sand. *Atrimitra*
218 *semigranosa* can be easily separated from this new species by the pustulate early whorls, and
219 larger size, up to 46 mm. The shell of *A. semigranosa* is covered with a dark-brown
220 periostracum, underneath the shell is brown with the early whorls beaded and light brown in
221 color. The beads become obsolete on later whorls with the shell sculptured with spiral cords that
222 are separated by shallow spiral grooves and bisected by axial grooves, giving the mid-whorls a
223 clathrate appearance, the body whorl is ornamented with very fine, close-set spiral grooves
224 which grow larger toward the base of the shell. *Atrimitra orientalis* is covered with a thick black
225 periostracum and has a much smoother and larger shell, up to 72 mm, that is gray or light brown
226 in color under the periostracum.

227

228 **Discussion**

229

230 *Atrimitra isolata* sp. n. is one of only a few Mitridae reported from Chilean waters. The new
231 species is isolated from the mainland and seems to be endemic to the Nazca Plate, where it lives
232 in deep water and associated with seamounts. The recent publication by Fedosov et al 2018
233 defining the phylogeny of the Mitridae has indicated that the genus *Atrimitra* Dall, 1918 is
234 represented by several Mitridae species living along the western coasts of North, Central and
235 South America. We have chosen to include this new species in *Atrimitra* based on the very fine

236 sculpture of the shell. However, further research including molecular analysis is still needed to
237 place species *within the Atrimitra and Isara generic units* (Fedosov et al., 2018). A relevant
238 feature for the taxonomy of Mitridae is the number of cusps that the central rachidian plate of the
239 radula has. Although the radula has been frequently studied in some species, such as *Atrimitra*
240 *idae*, *only drawings of the radula have been published (Fedosov et al., 2018)*. The non-existence
241 of SEM photos and the little detail presented by the drawings of the radula caused confusion in
242 the cusp formula. *Radula of A. idae* drawings show a formula of 28-6-28 or 28-7-28, with the
243 lateral rachidian plates cusp number +/- 3 counts (due to drawing quality). The central rachidian
244 plate in Mitridae often shows two types of formula. The first type presents an even-numbered set
245 of cusps, where each side of the central rachidian plate has the same number and size of cusps (R
246 A Salisbury, pers. obs.). The second type presents a longer central cusp with shorter lateral cusps
247 on each side. This type has an odd number of cusps and *A. isolata* sp. n. is an example of this
248 central rachidian type which has 5 cusps. *However, there are not enough SEM images of radulae*
249 *of this type (see Fedosov et al., 2018)* to make any decisions as to how important the cusp count
250 *is on the central rachidian plate*.

251 Some specimens show drill holes perhaps from Muricidae, Naticidae or other predators. Live and
252 dead shells are sometimes covered with scars from a Capulidae species attached to the shell (Fig.
253 6). *This capulid is* also found attached to spines of the urchin *Stereocidaris nascaensis* (JM Tapia
254 pers. obs.), suggesting that the relationship with *A. isolata* sp. n. is just an opportunistic
255 commensalism. Regarding potential food sources of *A. isolata* sp. n., it has been observed that
256 rhodoliths recovered from SF6 and SF9 seamounts were profusely bored by sipunculans of the
257 genus *Aspidosiphon* (JM Tapia, pers. obs.). Sipunculans have been often reported as a prey for
258 Mitridae (Ponder 1998). Further details of the habitat and ecologic aspects of these seamounts
259 can be found in Easton et al. (2019).

260 Finally, it is interesting to note that species of the family Mitridae found around Easter Island,
261 *Strigatella flavocingulata* (Lamy, 1938), *Imbricariopsis punctata* (Swainson 1821) and
262 *Neocancilla takiisaoi* (Kuroda, 1959), reviewed in Osorio (2018), on the far western side of the
263 Salas y Gómez ridge, are all Indo-Pacific species, with ranges across the Indian and Pacific
264 Ocean. The new species has no affinities with them and available evidence suggests that it is
265 found only on these seamounts, whose fauna is characterized by the high levels of endemism
266 (Friedlander et al., 2016).

267

268 **Conclusions**

269

270 We describe *Atrimitra isolata* sp. n. from seamounts of the eastern portion of the Salas y Gómez
271 ridge. Although the area is still poorly studied, the new species seems to be endemic of this
272 portion of the Nazca Plate. The new species *is related to eastern Pacific taxa and not to other*
273 *central Pacific or Indic Ocean counterparts*. Further molecular analysis research is still needed to
274 properly place the new species within the *Atrimitra* and *Isara* generic units. The present
275 contribution adds to the knowledge of the fauna of seamounts of the Salas y Gómez and Nazca

276 ridges, an area known by its high levels of endemism, and part of which is now protected within
277 the large and newly created NDMP.

