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Phylogenetic estimation under the multispecies coalescent model (MSCM) assumes all
incongruence among loci is caused by incomplete lineage sorting. Therefore, applying the
MSCM to datasets that contain incongruence that is caused by other processes, such as
gene flow, can lead to biased phylogeny estimates. To identify possible bias when using
the MSCM, we present P2C2M.SNAPP. P2C2M.SNAPP is an R package that identifies model
violations using posterior predictive simulation. P2C2M.SNAPP uses the posterior
distribution of species trees output by the software package SNAPP to simulate posterior
predictive datasets under the MSCM, and then uses summary statistics to compare either
the empirical data or the posterior distribution to the posterior predictive distribution to
identify model violations. In simulation testing, P2C2M.SNAPP correctly classified up to
83% of datasets (depending on the summary statistic used) as to whether or not they
violated the MSCM model. P2C2M.SNAPP represents a user-friendly way for researchers to
perform posterior predictive model checks when using the popular SNAPP phylogenetic
estimation program. It is freely available as an R package, along with additional program
details and tutorials.
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18 Abstract

19 Phylogenetic estimation under the multispecies coalescent model (MSCM) assumes all 

20 incongruence among loci is caused by incomplete lineage sorting. Therefore, applying the 

21 MSCM to datasets that contain incongruence that is caused by other processes, such as gene 

22 flow, can lead to biased phylogeny estimates. To identify possible bias when using the MSCM, 

23 we present P2C2M.SNAPP. P2C2M.SNAPP is an R package that identifies model violations 

24 using posterior predictive simulation. P2C2M.SNAPP uses the posterior distribution of species 

25 trees output by the software package SNAPP to simulate posterior predictive datasets under the 

26 MSCM, and then uses summary statistics to compare either the empirical data or the posterior 

27 distribution to the posterior predictive distribution to identify model violations. In simulation 

28 testing, P2C2M.SNAPP correctly classified up to 83% of datasets (depending on the summary 

29 statistic used) as to whether or not they violated the MSCM model. P2C2M.SNAPP represents a 

30 user-friendly way for researchers to perform posterior predictive model checks when using the 

31 popular SNAPP phylogenetic estimation program. It is freely available as an R package, along 

32 with additional program details and tutorials.  

33
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39 Introduction

40 Alleles that are shared across taxa present a formidable challenge to phylogenetic inference.

41 Species tree inference methods were introduced in an attempt to infer phylogeny without the 

42 potentially confounding effects caused by ancestral alleles that were shared across OTUs 

43 (Maddison, 1997; Carstens & Knowles 2007). Since the biological mechanisms that lead to this 

44 process (i.e., incomplete lineage sorting) commonly occur at shallow levels of phylogenetic 

45 divergence, species trees have largely (but not exclusively; e.g., Prum et al., 2015) been applied 

46 near the species boundary, and often in clades where species limits are not entirely clear (Satler, 

47 Carstens & Hedin, 2013). Such applications of the species tree model make the implicit 

48 assumption that alleles shared across lineages result from incompletely sorted ancestral 

49 polymorphism, even though gene flow is possible in closely related taxa. While gene flow was 

50 once considered rare above the species level (at least in animals), recent investigations have 

51 suggested that it is more common than previously recognized (e.g., snowshoe hares: Melo-

52 Ferreira et al. (2014), chipmunks: Sullivan et al. (2014), bears: Kumar et al. (2017), and Myotis 

53 bats: Morales et al. (2017)). 

54

55 Given that gene flow has been shown to bias estimates of both topology and branch lengths when 

56 it is not accounted for in a phylogenetic analysis (Eckert & Carstens, 2008; Leache et al., 2013), 

57 evolutionary biologists should (at the least) consider the possibility that gene flow has interfered 

58 with phylogeny estimation, particularly when inferring phylogeny from closely related species 

59 where reproductive isolation may not be complete. One approach is to look for evidence of gene 

60 flow in the data, for example by searching for alleles that are shared across non-sister taxa 

61 because such alleles are more likely to result from gene flow than coalescent processes. 

62 However, this is likely to be a laborious process, particularly in genomic datasets, and gene flow 

63 can be easily missed in studies that do not analyze data from all possible 

64 hybridization/introgression events. It is considerably more efficient to utilize statistical methods, 

65 such as posterior predictive simulation, that seek to determine whether a given dataset violates 

66 the model assumptions of the phylogenetic analysis (e.g., Goldman, 1993; Reid et al., 2014).

