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ABSTRACT
Background. Unique Molecular Identifiers (UMI) are used in many experiments to
find and remove PCR duplicates. There are many tools for solving the problem of
deduplicating reads based on their finding reads with the same alignment coordinates
and UMIs. However, many tools either cannot handle substitution errors, or require
expensive pairwise UMI comparisons that do not efficiently scale to larger datasets.
Results. We reformulate the problem of deduplicating UMIs in a manner that enables
optimizations to be made, andmore efficient data structures to be used. We implement
our data structures and optimizations in a tool called UMICollapse, which is able to
deduplicate over one million unique UMIs of length 9 at a single alignment position in
around 26 s, using only a single thread and much less than 10 GB of memory.
Conclusions. We present a new formulation of the UMI deduplication problem, and
show that it can be solved faster, with more sophisticated data structures.

Subjects Bioinformatics, Computational Biology, Genomics, Computational Science
Keywords Unique molecular identifier, RNA-seq, Deduplicate, FASTQ, BAM

INTRODUCTION
In many next-generation sequencing experiments, UniqueMolecular Identifiers (UMI) are
used to identify PCR duplicates (Islam et al., 2014; Kivioja et al., 2012). PCR amplification
is typically a necessary step in sequencing as it increases the number of DNA fragments
by duplicating each molecule multiple times. By ligating a short, random UMI sequence
onto each strand of DNA fragment before PCR amplification, sequenced reads with
the same UMI can be easily identified as PCR duplicates. This is because each random
UMI is like a unique tag for each DNA molecule, which means that all duplicates of the
same DNA molecule will contain the same UMI. UMIs are useful in many experiments,
including RNA-seq (Shiroguchi et al., 2012), single-cell RNA-seq (scRNA-seq) (Islam et
al., 2014; Srivastava et al., 2019), and individual-nucleotide resolution Cross-Linking and
ImmunoPrecipitation (iCLIP) (König et al., 2010), as it allows PCR amplified reads that
may cause inaccuracies in true DNA/RNA molecule counts to be collapsed before further
downstream analysis. For example, in RNA-seq, UMIs can be used to accurately count
and compare the number of RNA molecules for each sample (Kivioja et al., 2012). In
scRNA-seq, it is possible to count the number of RNA molecules for each gene and cell
combination by using UMIs (Srivastava et al., 2019). However, due to sequencing and PCR
amplification errors, sequenced reads may contain UMI sequences that deviate from their
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true UMI sequences before PCR amplification (Schirmer et al., 2015). Therefore, software
tools for accurately solving the deduplication task by grouping reads with the same true
UMI must be able to handle errors in UMI sequences. We focus on tolerating substitution
errors, and ignore the much rarer insertion and deletion errors, like previous works on the
UMI deduplication task (Smith, Heger & Sudbery, 2017).

Before deduplicating sequenced reads by their UMI sequences, they must first be aligned
to a reference genome or transcriptome, with the extracted UMI sequence stored in
the read header. Then, the reads at each unique alignment location are independently
deduplicated based on the UMI sequences. This is done by tools like UMI-tools (Smith,
Heger & Sudbery, 2017), zUMIs (Parekh et al., 2018), umis (umis, 2019), gencore (Chen et
al., 2018), fgbio (fgbio, 2019), Picard (Picard Tools, 2019), and Je (Girardot et al., 2016).
It is also possible to skip the alignment step and deduplicate reads directly based on the
entire DNA sequence, which includes the UMI (this is done by Calib (Orabi et al., 2018)).
This does not require alignments to be explicitly computed, which may be faster on larger
datasets. In either case, efficient methods for finding and grouping reads that are similar
is needed. After grouping reads by their UMIs, we can report the reads in each of these
groups directly, extract a consensus read for each group, or report the number of groups.
Since these tasks are quite similar, we will only consider obtaining a consensus read for
each group of reads while removing all other reads. This is usually done by just keeping the
read that has the highest UMI frequency and the highest mapping quality or highest Phred
quality scores in each group.

Though there have been many tools proposed for accurately handling UMI data,
there have not been many works focused on discussing algorithms that make the UMI
deduplication process more efficient in terms of speed and memory usage. Many previous
tools either deduplicate purely based on unique UMIs without being error tolerant (Mangul
et al., 2017; Shiroguchi et al., 2012), or require pairwise comparisons between UMIs
(i.e., zUMIs (Parekh et al., 2018), Picard (Picard Tools, 2019), Je (Girardot et al., 2016),
older versions of UMI-tools (Smith, Heger & Sudbery, 2017), gencore (Chen et al., 2018),
and fgbio (fgbio, 2019)), which does not efficiently scale to larger datasets. Smith, Heger &
Sudbery (2017) proposed network-based algorithms for estimating the actual number of
UMI, which was implemented in their UMI-tools program. That allows it to avoid the issue
of inaccurately overestimating the number of true UMIs from directly counting unique
sequenced UMIs, a problem that arises from substitution errors in PCR amplification and
sequencing.

We aim to make the UMI deduplication process more efficient, while still being error-
tolerant against nucleotide substitutions, by examining algorithms and data structures that
allow us to minimize the number of comparisons between UMIs, which is a necessary
step in finding similar UMIs when substitution errors are allowed. For simplicity, we only
consider the problem of deduplicating UMIs at a single alignment position. In other words,
for an input list of UMIs from mapped reads at a single alignment coordinate, we wish
to find a set of unique consensus UMIs, where each consensus UMI represents a group
of reads that have the same UMI before sequencing and PCR duplication. By solving
the UMI deduplication problem at a single alignment coordinate, we can trivially extend
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it to multiple alignment coordinates or multiple cells (in scRNA-seq) by independently
deduplicating the UMIs at each alignment coordinate and cell.