278

279 Abbreviations

280

281	AL	Aperture length (mm).
282	ANSP	Academy of Natural Sciences of Drexel University, Philadelphia, USA.
283	CIDA	Orma J. Smith Museum of Natural History, The College of Idaho, USA.
284	L	Length (mm).
285	MHNCL	Museo Nacional de Historia Natural, Chile.
286	NDMP	Nazca Desventuradas Marine Park.
287	NMW	National Museum of Wales, Cardiff
288	RAS	Richard A. Salisbury
289	ROV	Remotely operated underwater vehicle.
290	SCBUCN	Sala de Colecciones Biológicas de la Universidad Católica del Norte, Chile.
291	SDMH	San Diego Museum of Natural History, San Diego, USA.
292	W	Width (mm).

293

294 Acknowledgments

295

296 For their assistance at sea we would like to thank the Captain and crew of *R/V Cabo de Hornos*
297 of the Chilean Navy, and the scientific personnel participating in the CIMAR 22 cruise. Special
298 thanks also go to Erin Easton, Ariadna Mecho, and Jorge Avilés for their help during collection,
299 handling and curation of the specimens, and to María S. Romero for helping with the SEMs. We
300 are grateful to Dr. Matthias Gorny from OCEANA who piloted the ROV that obtained the
301 images of the habitat at the seamounts surveyed in this study. Marina Fuentes (MZUC), Oscar
302 Gálvez (MHNCL) and Guillermo Guzmán (Universidad Arturo Prat, Iquique, Chile) provided
303 additional information and material on Chilean Mitridae. Our appreciation to John Wolff for
304 checking grammar and editing early versions of this manuscript. We also acknowledge Dr.
305 William “Bill” H. Clark, director of the Orma J. Smith Museum of Natural History for his
306 contributions and help with this work.

307

308 References

309

310 **Cernohorsky WO. 1970.** Systematics of the Families Mitridae and Volutomitridae (Mollusca:
311 Gastropoda). *Bulletin of the Auckland Institute and Museum*, **8**: 1–190.

312 **Cernohorsky WO. 1976.** The Mitridae of the World. Part 1. The Subfamily Mitrinae. *Indo-
313 Pacific Mollusca* **3** (17): 273–528.

314 **Easton EE, M, Gorny M, Mecho A, Sellanes J, Gaymer CF, Splading HL, Aburto J. 2019.**
315 Chile and the Salas y Gómez Ridge. In: Loya Y, Puglise KA, Bridge TCL, eds. *Mesophotic*
316 *Coral Ecosystems*. Springer. 1024pp. DOI:10.1007/978-3-319-92735-0

317 **Fedosov A, Puillandre N, Herrmann M, Kantor Y, Oliverio M, Dgebuaadze P,**
318 **Modica MV, Bouchet P. 2018.** The collapse of *Mitra*: molecular systematic and morphology of
319 the Mitridae (Gastropoda: Neogastropoda). *Zoological Journal of the Linnean Society* **183**
320 (2): 253–337.

321 **Fernández M, Pappalardo P, Rodríguez-Ruiz MC and Castilla JC. 2014.** Synthesis of the
322 state of knowledge about species richness of macroalgae, macroinvertebrates and fishes in
323 coastal and oceanic waters of Easter and Salas y Gómez islands. *Latin American Journal of*
324 *Aquatic Research* **42** (4): 760–802.

325 **Friedlander AM, Ballesteros E, Caselle JE, Gaymer CF, Palma AT, Petit I, Varas E,**
326 **Muñoz-Wilson A, Sala E. 2016.** Marine Biodiversity in Juan Fernández and
327 Desventuradas Islands, Chile: Global Endemism Hotspots. *PLoS One*. 11:e0145059

328 **International Commission on Zoological Nomenclature. 1999.** International Code of
329 zoological nomenclature. Fourth edition. Available at: <http://www.iczn.org/iczn/index.jsp>
330 (accessed on November 12, 2018).

331 **International Commission on Zoological Nomenclature. 2008.** Proposed amendment of
332 articles 8, 9, 10, 21 and 78 of the international code of zoological nomenclature to expand
333 and refine methods of publication. *Bulletin of Zoological Nomenclature* **65**: 265–275.