67

68 Posterior predictive approaches have been developed for several types of phylogenetic models, 

69 including models of sequence evolution (Huelsenbeck et al., 2001; Brown, 2014b), species 

70 delimitation (Barley & Thomson, 2016; Barley, Brown & Thomson, 2018), and species tree 

71 estimation (Reid et al., 2014). The basic approach is to (i) draw parameter values from the 

72 posterior distribution, (ii) simulate new datasets using these parameter values under the model 

73 assumed by the analysis, (iii) analyze the simulated data to generate posterior predictive 

74 distributions, and (iv) calculate and compare summary statistics from either the empirical data or 

75 the posterior distribution to the posterior predictive distribution. Analytical models that represent 

76 a good fit for the empirical data should produce summary statistics values that fall within the 

77 distribution of values estimated under the correct model with posterior predictive datasets 

78 (Brown, 2014b). Recently, posterior predictive checks have been incorporated into an R package 
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79 (Posterior Predictive Checks of Coalescent Models (P2C2M): Gruenstaeudl et al., 2016) for the 

80 MSCM framework. P2C2M was designed to easily allow users to perform posterior predictive 

81 analyses, but the program uses the species tree inference package *BEAST which is intended for 

82 smaller, sub-genomic data sets (Heled & Drummond, 2009). Here, we expand P2C2M to the 

83 genomic era so that it can be used to conduct posterior predictive checks using single nucleotide 

84 polymorphisms (SNPs) in the SNAPP implementation of the MSCM (Bryant et al., 2012).

85

86 Materials & Methods

87 Pipeline

88 The posterior predictive simulation framework for SNAPP (P2C2M.SNAPP) has been 

89 implemented as an R package (R Core Team, 2018), with detailed program settings described in 

90 the package documentation and tutorial. P2C2M.SNAPP differs from the original P2C2M in the 

91 input datatype (sequence data in the original versus SNP data in the SNAPP version) and 

92 consequently the summary statistics used to compare empirical and posterior predictive datasets. 

93 User input to P2C2M.SNAPP includes the SNAPP .xml formatted input file, the posterior 

94 distribution of species trees and log file from a SNAPP analysis, and a metadata text file 

95 containing the number of SNPs used, an estimated mutation rate, and the number of samples per 

96 group. Importantly, P2C2M.SNAPP assumes users have properly performed SNAPP species tree 

97 estimation analysis, including selecting the proper priors for their data and study system and 

98 checking for Markov chain convergence. Because P2C2M.SNAPP relies on the posterior 

99 distribution of species trees, users should retain at least 100 trees in the posterior distribution to 

100 sample from. P2C2M.SNAPP proceeds as follows: (i) it samples, either uniformly or at random, 

101 a user-specified number of species trees from the posterior distribution, (ii) extracts taxonomic 

102 relationships and branch lengths from each tree, and (iii) for each tree sampled from the 

103 posterior, it simulates a posterior predictive dataset under the MSCM using fastsimcoal2, a user-

104 specified number of simulations (Excoffier et al., 2013) and the parameters extracted from the 

105 metadata text file (Figure 1). Posterior predictive datasets are converted to SNAPP .xml files, 

106 and users conduct SNAPP analyses on each posterior predictive dataset using the .xml file output 

107 by P2C2M.SNAPP. Prior distributions and Markov chain parameters for the posterior predictive 

108 SNAPP analyses are recycled from those used in the original SNAPP analysis in order to 

109 maintain consistency. Given the intense computational requirements of SNAPP, generation of 

110 the posterior predictive species tree distributions is best conducted using parallel computation. 

111 Example scripts for automating SNAPP analyses are included with the tutorial 

112 (http://www.github.com/P2C2M/P2C2M_SNAPP). The results of SNAPP analyses on the 

113 posterior predictive datasets (i.e., SNAPP .xml files, posterior species tree distributions, and log 

114 files) are subsequently used as input for the second stage of the P2C2M.SNAPP analysis, where 

115 summary statistics from the posterior and posterior predictive datasets are calculated and 

116 compared to identify model violations. 