Our contributions in this paper are as follows:

• We generalize a time consuming subsection of the network-based algorithms used in
UMI-tools (Smith, Heger & Sudbery, 2017) and other tools to a common interface, which
allows different data structures to be substituted into the network-based algorithms.
This allows us to formulate the problem in a way that enables optimizations to be made.
• We examine a wide variety of both previously proposed and novel data structures’
theoretical and practical behaviors on large datasets, and show that we can achieve
more efficient deduplication with the same general network-based deduplication
algorithms as UMI-tools (Smith, Heger & Sudbery, 2017). These data structures are
all implementations of our proposed interface.
• We implement our algorithms in Java, as both a library of algorithms and a command-
line-based UMI collapsing tool called UMICollapse.

METHODS
Deduplication algorithms
Most deduplication algorithms attempt to build graphs, where the vertices are unique
UMIs, and the edges that connect UMIs that are within a certain edit distance (Smith,
Heger & Sudbery, 2017). Let G= (V ,E), which represents a graph that consists of N total
unique UMIs, where the length of each UMI is M . Also, let f (v) represent the frequency
of the UMI v , ∀v ∈V . The frequency is obtained by examining the input list of all UMIs
and counting the number of occurrences of each unique UMI. Each u,v ∈V is connected
by an edge (u,v)∈ E iff d(u,v)≤ k, where d defines the Hamming distance function that
allows substitution errors, and k represents the maximum error/edit threshold. For two
UMI sequences a and b of equal lengthM , the Hamming distance function is defined as

d(a,b)=
M∑
i=1

δ(ai,bi)

where

δ(x,y)=

{
0 if x = y
1 if x 6= y

and ai represents the ith character of the sequence a, ∀i∈ {1...M }.
There are three main deduplication algorithms for identifying groups of unique UMIs

based on G: connected components, adjacency, and directional. These algorithms were
discussed by Smith, Heger & Sudbery (2017) and implemented in UMI-tools. Other tools
like zUMIs (Parekh et al., 2018) and fgbio (fgbio, 2019) also implement some or all of these
algorithms.We show that all threemethods can be formulated tomake use of a standardized
interface that is supported by some data structure that efficiently and implicitly represents
the graph G. Such a data structure must implement the following two operations:
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• remove_near (u, k, F). Returns a set S of all UMIs that are within k edits from a
given UMI u (d(u,v)≤ k), such that f (v)≤ F , ∀v ∈ S, v 6= u, and v is not yet removed
from the graph G.u is known as the ‘‘queried UMI’’ in remove_near queries, and it is
always included in S if it is not removed. Also, set all UMIs in the set S as removed. The
frequency F is necessary for the directional method of grouping UMIs, and UMIs are
removed so they are not returned by future queries. The remove_near operation finds
all vertices that are connected with u, without explicitly storing and building the graph
G.
• contains(u). Returns whether the UMI u is not removed. Note that this operation can
be trivially implemented for any data structure by keeping a separate hash table of UMIs
that are not removed in O(1) time, so we will not discuss this operation in detail.

Algorithm 1 Finding connected components on a set of UMIs V .
procedure get_connected_components(V , k)

Initialize a data structure that implements remove_near and contains with V
and k.

cc←{} F Resulting set of connected components.
for u∈V do

if contains(u) then
cc← cc ∪ dfs_cc(u, k)

end if
end for
return cc

end procedure
procedure dfs_cc(u, k)

c←{} F Set of UMIs in a connected component.
for v ∈ remove_near(u, k,∞) do

if v 6= u then
Add all elements of dfs_cc(v , k) to c .

end if
end for
return c

end procedure

This interface allows us to focus our efforts of optimizing remove_near queries with
different data structures, while maintaining compatibility with the three algorithms for
grouping UMIs. Instead of calculating an N×N matrix of edit distances between UMIs to
build the graph G like some previous tools (Parekh et al., 2018), we allow remove_near
queries to dynamically change the underlying data structure that implicitly represents G
throughout the deduplication algorithms, which enables optimizations to be made. Note
that for simplicity, we omit the necessary initialization step for any data structure that
implements the interface. Next, we discuss the three algorithms for grouping UMIs in
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detail, and show how these two operations are sufficient for implementing those three
algorithms.

Connected components
One method for identifying groups of unique UMIs is based on connected components
(known as clusters in UMI-tools (Smith, Heger & Sudbery, 2017) and Calib (Orabi et al.,
2018)). A connected component in a graph G= (V ,E) is a set of vertices S⊆V where there
is a valid path between each pair of vertices u,v ∈ S, and there is no edge (u,v)∈ E where
u∈ S, but v 6∈ S. Each connected component is a group of UMIs, and the UMI that has
the highest frequency is chosen to represent the group. This algorithm allows UMIs that
are similar under the Hamming distance metric to be grouped together, but it can lead to
an underestimation of the total number UMIs. There may exist an UMI w for two UMIs
u and v , where d(u,w)≤ k and d(w,v)≤ k, causing u and v to be grouped together even
though d(u,v)> k (essentially ‘‘bridging’’ the Hamming distance ‘‘gap’’ between the two
different UMIs). We show the entire connected components algorithm in Algorithm 1.

The time complexity of finding all connected components is O(N ) with respect to each
query to remove_near, since only one remove_near query is allowed per vertex (UMI)
in the graph, and each vertex is only visited once.

Algorithm 2 The adjacency algorithm on a set of UMIs V .
procedure get_groups_adjacency(V , k)

Initialize a data structure that implements remove_near and contains with V
and k.

adj←{} F Resulting set of groups of adjacent UMIs.
Sort V by decreasing UMI frequency values.
for u∈V do

if contains(u) then
adj← adj ∪ remove_near(u, k,∞)

end if
end for
return adj

end procedure

Adjacency
To avoid the underestimation issue of the connected components algorithm, we can
sort the UMIs by their frequencies, and examine UMIs from higher to lower frequency.
We assume that UMIs that appear at a higher frequency are more likely to be correct,
and allow adjacent UMIs in G that have lower frequencies to be grouped with a higher
frequency UMIs. Two UMIs u and v are adjacent if there exists an edge (u,v) ∈ E . The
lower frequency UMIs are assumed to be due to substitution errors. The full algorithm is
presented in Algorithm 2.