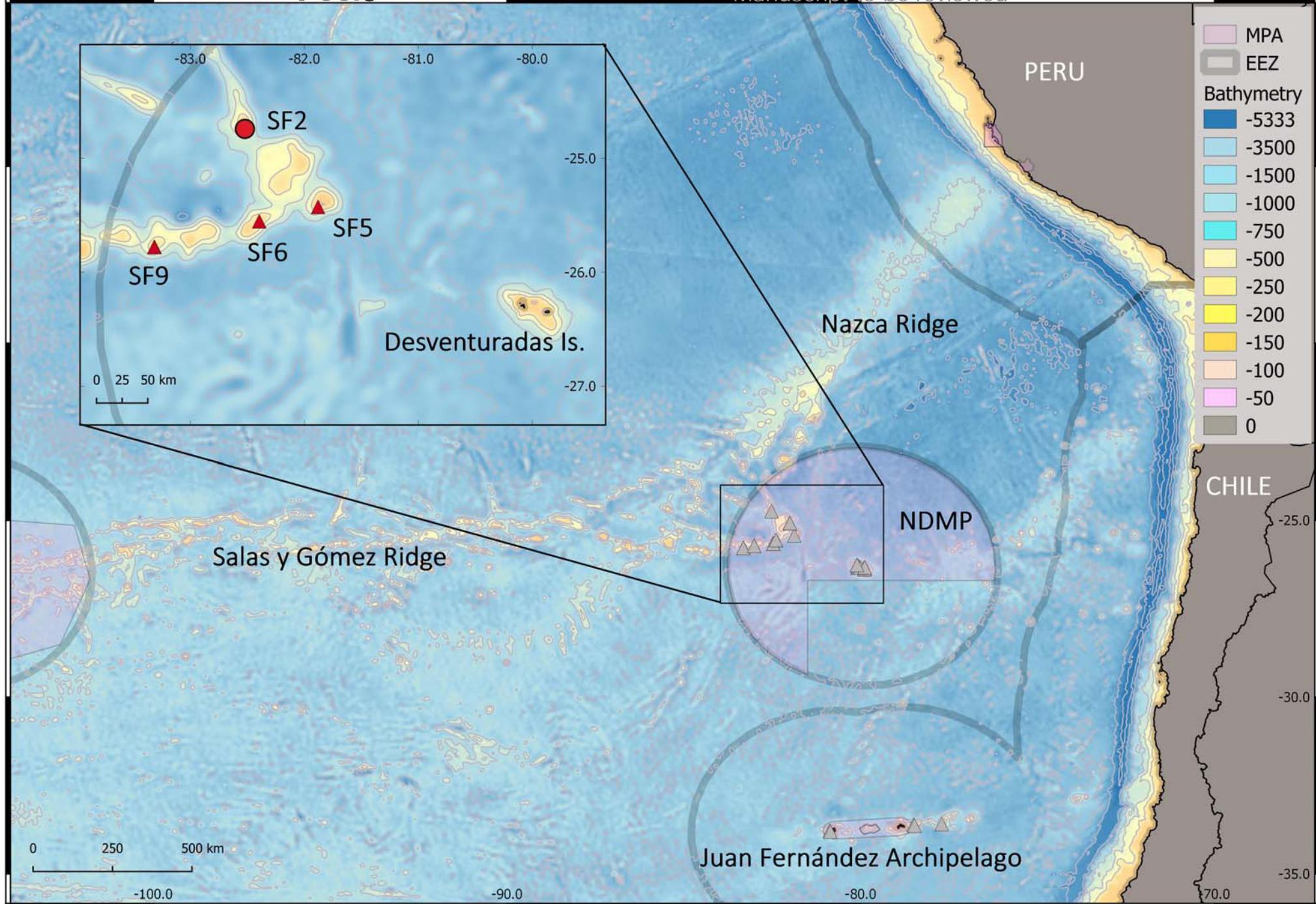
334 **Keen, MA. 1971.** *Sea Shells of Tropical West America: Marine Mollusks from Baja California*
335 *to Peru*. Edition 2. Stanford.1064pp.

336 **Marincovich L .1973.** Intertidal mollusks of Iquique, Chile. *Bulletin of the Natural History*
337 *Museum of Los Angeles County* **16**: 1–49.

338 **Mironov AN, NN Detinova. 1990.** Bottom fauna of the Nazca and Sala-y-Gomez ridges. In:
339 Mironov AN, Rudjakov JUA, editors. *Plankton and Benthos from the Nazca and Sala-y-*
340 *Gomez Submarine Ridges*. Moscow: Nauka, p 269–278 (in Russian).