117

118 Summary Statistics
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119 Generally, summary statistics used in posterior predictive checks fall into two categories: data-

120 based, which compare the empirical and posterior predictive datasets themselves, and inference-

121 based, which compare the inferences produced by analyzing the empirical and posterior 

122 predictive datasets (Brown, 2014a; Barley and Thomson, 2016). Inference-based statistics can 

123 provide more insight as to whether a model violation affects the end result (e.g., the estimated 

124 species tree), but can also be more computationally difficult because posterior predictive datasets 

125 need to be analyzed with the same methods as the posterior (i.e., species trees need to be 

126 estimated with SNAPP). In contrast, data-based statistics do not determine the effect a model 

127 violation has on the inference, but are usually computationally efficient. Both data-based and 

128 inference-based summary statistics were evaluated to determine which statistic identified model 

129 violations to the MSCM with the highest accuracy. Data-based statistics included several based 

130 on a fixation index (FST), and inference-based statistics included tree metrics based on Robinson-

131 Foulds or Kuhner-Felsenstein tree distances, and the mean and standard deviation of tree 

132 likelihoods. FST is a commonly used metric for measuring the amount of population structure, 

133 and the value ranges from 0 to 1, with populations becoming more structured as FST approaches 

134 1 (Wright, 1949). Therefore, lineages exchanging genes should exhibit lower FST values because 

135 they will share alleles. Pairwise FST was calculated across all loci in the KRIS package 

136 (Chaichoompu, 2018). FST summary statistics included mean FST, range of FST, and an FST outlier 

137 test. For the mean and range FST statistics, the summaries are calculated for each posterior 

138 predictive dataset and the empirical dataset. Similar to a two-tailed posterior predictive p-value 

139 (Brown, 2014a; Barley, Brown & Thomson, 2018), a p-value is calculated by counting the 

140 number of posterior predictive datasets with summary statistic values falling above and below 

141 the empirical value, multiplying the lesser of these values by two (to emulate a two-tail test), and 

142 then dividing by the total number of posterior predictive datasets. We consider p-values less than 

143  = 0.05 to indicate a model violation. The FST outlier test was conducted by calculating the 

144 average difference between empirical and simulated values for each pairwise comparison, and 

145 then conducting an outlier test using the function boxplot.stats in the grDevices package (R core 

146 team, 2018). Since we consider any detected outlier to indicate a model violation, the pairwise 

147 outliers identified by this approach can be used to identify lineages exchanging genes. 

148

149 Two tree distance metrics were also examined, one that considers topology only and one that 

150 considers topology and branch lengths. The Robinson-Foulds distance compares the topology 

151 between two phylogenetic trees, with values ranging from 0 (no topology difference) to 1 

152 (completely different topologies) (Robinson & Foulds, 1981). High rates of gene flow can 

153 influence topology estimation and result in an errant clade consisting of two lineages that are not 

154 closely related but that share alleles due to gene flow. However, it may be more likely that gene 

155 flow may mislead the estimation of branch lengths even if the underlying topology is correct. 

156 Therefore, a tree distance metric incorporating branch length differences as well as topology may 

157 prove to be a useful summary statistic for comparing empirical and posterior predictive datasets. 

158 One such metric is the Kuhner-Felsenstein distance, which also calculates values between 0 (no 
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159 difference between trees) and 1 (high difference between trees) (Kuhner & Felsenstein, 1994). 

160 Both tree distance metrics were calculated using the ape package (Paradis, Claude & Strimmer, 

161 2018). If posterior trees were estimated from a dataset that violates the MSCM model, we expect 

162 that these trees will have large tree distances when compared to posterior predictive trees 

163 simulated under the correct model (MSCM). Additionally, as all posterior trees reflect similar 

164 processes in the empirical dataset, we expect that tree distances among trees in the posterior 

165 under a model violation will be less than distances between the posterior and posterior predictive 

166 trees. Therefore, for the tree distance metrics, 1000 comparisons were performed between 

167 random trees sampled from the original SNAPP posterior distribution of species trees to create a 

168 null distribution. Then 100 random trees from the posterior predictive distribution were 

169 compared to the posterior tree they were simulated from, and this was repeated for each posterior 

170 predictive dataset. A p-value was calculated by counting the number of posterior predictive to 

171 posterior tree comparisons falling above the 95% null distribution (values below the 95% null 

172 distribution represent high similarity between posterior and posterior predictive datasets, and 

173 thus are not useful for detecting violations), and then dividing by the total number of 

174 comparisons. We consider p-values greater than  = 0.05 to indicate model violations. Finally, 

175 because it is likely more difficult to estimate trees with high probability under an incorrect 

176 model, we examined the mean and standard deviation of tree likelihoods as calculated from 

177 SNAPP output. The evaluation of the likelihood statistics follows that of the mean and range FST 

178 statistics, described above.