Since we must first sort the N UMIs in O(N logN ) time and then query remove_near
at most N times, the overall time complexity is O(N logN +NQ), where Q is the time
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complexity of remove_near. If Q≥ logN , then the time complexity with respect to each
query is O(N ).

Directional
The directional algorithm allows UMIs that are not adjacent to be grouped together,
and it also minimizes underestimation from examining connected components. Like the
adjacency method, it involves iterating through the sorted UMIs from highest to lowest
frequency. Instead of grouping together all adjacent vertices like in the adjacency method,
we add a vertex v that is adjacent to vertex u to the group iff f (v)≤ ε[f (u)+1], where
0≤ ε ≤ 1 and ε is a parameter that represents the threshold percentage at which adjacent
UMIs are grouped, which is usually ε= 0.5 (this is a rearrangement ofUMI-tools’ inequality
2f (v)−1≤ f (u) (Smith, Heger & Sudbery, 2017)). Then, the process is recursively repeated
starting at v by examining the adjacent vertices of v . This allows UMIs that are not directly
adjacent to a high frequency UMI to be visited and grouped with the high frequency UMI
if they have a low frequency. Algrorithm 3 represents the full algorithm.

Algorithm 3 The directional algorithm on a set of UMIs V .
procedure get_groups_directional(V , k, ε)

Initialize a data structure that implements remove_near and contains with V
and k.

dir←{} F Resulting set of groups of UMIs.
Sort V by decreasing UMI frequency values.
for u∈V do

if contains(u) then
dir← dir ∪ dfs_dir(u, k, ε)

end if
end for
return dir

end procedure
procedure dfs_dir(u, k, ε)

g←{} F Group of UMIs found by the directional algorithm.
for v ∈ remove_near(u, k, ε

[
f (u)−1

]
) do

if v 6= u then
Add all elements of dfs_dir(v , k, ε) to g .

end if
end for
return g

end procedure

The overall time complexity of directional isO(N ), which is similar to that of adjacency,
since they both require an initial sorting of the N UMIs, and each UMI requires a
remove_near query.
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Efficient methods for deduplication
A naive implementation of remove_near runs in O(NM ) time in the worst case, by
examining each of the N UMIs and calculating the Hamming distance in O(M ) time for
each UMI. As we have shown that each of the network-based grouping algorithms require
O(N ) time with respect to each remove_near query, the overall run time complexity
is O(N 2M ). This scales quadratically with the total number of UMIs, and it becomes
prohibitively slow as N increases, making it inadequate for handling larger sets of data.
However, there are four properties of the remove_near function and the UMI sequences
in general that allow for optimization:

• We do not care about the exact number of edits between two UMI sequences, only that
their Hamming distance is less than the threshold k.
• We do not need to reexamine previously removed UMIs when there are multiple,
successive remove_near queries. This benefit is due to how we frame the deduplication
problem in a way that makes use of remove_near queries that dynamically
queries/updates the implicit representation of the UMI graph G instead of outright
constructing the entire graph G.
• We do not need to examine UMIs that appear at a higher frequency than the threshold
F .
• UMIs sequences are generally very short. It is not unreasonable to assume that they are
≤ 20 nucleotides long in most cases.

We examine many different methods for efficiently handling queries to the
remove_near function by making use of these four properties. Most of them are special
data structures that speed up remove_near queries. Note that most data structures
depend on the number of resulting UMIs from the remove_near query, which may vary
depending on the degrees of vertices in the graph G.

Constant-time Hamming distance calculations
Let ⊕ denote the bitwise XOR operation, and let the pop_count function return the
number of set (1) bits in a binary string. For two binary strings a and b where a,b∈ {0,1}M ,
the Hamming distance (total number of mismatches) between them can be easily calculated
by pop_count (a⊕b). This operation can be done in O(1) time if both a and b are shorter
than the word length in a computer, which is typically 64-bits. We show that this idea can
be extended to all four nucleotides ({A, T, C, G}).

The main property we want for an encoding of the four nucleotides is that the encodings
are pairwise equidistant. One such set of encodings with the shortest possible length for
each encoding is

eA= 110 eT= 011

eC= 101 eG= 000

These encodings can be viewed as the vertices in a regular 3-simplex (tetrahedron) in
Hamming space, and they are discussed in Liu (2019). The Hamming distance between
each pair of different encodings is exactly two, which means that for two UMI sequences
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u and v , we can translate them into bit strings a and b using the encoding method
above, and the overall Hamming distance between the two bit strings is exactly 2d(a,b).
This can be used to easily infer d(a,b). For example, let ‘‘AAT’’ and ‘‘AAA’’ map to
110110011 (concatenate eAeAeT) and 110110110 (concatenate eAeAeA), respectively.
Then, pop_count (110110011⊕110110110)= 2d(AAT,AAA)= 2. Thus, the edit distance
d(AAT,AAA)= 1.

Encoding each UMI sequence saves time and memory, since multiple encoded
nucleotides can be stored in a computer word, and the Hamming distance between
two UMIs can be calculated in constant time per word by using the XOR and pop_count
operations. b 643 c = 21 nucleotides can be packed into one computer word of length 64,
and an array of words can be used to handle longer UMI lengths. Note that we separately
encode the positions of undetermined N nucleotides in sequences that contain it. We treat
this undetermined nucleotide as different from the other four nucleotides.

For all other data structures and algorithms that we discuss, we assume that the UMI
lengths are short, and Hamming distances are calculated with this method, which takes
O(1) time per calculation. This also speeds up hash operations and equality comparisons
between UMI sequences to O(1) time, since they can process the entire encoded UMI
sequence at once.