341 **Osorio C. 2018.** Lista de los moluscos de Isla de Pascua (Rapa Nui) Chile, en el Pacifico sur.
342 *Boletín del Museo Nacional de Historia Natural, Chile* **67**(1): 55–80.

343 **Parin NV, Mironov AN and KN Nesis. 1997.** Biology of the Nazca and Sala y Gómez
344 submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean:
345 composition and distribution of the fauna, its communities and history. In: Gebruk AV et
346 al. (ed.). *The biogeography of the oceans. Advances in Marine Biology* **32**: 145–242.


347 **Ponder WF. 1998.** Family Mitridae. In: Beesley PL, Ross GJB, Wells A (eds.) *Mollusca: the*
348 *southern synthesis. Fauna of Australia. Vol. 5. Part B*. Melbourne: CSIRO Publishing,
349 841–842.

350 **Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS,**
351 **Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar JR, Recchia**
352 **CA, Robertson J. 2007.** Marine Ecoregions of the World: A Bioregionalization of Coastal
353 and Shelf Areas. *BioScience* **57**: 573–583.

Figure 1(on next page)

Map of the study area

Study area comprising Desventuradas Islands and seamounts from Salas y Gómez, Nazca Ridge and Juan Fernández Archipelago. Gray triangles: sampled points during CIMAR 22 cruise. Red triangles: seamounts (SF5, SF6 and SF9) where *Atrimitra isolata* sp. n. was collected. Red circle: seamount SF2, in which *Atrimitra isolata* sp. n. was observed *in situ*. The pink areas represent marine protected areas (MPAs). NDMP=Nazca-Desventuradas Marine Park, EEZ= Exclusive economic zone. Credits for the map: A. Mecho.

Figure 2(on next page)

Atrimitra isolata sp. n. type material

Atrimitra isolata sp. n. (A-D) holotype MHNCL 203730, Seamount SF 9 off Chile, Lat. - 25.7774°, Long. -83.163°, 200 m depth , (E-F) paratype 1 MHNCL 203731, same as holotype , (G-H) paratype 2 CIDA XXXX, same as holotype , *Atrimitra idae* (I) holotype NMW 1955.158.00100, Point Loma, Baja California, USA. A: abapertural view, B: apertural view, C: side view, D: view of the protoconch and first whorls, E: abapertural view, F: apertural view, G: abapertural view, H: apertural view, I: apertural view.