179

180 Testing

181 P2C2M.SNAPP was tested by simulating data under the MSCM and via a second simulation 

182 under the MSCM with gene flow (i.e., MSCM+m) (Figure 2). One hundred replicates were 

183 performed under each model. Note that the MSCM+m model is a clear violation of the 

184 underlying coalescent model that is incorporated into SNAPP because an appreciable portion of 

185 the shared polymorphism results from gene flow. All simulations were based on 2000 SNPs, 6 

186 species with two individuals sampled per species, an effective population size (Ne) of 100K 

187 individuals, and a symmetric topology with speciation event times of 5N, 10N, and 20N 

188 generations. The number of SNPs simulated is lower than many empirical data sets, but it allows 

189 SNAPP analyses to proceed in less time and should represent a conservative test of the ability of 

190 P2C2M.SNAPP to detect model violations because the performance of SNAPP generally 

191 improves with additional data (Bryant et al. 2012). The MSCM+m model was designed as a 

192 secondary contact scenario, with gene flow between two lineages starting at 2.5N generations in 

193 the past and continuing until the present. Both the species experiencing gene flow and the rate of 

194 gene flow were selected at random, with the rate of gene flow having a uniform prior distribution 

195 between 0.5 and 5 migrants per generation. Simulations were performed using fastsimcoal2 

196 (Excoffier et al., 2013) and simulated datasets were converted to SNAPP .xml files using custom 

197 Python scripts (http://www.github.com/P2C2M/P2C2M_SNAPP). SNAPP analyses were 

198 conducted using the following parameters: a gamma prior on the rate of species divergence 
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199 (lambda) under the Yule speciation prior with  = 2 and =200, a gamma rate prior on ancestral 

200 effective population sizes (theta), mutation rate of ==1.0, and a Markov chain of 1M steps 

201 with 100K burn-in steps and sampling every 1K steps. In order to evaluate the summary 

202 statistics, the number of correct inferences, false positives, and false negatives were calculated 

203 for each model (200 total) using the posterior and posterior predictive distributions from the 

204 SNAPP analyses. False positives are defined as datasets simulated under the MSCM that were 

205 indicated as model violations by P2C2M.SNAPP. Conversely, false negatives are defined as 

206 datasets simulated under the MSCM+m model that were not detected as model violations by 

207 P2C2M.SNAPP. Mathews Correlation Coefficient (MCC; Mathews, 1975) was also calculated 

208 for each summary statistic with the R package mltools (Gorman, 2018). The MCC takes into 

209 account false negatives and positives while measuring how well a binary classifier performs, in 

210 this case whether a summary statistic correctly classifies a dataset. The coefficient ranges from -

211 1 to 1 with -1 indicating the classifier is completely wrong and 1 indicating it is completely 

212 correct. Additionally, pairwise FST outliers were compared to the MSCM+m simulation 

213 parameters to assess if the statistic could identify the species exchanging genes to cause model 

214 violations. Finally, p-values for each simulation were plotted against gene flow to identify any 

215 trends between the level of gene flow and summary statistic performance.

216

217 Results

218 P2C2M.SNAPP requires about five minutes on an average laptop (2.6GHz Intel Core i5, 8GB 

219 RAM) to generate posterior predictive datasets at the beginning of the pipeline and to evaluate 

220 summary statistics in order to identify model violations at the end of the pipeline. However, the 

221 entire pipeline requires a considerable amount of time due to the demands of the SNAPP 

222 program itself. For example, each replicate of our simulation testing required 300-450 CPU 

223 hours on the Pitzer cluster (28 cores and 112GB RAM) at the Ohio Supercomputer Center (Ohio 

224 Supercomputer Center, 2018). While this is clearly not an analysis that users would likely 

225 conduct on a laptop computer, the time required for users to analyze their data using 

226 P2C2M.SNAPP is still likely to be less than the time required to collect the samples, generate the 

227 sequencing libraries, and conduct the bioinformatics.

228

229 There was a dramatic difference across summary statistics in the ability of P2C2M.SNAPP to 

230 identify model violations due to gene flow (Table 1). The mean and range of pairwise FST values 

231 correctly classified datasets in only 33% and 41% of simulations respectively (MCC equals -0.45 

232 and -0.32 respectively; Figure 2). Each of these statistics exhibited a large number of false 

233 positives in which a model violation was detected in a dataset that was simulated under the 

234 assumptions of the MSCM. While the pairwise FST outlier test classified 46% of datasets 

235 correctly, the majority of misclassifications were false negatives (MCC equals -0.17). 