Combinations
Instead of a brute-force search through all N UMIs during remove_near queries, it may
be faster to directly generate UMIs sequences that are within a certain edit distance and
checking whether each of them exists using a hash table. The run time complexity of this
‘‘combinations’’ algorithm, for each remove_near query with an alphabet 6 = {A, T,
C, G} of length |6|, is O(|6|k

(M
k

)
)=O(|6|kM k). This is because any k nucleotides in

the UMI can be edited, and each nucleotide can be edited to any nucleotide in 6. Each
combination can be checked in O(1) time on average with the hash table that contains all
N UMIs. This method is efficient if k is small, but it scales exponentially with k, and it does
not make use of our constant-time Hamming distance calculations. This method is used
in umis (2019) for UMI deduplication.

Trie
The main problem with the combinations algorithm is that it may examine multiple UMI
combinations that do not actually exist in the input UMIs sequences. To address this
problem, a string trie (De La Briandais, 1959) can be built to store each of the N UMIs.
Each node in a trie consists of up to |6| children—one for each character in 6. Also, each
unique path from the root of the trie to a leaf node at depth M represents a unique UMI
of length M , with each node on the path representing a nucleotide in the UMI sequence.
A trie allows prefixes that are shared among multiple sequences to be collapsed into one
prefix path, which saves space. However, the main benefit of a trie is that while generating
UMI combinations, the current prefix of the UMI combination can be checked against
nodes that exist in the trie. This allows prefixes of UMI combination that cannot possibly
construct an existing UMI to be pruned, which speeds up queries in practice. An example
of a trie is shown in Fig. 1.
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Figure 1 Simplified example of a trie built on five UMIs. These UMIs are ‘‘AAAA’’, ‘‘ATAA’’, ‘‘CTGA’’,
‘‘AAAT’’, and ‘‘ATTA’’. Only nodes that are shaded are visited when searching for UMIs within 1 edit of
‘‘AAAG’’.

Full-size DOI: 10.7717/peerj.8275/fig-1

To build the trie, around MN operations are necessary to insert every UMI sequence
into the trie, for a total ofO(MN ) time. Each remove_near query will take at leastO(MR)
time, if R total UMI sequences are returned by the query, and the exact time taken depends
on how many UMIs share prefixes and k, the number of edits allowed. The factor of M is
due to the trie’s height being exactlyM nodes.

Some subtrees in the trie may become completely removed after some remove_near
queries, when all UMIs in that subtree are removed. These subtrees can be completely
skipped during future remove_near queries to save time while processing future queries,
by keeping track of a flag that indicates whether the subtree of each node still exists. This
flag can be recursively propagated up towards the root of the trie during remove_near
queries (i.e., each node’s subtree is completely removed iff all children subtrees of that
node are completely removed). Then, an entire subtree can be pruned if the ‘‘completely
removed’’ flag is set, during remove_near queries.

Similarly, we can keep track of the minimum frequency of any UMI within each subtree
of the trie. After each query and removal, the minimum frequency of each node’s subtree
can be recursively updated for non-leaf nodes, to exclude the UMI frequency of any
removed UMIs (i.e., each node’s subtree’s minimum frequency is the minimum across the
minimum frequencies of that node’s children subtrees that are not completely removed).
This allows an entire subtree of the trie to be discounted if its minimum frequency is higher
than F , since that implies that no UMI within the subtree has a lower UMI frequency than
the maximum threshold F .

n-grams
An alternative method for speeding up the naive O(N ) time remove_near query is by
filtering UMIs based on partial exact matches of UMI sequences. The benefit of exact
matches is that they can be efficiently indexed in a hash table, and therefore search
operations would take O(1) time on average. The general idea of the n-gram algorithm
is to first decompose each UMI sequence into contiguous, non-overlapping sequences
(n-grams) of length n during the initialization of the n-gram hash table. Each unique

Liu (2019), PeerJ, DOI 10.7717/peerj.8275 9/22

https://peerj.com
https://doi.org/10.7717/peerj.8275/fig-1
http://dx.doi.org/10.7717/peerj.8275


n-gram, which is represented by both its location in an UMI sequence and its actual
nucleotide sequence, maps to a bin (list) of UMI sequences that contains the n-gram at its
specific location in the UMI sequence. Then, to search for all UMIs within k Hamming
distance away from the queried UMI sequence, we can first decompose the query sequence
into n-grams with the same method used during initialization, and only search the bins
that corresponded to the n-grams created from the queried UMI. This is used by later
versions of UMI-tools (Smith, Heger & Sudbery, 2017) to speed up the construction of its
networks for UMI deduplication.

The UMI sequences must be split into k+1 contiguous and non-overlapping n-grams,
where the n-grams are all approximately equal in length. For two UMI sequences that are
within k edits apart, and are split into k+1 n-grams, there must always be at least one
n-gram that exactly matches in both sequences. This must be true, since in the ‘‘worst-case
scenario’’ when there are exactly k edits and k of the n-grams have an edit within them
somewhere, there is still exactly one n-gram that perfectly matches since it must have no
edits due to the edit threshold of k. We also want to maximize the length of each individual
n-gram, in order to maximize the number of distinct n-grams and prunemore of the search
space. Therefore, the length of each n-gram must be b M

k+1c, except for the last n-gram,
which may be slightly longer if M mod (k+1) 6= 0. Implementation-wise, each n-gram is
represented as a view on a portion of a UMI sequence, to avoid creating unnecessary copies
of the UMI sequence data.