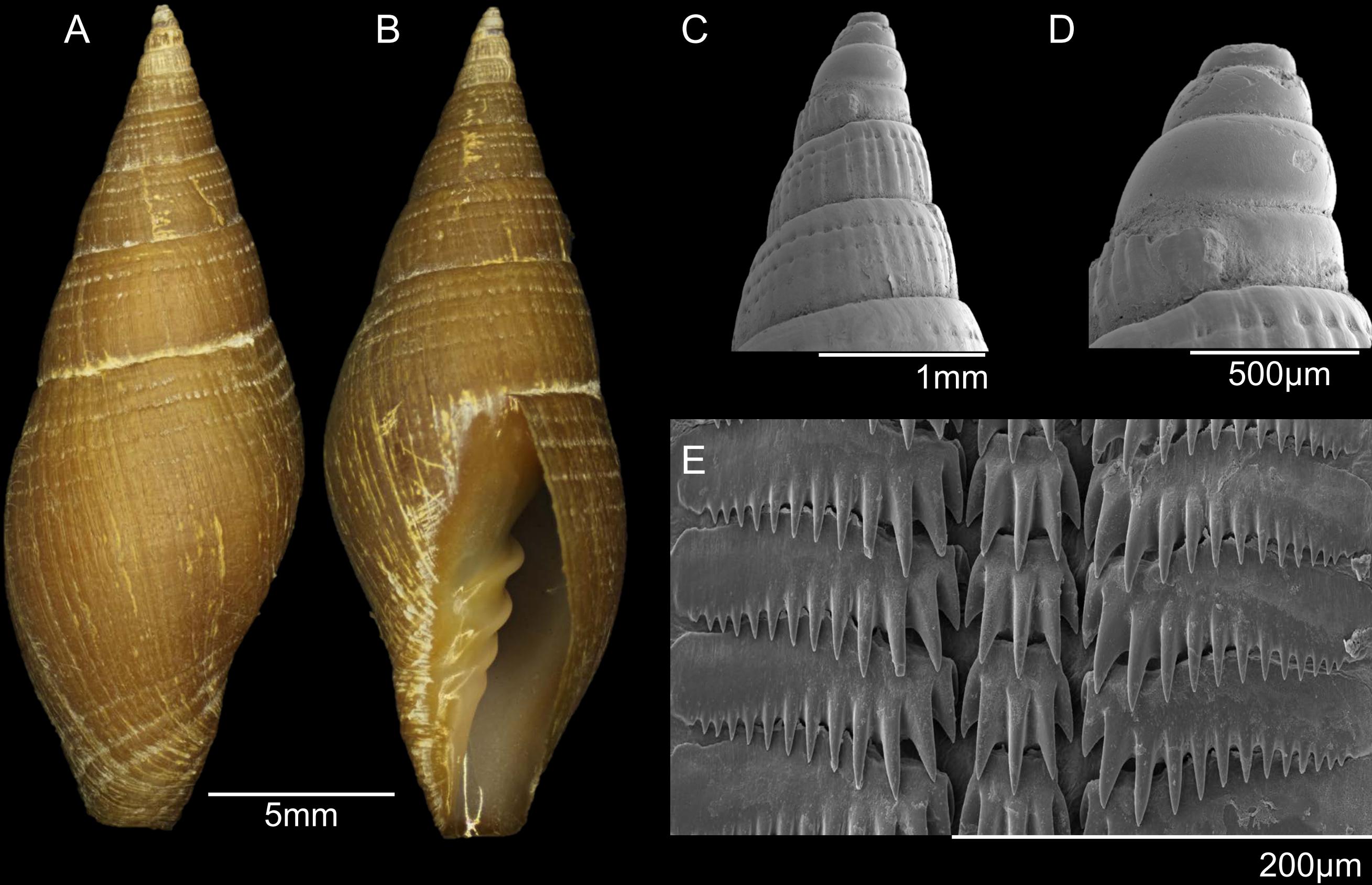
A**B****C**

PeerJ

Manuscript to be reviewed

D**E****F****G****H****I**

5mm


5mm

1cm

Figure 3(on next page)