236 Additionally, we examined the ability of the pairwise FST outlier test to identify the OTUs 

237 exchanging genes in the MSCM+m datasets. As the statistic only identified 3% of true model 

238 violations, there were very few datasets to test. The pairwise FST outlier test did not correctly 
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239 identify the OTUs exchanging genes in any of the datasets. Each tree statistic correctly classified 

240 only around half of the datasets, with a high number of false negatives when using the Robinson-

241 Foulds distance and a similar number of false positives when using the Kuhner-Felsenstein 

242 distance (MCC equals 0 for each). Similarly, evaluations by the mean tree likelihood statistic 

243 were split evenly between correct inferences and false positives (MCC equals -0.29). Our results 

244 identified one statistic that performed well. The standard deviation of tree likelihoods correctly 

245 classified 83% of simulated datasets, with 14% false negatives and 3% false positives (MCC 

246 equals 0.68). Only two summary statistics showed a trend between the rate of gene flow and the 

247 p-value of posterior predictive checks (Figure 3). For the range of pairwise FST and mean of tree 

248 likelihoods, p-values decreased as the rate of gene flow increased. 

249

250 Discussion

251 While it has been known for some time that model violations can degrade the accuracy of 

252 phylogenetic estimation (Huelsenbeck et al., 2001; Eckert & Carstens 2008, Leache et al., 2013; 

253 Brown, 2014a; Reid et al., 2014; Barley & Thomson, 2016; Barley, Brown & Thomson, 2018), 

254 few studies explore possible violations inherent in their datasets to the phylogenetic model used 

255 in the analysis (e.g. Morales et al., 2017; Diaz et al., 2018; Richards et al., 2018). Apart from 

256 the computational demands of the SNAPP analyses, P2C2M.SNAPP represents a user-friendly 

257 and reasonably accurate method for identifying violations of the MSCM. The package and 

258 tutorial, including examples for running analyses, are available on the P2C2M Github page 

259 (https://github.com/P2C2M/P2C2M_SNAPP). 

260

261 Our simulation testing indicates that the standard deviation of tree likelihoods is useful in 

262 identifying datasets that contain SNP patterns resulting from gene flow between lineages, a clear 

263 violation of SNAPP’s analytical model. This statistic is likely useful because datasets that violate 

264 the MSCM model will be more difficult to estimate and may exhibit posterior distributions with 

265 poor convergence. Methods examining the variance within and between posterior and posterior 

266 predictive datasets have previously proven useful for posterior predictive checks of Bayesian 

267 phylogenetic models (Gelfand and Ghosh, 1998; Lewis et al., 2013). Users of P2C2M.SNAPP 

268 should focus on the standard deviation of tree likelihoods when assessing their datasets. 

269 Although higher rates of gene flow should result in a more egregious model violation, it does not 

270 appear to be the case that model violations are easier to detect under scenarios with high rates of 

271 gene flow. Two summary statistics (range of pairwise FST, mean of tree likelihoods) exhibit an 

272 inverse correlation between gene flow and the resulting p-value, but both exhibited a high rate of 

273 false positives which makes them a poor choice for use in posterior predictive checks. While this 

274 relationship does not hold for the standard deviation of tree likelihoods, the statistic is able to 

275 detect model violations equally well across a range of migration rates.

276

277 Several statistics were much less useful than we expected them to be. Although the tree distance 

278 metrics are conceptually simple, their poor performance may be explained by the reliance of 
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279 posterior predictive simulation on the empirical phylogeny. Because the posterior predictive data 

280 sets are simulated from the empirical phylogeny estimates, inaccuracies in topology and branch 

281 lengths of the empirical phylogeny due to gene flow are translated into inaccurate topology and 

282 divergence times in the posterior predictive simulations. The result is similar, but inaccurate 

283 phylogeny estimates for each data type. FST is a popular metric in population genetics for 

284 examining population structure and gene flow, but may not be applicable to phylogenetic 

285 analyses due to fixed differences among lineages. It is possible that including more samples per 

286 lineage may increase the usefulness of FST because more shared polymorphism may be evident, 

287 but this may be unfeasible due to the computational requirements of SNAPP. Summary statistics 

288 such as FST  are appealing because they can be computed from the posterior predictive datasets 

289 without additional SNAPP runs, but many existing statistics were developed for population 

290 genetic applications. Summary statistics such as the number of shared or private alleles may be 

291 useful. Additionally, the calculation of effect sizes could be beneficial to users because it 

292 provides information regarding the degree to which model violation has influenced their results 

293 Brown, 2014a). Our simulation design investigated a relatively recent diversification scenario 

294 because the presence of gene flow is likely to occur when lineages have not become completely 

295 reproductively isolated. However, if gene flow occurs in older systems, it should presumably be 

296 easier to differentiate from incompletely sorted ancestral polymorphism and thus more easily 

297 recognized. Finally, other processes, such as natural selection, also violate the MSCM model, 

298 and these additional model violations may also potentially be detectable using the posterior 

299 predictive framework implemented in P2C2M.SNAPP, but further research is necessary to 

300 identify summary statistics that can detect these violations. 