When initializing the hash table of UMI n-grams, the time complexity for N UMIs is
simply O(MN ), since each n-gram of each UMI sequence must be extracted and hashed.
To estimate the expected run time of each remove_near query, we assume that the UMIs
are uniformly sampled across the sequence space 6M . Then, for each possible n-gram
segment location, there are around

N
|6|M−

M
k+1

|6|M
=

N

|6|
M
k+1

different UMI sequences at each n-gram location, assuming M is divisible by k+ 1.
Therefore, the time complexity of each query is O(M + kN |6|−M/k) on average, since
each bin of the k+1 n-grams of the queried UMI must be examined. This algorithm scales
very well with longer UMI lengths, since the number of possible n-gram combinations
increases, which decreases the likelihood of two UMI sequences having the same n-gram
and allows each n-gram bin to be smaller.

Subsequences
Another method for decomposing a UMI sequence into a more general representation
during both initialization and queries is by extract subsequences of lengthM−k (SymSpell,
2019). Alternatively, this can be thought of as picking any k nucleotides in the UMI, and
replacing all of them with a new placeholder character (i.e., a subsequence of ‘‘ATCG’’
is ‘‘A?CG’’ if k = 1 and the placeholder is ?). It is easy to see that if two subsequences
with exactly k placeholder characters exactly match, then their corresponding UMIs must
match within k edits. After a hash table that is indexed by these subsequences is built in
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O(N
(M
k

)
)=O(M kN ) time, we only need to examine the

(M
k

)
bins of UMIs that correspond

to each of the subsequences of the queried UMI during a query, inO(M k
+R) time, to get R

UMI results. Note that some UMIs may have to be examined multiple times during a single
query, since each UMI is placed in

(M
k

)
different bins when building the hash table. This

is faster than the combinations algorithm because it spreads out the work of generating
sequence combinations within k edits over the initialization and the queries phases of the
algorithm. This method is implemented in Calib (Orabi et al., 2018) and referred to as
‘‘locality-sensitive hashing’’.

Algorithm 4 The remove_near operation for the BK-tree data structure.
procedure remove_near(u, k, F)

return dfs_bk_tree(root , u, k, F) F Start at the root node of the BK-tree.
end procedure
procedure dfs_bk_tree(c , u, k, F)

r←{} F Resulting list of removed UMIs.
1← d(c,u)
if c is not removed and1≤ k and f (c)≤ F then

Remove c .
r← r ∪ c

end if
for each child v of node c where1−k ≤ d(c,v)≤1+k do F Pruning by

Hamming distance.
if ∃w in the subtree of v , where w is not removed then F Pruning by removed

nodes
if ∃w in the subtree of v , where f (w)≤ F then F Pruning by frequency

threshold F
Add each element in dfs_bk_tree(v , u, k, F) to r .

end if
end if

end for
return r

end procedure

BK-Tree
The BK-tree (Burkhard & Keller, 1973) is a type of metric tree that can make use of
constant-time Hamming distance computations for handling remove_near queries. Each
node in a BK-tree represents an UMI sequence, and each child node in a BK-tree is indexed
by the Hamming distance between that child node’s UMI and its parent node’s UMI in an
array in the parent node. When inserting an UMI, if a parent node v already has a child
node at a specific Hamming distance d(u,v) for some inserted UMI u, then the insertion
operation is recursively continued with the child node as the new parent node. Otherwise,
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Figure 2 Simplified example of a BK-tree built on five UMIs. These UMIs are ‘‘ATAA’’, ‘‘AAAA’’,
‘‘CCGG’’, ‘‘AAAT’’, and ‘‘ATTA’’, inserted in that order into the tree. Only nodes that are shaded are
visited when searching for UMIs within 1 edit of ‘‘AAAG’’. Each edge between two UMIs u and v has a
number that indicates d(u,v), the Hamming distance between u and v .

Full-size DOI: 10.7717/peerj.8275/fig-2

a new node with the u is created and attached to the parent node at the index d(u,v) in
parent node’s array. A fully built BK-tree is shown in Fig. 2.

When querying, we recursively visit a subset of nodes in the BK-tree. For each node we
visit starting from the root, we find the edit distance d(u,v) between the queried UMI u
and the UMI at current node v . Then, we only visit the 2k+1 children of the node of v
that are indexed by some edit distance i, where d(u,v)−k ≤ i≤ d(u,v)+k. This is due to
the triangle inequality that mandates that

d(u,w)+d(v,w)≥ d(u,v),

d(u,v)+d(u,w)≥ d(v,w)

for some node w in the subtree of v which is considered as a candidate for the query’s
result. Note that i= d(v,w). Rearranging, we get

d(u,w)≥ d(u,v)−d(v,w),

d(u,w)≥ d(v,w)−d(u,v)

Since we only care about a candidate node w if k ≥ d(u,w), we can substitute and arrive at

k ≥ d(u,v)−d(v,w),

k ≥ d(v,w)−d(u,v)
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which can be rearranged to obtain

i= d(v,w)≥ d(u,v)−k,

i= d(v,w)≤ d(u,v)+k

This allows us to restrict the number of nodes visited during a query operation and speed
up the query (Burkhard & Keller, 1973).

The time complexity of initializing and querying a BK-tree depends heavily on the height
of the tree. On average, inserting all UMIs during initialization requires O(N logN ) time,
since the height of the tree is around O(logN ). For each query that results in R UMIs in
total, the average time complexity isO(kR+k logN ). The factor of k is due to extra children
nodes that are examined while traversing the tree. BK-trees are efficient since the height of
a BK-tree built on random UMIs is expected to be very low compared to the total number
of unique UMI sequences.

If all nodes in a subtree are removed, then that entire subtree can be skipped during
each remove_near query, which saves some time. To keep track of these subtrees, we
can propagate a flag that indicates whether an entire subtree is completely removed, from
child nodes to parent nodes (i.e., a node’s subtree is completely removed iff that node is
removed and all of its children subtrees are completely removed).