Atrimitra isolata sp. n. paratype 13, radula and protoconch SEMs

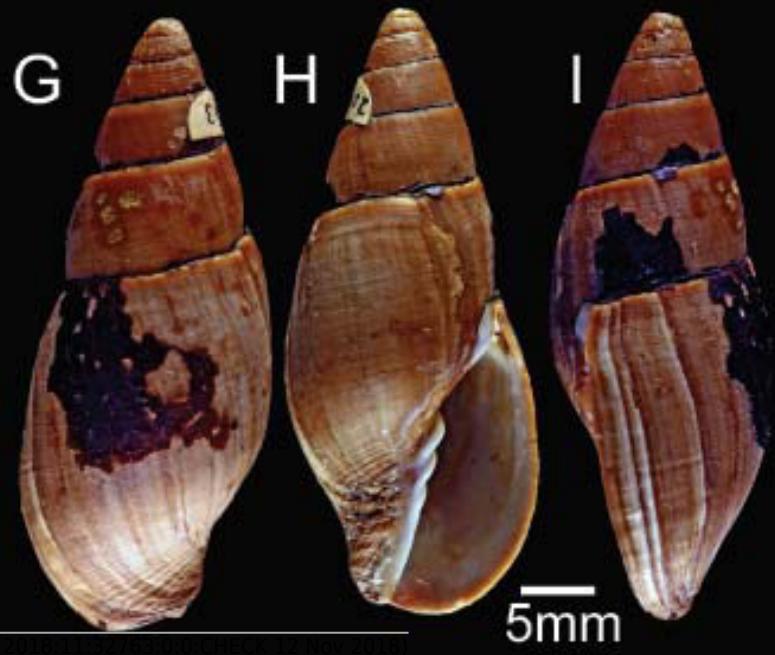
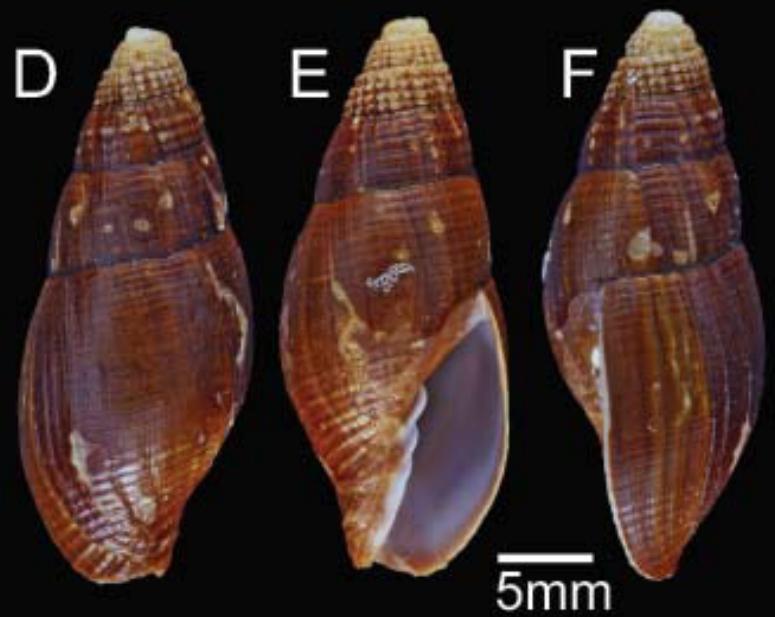
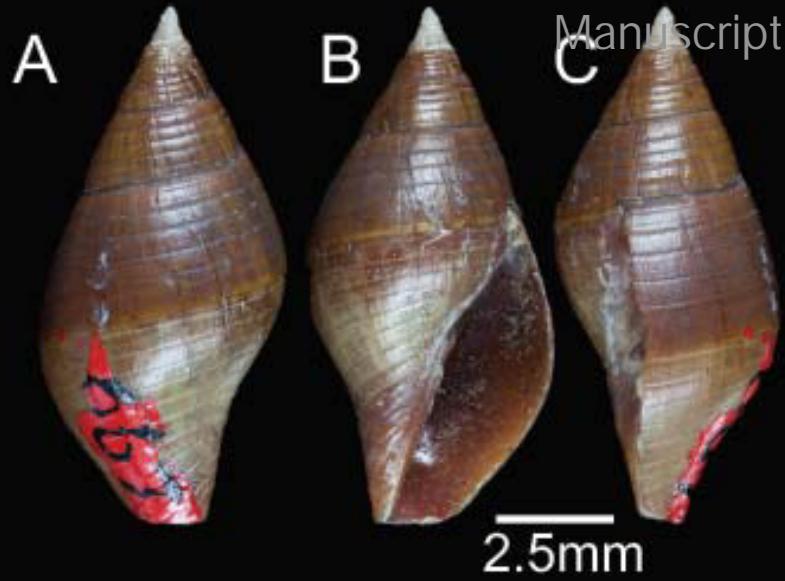



Atrimitra isolata sp. n. (A-E) paratype 13 SCBUCN 7030, Seamount SF9 off Chile, Lat. -25.7774°, Long. -83.3163°, 200 m depth. A: abapertural view, B: apertural view, C: SEM of the radula, D: SEM side view of the protoconch, E: SEM side view of the first whorls, showing details of the fenestrated sculpture and axial ribs.

Figure 4(on next page)