301

302 While the detection of a model violation can have implications for the interpretation of a 

303 phylogeny estimate, a model violation does not render the data useless. Minimally, researchers 

304 should acknowledge the model violation and temper their interpretation of the patterns evident in 

305 the phylogeny. Specifically, the possibility that a model violation may have confounded topology 

306 estimates or, more likely, biased branch length/divergence time estimates should be addressed. 

307 More preferably, researchers should conduct additional analyses to examine the cause of the 

308 model violation, as such violations indicate interesting evolutionary processes not accounted for 

309 by the MSCM model. In the case of gene flow, model violations can indicate unknown 

310 hybridization among OTUs, and lead to the collection of population-level data that can be 

311 analyzed using methods such as Migrate-n (Beerli & Felsenstein, 2001) or Bayesass (Wilson & 

312 Rannala, 2003). Finally, many recently developed models attempt to infer gene flow and 

313 phylogeny under the MSCM for small numbers of lineages (e.g. IMa3; Hey et al., 2018, 

314 PhyloNet; Wen et al., 2016, SpeciesNetwork; Zhang et al., 2018). Model violations identified by 

315 P2C2M.SNAPP are likely to point researchers to additional analyses that will enable them to 

316 understand the history of their focal system.

317

318 Conclusions
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319 Here we present a new R package for assessing model violations in the species tree estimation 

320 program SNAPP. The package uses posterior predictive simulations to identify model violations, 

321 and is successful in testing with simulated datasets. P2C2M.SNAPP is the newest addition to a 

322 small suite of user-friendly programs for conducting posterior predictive checks (Gruenstaeudl et 

323 al., 2016). Due to the proven benefit of model checking for phylogenetic analyses, we 

324 recommend researchers make posterior predictive checks a routine step in estimating 

325 phylogenies.

326
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Figure 1
Workflow of the P2C2M.SNAPP pipeline.

Blue arrows represent the path of the data. Steps outlined in blue are those performed by the
user and steps outlined in red are performed by P2C2M.SNAPP. Workflow proceeds from the
top of the figure.
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Figure 2
Models used in simulation testing.

A) MSCM model used for simulation testing. B) Example of the MSCM+m model that includes
gene flow violating the MSCM model implemented in SNAPP. The amount of gene flow and
taxa exchanging genes were randomly selected for each simulation replicate.
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Figure 3
Correlations between the level of gene flow and the ability of each summary statistic to
identify model violations.

The p-value for each MSCM+m simulation is plotted against the amount of gene flow
simulated with that dataset. FSTA: average pairwise FST, FSTR: range of pairwise FST, KF:

Kuhner-Felsenstein distance, MLM: Mean of the maximum likelihood of posterior trees, MLSD:
standard deviation of the maximum likelihood of posterior trees, RF: Robinson-Foulds
distance.
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Table 1(on next page)

Results of Simulation Testing.

Results include all simulations with both the MSCM and MSCM+m models. False positives are
datasets simulated under the MSCM model which P2C2M.SNAPP classified as a model
violation. False negatives are datatsets simulated under the MSCM+m model that
P2C2M.SNAPP classified as not violating the model implemented in SNAPP.
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Statistic
True 

Positives
True 

Negatives
False 

Positives
False 

Negatives
Matthew’s Correlation 

Coefficient (MCC)

Average Pairwise 
FST (FSTA)

66 0 100 34 -0.45

Range of Pairwise 
FST (FSTR)

81 0 100 19 -0.32

FST Outlier Test 
(PFST)

3 88 12 97 -0.17

Kuhner-Felsenstein 
Distance (KF)

100 0 100 0 0.00

Robinson-Foulds 
Distance (RF)

0 100 0 100 0.00

Mean of Maximum 
Likelihood (MLM)

84 0 100 16 -0.29

Standard Deviation 

of Maximum 

Likelihood
(MLSD)

71 95 5 29 0.68
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