Similarly, if all nodes in a subtree have a UMI frequency greater than the threshold F ,
then that subtree does not need to be examined in the query. The minimum frequency
of each subtree can be stored and updated after each remove_near operation to prune
subtrees from the search space (i.e., a node’s subtree’s minimum frequency is the minimum
of that node’s UMI frequency if it is not removed, and the minimum frequencies of each
of the node’s children subtrees that are not completely removed). Subtrees that have a
minimum frequency greater than F are pruned since they have cannot contain any node
that has a UMI frequency less than or equal to the threshold F .

Typically, nodes are inserted in arbitrary order during initialization. However, to ensure
that more subtrees are pruned by their minimum frequencies, the UMIs can be inserted
in increasing order, based on the frequency of the UMIs. By inserting higher frequency
UMIs later, they end up closer to the leaf nodes of the tree, and allow lower frequency
UMIs to end up closer to the root of the tree. This allows more subtrees to be pruned by
the frequency threshold F .

A sketch of the full algorithm for handling remove_near queries with a BK-tree is
presented in Algorithm 4.

Fenwick BK-trees
In remove_near queries, if the number of high frequency UMIs significantly outnumber
the number of low frequency UMIs, it may be beneficial to first search for all UMIs that
have a frequency lower than F , and then examine those UMIs to find ones that are within k
edits of the queried UMI. This is an alternative approach for solving remove_near queries
compared to other methods like directly using BK-trees (Burkhard & Keller, 1973), since we
build an overarching data structure for pruning UMIs based on UMI frequencies instead
of edit distance. Finding UMIs with frequencies lower than a threshold can be done with a
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Figure 3 Example of a Fenwick tree on UMI frequencies in the interval [1, 7]. Each node contains a BK-
tree that has all UMIs sequences with frequency values in the interval that node describes. The binary la-
bels for each node are used to implicitly index the Fenwick tree’s nodes in a flat 1D array. As an example
query, shaded nodes in the Fenwick tree must be visited to find UMIs that have frequencies ≤ 5 and are
within a certain edit distance from the queried UMI. Each of those nodes’ BK-trees must be queried to
find UMI sequences.

Full-size DOI: 10.7717/peerj.8275/fig-3

Fenwick tree (Fenwick, 1994) on an array of BK-trees that is indexed by UMI frequencies.
A Fenwick tree allows for fast queries on a prefix of an underlying array described by the
Fenwick tree, as each node in the Fenwick tree describes a range of elements in the array,
and only logN nodes are visited per prefix query. Figure 3 visualizes a Fenwick tree during
a query operation. If the underlying array is indexed by the frequencies of the UMIs, then a
prefix query up to index F on the Fenwick tree will return some property for all frequencies
≤ F . In our case, each element in the underlying array is a BK-tree, and thus each node in
the Fenwick tree also contains a BK-tree. The BK-tree of a parent node in the Fenwick tree
will include UMI sequences from the BK-trees of each of the child nodes. When querying,
BK-trees in the nodes of the Fenwick tree that represent the prefix up to F in the frequency
array are independently traversed to find UMIs that are within k edits of the queried UMI.

To insert an UMI sequence, we must update logN BK-trees, each of height logN on
average. Thus, initializing the Fenwick BK-trees data structure requires O(N log2N ) time.
Each remove_near query will take O(kR+klog2N ) time, since logN BK-trees must be
examined. However, in practice, we expect the heights of the BK-trees to be very short,
and we expect this method to prune a significant portion of the UMIs based on their
frequencies.

n-grams BK-trees
We propose a new method for faster remove_near queries based on a combination of
BK-trees (Burkhard & Keller, 1973) and n-grams. The original n-gram algorithm requires
a linear scan through each UMI that shares an n-gram with the queried UMI. We replace
the bin of corresponding UMIs for each n-gram with separate BK-tree to speed up queries.
This allows the height of each BK-tree to be very short, and also allows us to make use
of methods for pruning subtrees, like ignoring subtrees that are completely removed and
subtrees with minimum frequencies larger than F . Overall, this method is faster than using
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Figure 4 Simplified example of the n-grams BK-trees data structure. If two edits are allowed, then each
UMI is split into three non-overlapping n-grams. Each n-gram sequence and its interval position in the
full UMI sequence corresponds to a BK-tree that contains all UMIs that the same n-gram sequence at the
same position.

Full-size DOI: 10.7717/peerj.8275/fig-4

just the n-grams method on average, taking only
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time, where the sum of the number of query results across each unique n-gram’s
corresponding BK-tree is R (i.e., R1+R2+ ...+Rk+1=R), and each O(log(N |6|−M/k))
is due to the height of the BK-tree corresponding to one of the k+1 unique n-gram of
length b M

k+1c. If a significant portion of the UMI sequences share the same n-gram, then
the algorithms will run as fast as just using one large BK-tree for all UMI sequences, which
takes O(kR+k logN ) time, not O(N ) time. This method is visualized in Fig. 4.

Implementation
We implement all of the algorithms and data structures discussed in a proof-of-concept
Java program called UMICollapse. In our implementation, themain focus was efficiency, so
the breadth of features in UMICollapse is narrower than that of other popular tools (Smith,
Heger & Sudbery, 2017; Srivastava et al., 2019). Since each data structure and deduplication
algorithm is modular and self-contained, UMICollapse can be easily used as a library and
imported into other projects. UMICollapse provides two main features: deduplicating raw
FASTQ reads based solely on the read sequences, and deduplicating aligned SAM/BAM
files. In a SAM/BAM file, reads at the same alignment coordinate (for forwards reads,
the alignment start, and for reversed reads, the alignment end) are deduplicated based on
their UMIs, which are stored in the read headers during preprocessing prior to alignment.
This is implemented similarly to how UMI-tools (Smith, Heger & Sudbery, 2017) works, in
order to simplify integration into existing UMI pipelines. UMICollapse chooses consensus
reads from each group of reads with similar UMIs based on UMI frequency and alignment
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Table 1 Time taken for different algorithms to run as the number of unique UMIs (N ) changes. Each run time is measured in milliseconds and
averaged over three trials. The best time for each dataset is bolded. Empty cells indicate algorithms that took longer than 10 min total to run one
warm-up trial and three actual trials. ‘‘Combo’’ represents the combinations method, ‘‘Subseq.’’ represents the subsequences method, and ‘‘BK-
tree’’ is shortened to just ‘‘BK’’.