Comparative species

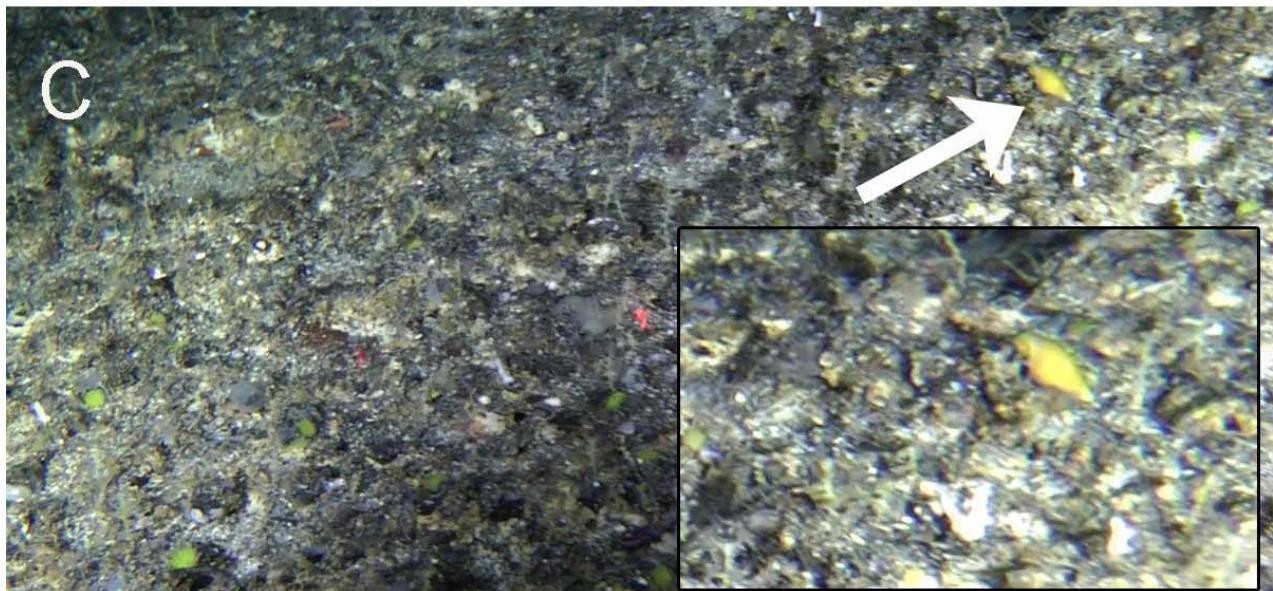
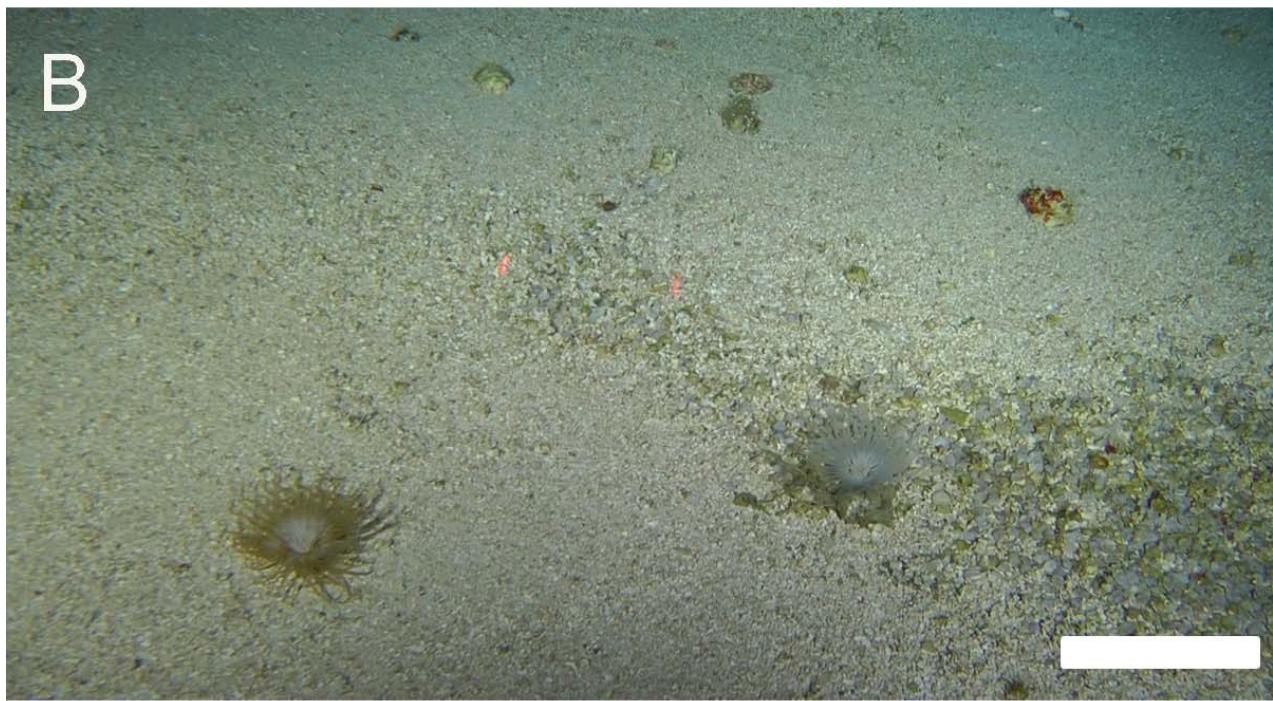
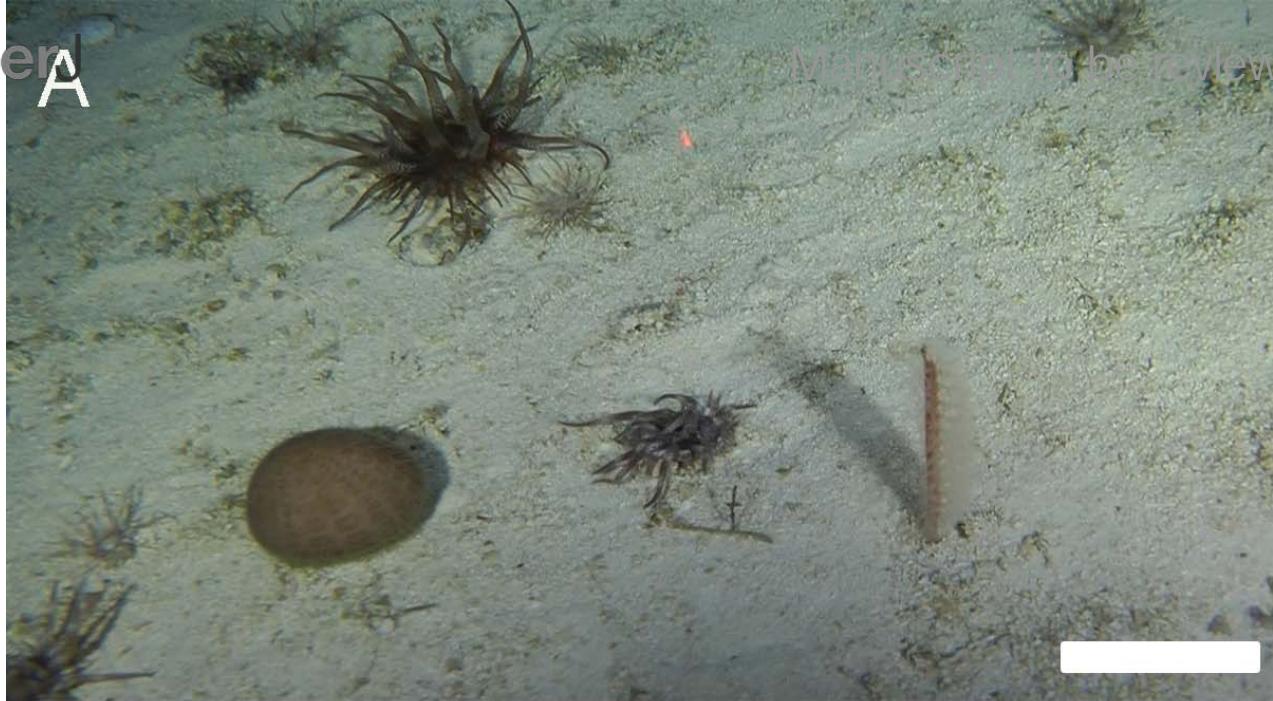