Unique UMIs Naive Combo Subseq. Trie n-grams BK-tree Fenwick BK n-grams BK

1,675 43 123 33 29 12 15 22 8
16,878 5,403 366 151 191 76 353 769 66
167,578 – 3,840 2,252 2,680 2,127 21,623 50,670 1,102
1,550,871 – 42,155 31,572 34,979 – – – 28,069

quality or Phred quality scores. Currently, UMICollapse can only handle single-end, reads
and it cannot separately collapse reads per cell or per gene, which is useful for deduplicating
scRNA-seq data.

The Java source code of UMICollapse and other simulation data generation programs is
available at https://github.com/Daniel-Liu-c0deb0t/UMICollapse under the MIT License.

RESULTS
All of the experiment were done on a laptop computer with a 2.7 GHz Intel Core i7-7500U
CPU. The Java Virtual Machine (JVM) was limited to 8 GB of RAM when running
UMICollapse, and UMI-tools (Smith, Heger & Sudbery, 2017) (version 1.0.0) was limited
to around 10 GB of RAM. Some experiments had a maximum time threshold, where they
were terminated if they took too long. Default settings were used where possible when
running both tools.

Comparing data structures
We compare each data structure’s performance on handling remove_near queries as
the number of unique UMIs (N ), the length of UMIs (M ), and the Hamming distance
threshold (k) changes. To do so, we simulate UMI datasets represented by a tuple (C , M ,
k), where C represents the number of ‘‘center’’ UMIs and we use the nucleotides 6 =
{A, T, C, G, N}. Simulating a (C , M , k) dataset involves first generating C random center
UMIs of length M . Then, for each center UMI, we generate 20 random UMIs of length
M that are within k edits of the center UMI. Each center UMI is assigned a ‘‘higher’’
random frequency, and each of the other UMIs is assigned a ‘‘lower’’ random frequency.
In other words, any pair of center UMI u and non-center UMI v must satisfy the following
inequality: 2f (v)−1≤ f (u). The set of unique UMIs and their corresponding frequencies
simulated using this process represents a (C , M , k) dataset. Our tests are all based on the
task of deduplicating a dataset of unique UMIs using the directional algorithm.

We generate four datasets to test the performance of different data structures as the
number of unique UMIs increases. These four (102, 10, 1), (103, 10, 1), (104, 10, 1),
and (105, 10, 1) datasets each have 1,675, 16,878, 167,578, and 1,550,871 unique UMIs,
respectively. The run time of different data structures on these four datasets is shown in
Table 1.
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Figure 5 Time taken (in milliseconds) for different algorithms to run as the UMI length (M) changes.
The vertical axis is log-scaled.

Full-size DOI: 10.7717/peerj.8275/fig-5

Table 2 Statistics of different data structures on a large, simulated dataset with 167,578 unique UMIs.

Data Structure Property Value

Number of bins 1,471,978
Avg bin size 1.1Subsequences

Max bin size 5
Trie Nodes 511,634

Number of bins 6,250
Avg bin size 53.6n-grams

Max bin size 139
Avg depth 8.6

BK-tree
Max depth 13

We also generate three datasets (103, 10, 1), (103, 30, 1), and (103, 50, 1) for evaluating
the performance of each data structure as the UMI length M changes. The result from
using these datasets is graphed in Fig. 5.

We generate three more datasets (103, 10, 1), (103, 10, 2), and (103, 10, 3) to measure
the performance impact of increasing the number of edits allowed in the data structures.
The run times for these datasets are shown in Fig. 6.

We also show some statistics regarding a few selected data structures constructed from
the (104, 10, 1) dataset in Table 2.
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Figure 6 Time taken (in milliseconds) for different algorithms to run as the Hamming distance
threshold (k) changes. The vertical axis is log-scaled.

Full-size DOI: 10.7717/peerj.8275/fig-6

Table 3 Time taken to deduplicate a BAM file with many UMIs spread out over different alignment
coordinates. The n-grams BK-trees data structure is used in UMICollapse. Run time is measured in sec-
onds. Default settings (i.e., directional algorithm, allowing one edit) are used for both UMI-tools and
UMICollapse. The best time for each dataset is bolded.

Dataset UMIs UMI-tools UMICollapse

Kivioja et al. (2012) 1,338,610 41.46 8.732
Müller-McNicoll et al. (2016) 1,175,027 8.69 4.26
Müller-McNicoll et al. (2016) 12,925,297 94.13 34.43
Müller-McNicoll et al. (2016) 118,677,727 889.42 271.31

Comparison to UMI-tools
We compare our UMICollapse to the dedup function in UMI-tools (Smith, Heger &
Sudbery, 2017) on two main tasks. The first main task tests the tools on handling large
datasets with many UMIs spread out among the alignment positions. One of the datasets
we test is the aligned single-end reads from a controlled replicate of Müller-McNicoll
et al. (2016), which is also used by UMI-tools (Smith, Heger & Sudbery, 2017) as an
example dataset. In total, there are 1,175,027 input UMIs of length 9 across all 12,047
alignment positions, and the maximum number of unique UMIs at an alignment location
is only 252. The second dataset is the aligned single-end reads from the first replicate
of Kivioja et al. (2012), which is used as an example dataset for TRUmiCount (Pflug &
von Haeseler, 2018). There are 1,338,610 reads across 61,193 alignment coordinates, with
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Table 4 Time taken to deduplicate a BAM file with many UMIs at a single alignment coordinate. The
n-grams BK-trees data structure is used in UMICollapse. Default settings (i.e., directional algorithm, al-
lowing one edit) are used for both UMI-tools and UMICollapse. Run time is measured in seconds. UMI-
tools was terminated on larger datasets since it took longer than 20 min to run on those datasets. The best
time for each dataset is bolded.

Unique UMIs UMI-tools UMICollapse

16,392 5.48 0.48
158,393 >1,200 3.09
1,114,686 >1,200 26.36

a maximum of 8,227 unique UMIs of length 10 at any single alignment coordinate.
The aligned UMI data used in the experiments (example UMI-tools data) is available
at https://github.com/CGATOxford/UMI-tools/releases/download/1.0.0/example.bam.
The other aligned UMI dataset used in the experiments (example TRUmiCount data) is
available at https://cibiv.github.io/trumicount/kv_1000g.bam.

We also create two larger datasets where each UMI in the (Müller-McNicoll et al., 2016)
example dataset is amplified with one substitution edit 10 and 100 times. The two datasets
contain 12,925,297 and 118,677,727 UMIs, respectively, and the run times of both tools on
all four datasets are shown in Table 3.

The second main task tests whether UMICollapse represents an improvement over
UMI-tools (Smith, Heger & Sudbery, 2017) on the data structures used for accelerating the
network-based deduplication algorithms. We simulate three datasets with many unique
UMIs at the exact same alignment position. UMIs are generated by first generating C
random center UMIs of length 9 and then generating 20 random non-center UMIs for
each center UMI, where each non-center UMI is within 1 edit of its corresponding center
UMI. Our three datasets of C = 103, C = 104, and C = 105 result in 16,392, 158,393, and
1,114,686 unique UMIs at a single alignment position, respectively. The timings of both
tools are shown in Table 4.

Since our proposed methods for speeding up the UMI deduplication task do not change
the result of the graph-based UMI collapsing algorithms, UMICollapse and UMI-tools
(Smith, Heger & Sudbery, 2017) should output the exact same results. In practice, the
only difference between the two tools’ results is the UMI that is chosen to be outputted
when there are ties in the UMI frequencies of multiple UMIs. The UMI that is selected is
not well-defined for UMI-tools (Smith, Heger & Sudbery, 2017) and UMICollapse, so an
arbitrary UMI may be chosen. However, this rarely occurs in the two deduplication tasks
that we evaluate.

DISCUSSION
The data structures we examine all run significantly faster than the naive O(N 2) method.
The n-grams BK-trees data structure performs very well even when the number of unique
UMIs, the UMI length, and the number of edits increases. In some cases, it is almost 100
times faster than the naive method. As the number of unique UMIs increase, methods like
combo, subsequences, and trie, which rely on generating nearby UMIs within a certain edit
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distance, begin to catch up to the n-gramsBK-treesmethod.However, thosemethods do not
scale well as the UMI lengths and the number of edits increases. The Fenwick BK-trees data
structure does not perform well due to the overhead of maintaining a Fenwick tree across
multiple BK-trees, and the n-grams BK-trees method represents a direct improvement over
the BK-tree data structure and the n-grams data structure, individually. Therefore, the data
structure that performs well in all situations is the n-grams BK-trees method.

In terms of theoretical memory usage, the subsequences method and the trie data
structure are among the most memory inefficient. Many subsequences must be generated
and stored in the subsequence method (e.g., with 167,578 unique UMIs, 1,471,978 unique
subsequences are stored in a hash table), which takes up a significant portion of memory.
The trie method requires many nodes to represent the UMI sequences (e.g., with 167,578
unique UMIs, 511,634 trie nodes must be created), which results in a significant memory
overhead to store each trie node and the pointers to its children in memory.

From the experiment with over 108 input reads spread out across all alignment
coordinates, we find that bothUMI-tools (Smith, Heger & Sudbery, 2017) andUMICollapse
are capable of handling extremely large input datasets. UMICollapse is consistently around
3 times faster than UMI-tools (Smith, Heger & Sudbery, 2017) as the number of input
UMIs increases across all alignment positions. Since there is only a constant factor speed
difference as the number of UMIs increases across all alignment coordinates, this difference
can bemostly attributed to the differing programming languages and other implementation
details. Therefore, the speed benefit of using a complex data structure like n-grams BK-
trees is not present in this task. The algorithms we discuss are for increasing the speed of
deduplication as the number of unique UMIs increase at one alignment location, so this
experiment is a poor evaluation task for our tool.

As the number of unique UMIs at one single alignment position increases to over 106,
UMI-tools (Smith, Heger & Sudbery, 2017) takes more than 20 min, while UMICollapse
finishes in only 26 s. The speed difference here is orders of magnitude larger than the 3
times improvement in the previous experiment with UMI sequences distributed across
multiple alignment positions. Thismeans that the bottleneck in the deduplication process of
UMI-tools (Smith, Heger & Sudbery, 2017) is indeed within the edit distance computations
across pairs of UMI sequences, and UMICollapse is much more efficient in this aspect.
We expect UMICollapse to be much faster than other tools that must compute pairwise
(O(N 2)) UMI edit distances.

CONCLUSION
The UMI deduplication problem can be formulated in a manner that enables optimizations
to bemade. Instead of static pairwise edit distance computations, we formulate the problem
as a query problem on a dynamic graph that involves a common interface, and we show that
previous deduplication algorithms can be implemented with this interface no change to
their results. We also propose multiple data structures that implements this interface, and
we find that the n-grams BK-trees data structure is the most efficient through an empirical
evaluation with simulated datasets. We implement our algorithms in a proof-of-concept
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tool called UMICollapse, and we find that it is indeed faster than the popular UMI-tools
(Smith, Heger & Sudbery, 2017) by a wide margin on large, simulated datasets.
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