Comparative species. (A-C) *Strigatella coronadoensis*, holotype SDMNH 44409-667, southeastern end of Los Coronados Islands, Baja California, Mexico, (D-F) *Atrimitra semigranosa* Arica, Parinacota Region, Chile, RAS collection, (G-I) *Atrimitra orientalis* Lobos de Afuera Islands, Peru, RAS collection. A: abapertural view, B: apertural view, C: side view, D: abapertural view, E: apertural view, F: side view, G: abapertural view, H: apertural view, I: side view.

Figure 5(on next page)

ROV images of the habitat

Images taken with a ROV at the sites where *Atrimitra isolata* sp. n. was spotted within the Nazca-Desventuradas Marine Park. A: summit of seamount SF6, 175 m depth, regular continuous homogeneous bottom with little relief, coarse sand dominated by sea pens (*Protoptilum* sp.), sea anemones (*Hormathia* sp. and Cerianthidae) and echinoids (*Stereocidaris nascaensis*), B: summit of seamount SF9, 200 m depth, regular continuous homogeneous bottom with little relief, coarse sand and maërl-rhodoliths, dominated by sponges and sea anemones (*Hormathia* sp. and Cerianthidae), C: live specimen of *Atrimitra isolata* sp. n. on the summit of seamount SF2, 280 m depth, irregular rock bottom with structures fractured, faulted and folded, dominated by sea pens (*Scleroptilum* sp.) and hydrozoans (*Stylaster marenzelleri*). Scale bars = 10 cm. Image credits: Matthias Gorny, OCEANA.

Figure 6(on next page)

Atrimitra isolata sp. n. with commensal Capulidae

Individual of the family Capulidae still attached to the shell of *Atrimitra isolata* sp. n.,
paratype 8 SCBUCN 7033.

0.5 mm