New mammalian and avian records from the late Eocene La

2 Meseta Formation of Seymour Island, Antarctica

- 3 Sarah N. Davis, ¹ Christopher R. Torres, ^{1,2} Grace M. Musser, ¹ James V. Proffitt, ^{1,3} Nicholas M.
- 4 A. Crouch, ¹ Ernest L. Lundelius, ¹ Matthew C. Lamanna, ⁴ and Julia A. Clarke¹

5

- 6 1. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas
- 7 at Austin, Austin, Texas 78712, USA;
- 8 2. Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712,
- 9 USA;
- 10 3. School of Medicine, The University of Missouri, Columbia, Missouri 65212, USA;
- 4. Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes
- 12 Avenue, Pittsburgh, Pennsylvania 15213, USA

13

- 14 Corresponding Author:
- 15 Sarah Davis¹
- 16 Department of Geological Sciences, Jackson School of Geosciences, The University of Texas
- 17 at Austin, Austin, Texas 78712, USA
- 18 Email address: sdavis6@utexas.edu

19

20

21	Abstract
22	The middle-late Eocene of Antarctica was characterized by dramatic change as the continent
23	became isolated from the other southern landmasses and the Antarctic Circumpolar Current
24	formed. These events were crucial to the formation of the permanent Antarctic ice cap, affecting
25	both regional and global climate change. Our best insight into how life in the high latitudes
26	responded to this climatic shift is provided by the fossil record from Seymour Island, near the
27	eastern coast of the Antarctic Peninsula. While extensive collections have been made from the
28	La Meseta Formation of this island, few avian taxa other than penguins have been described and
29	postcranial mammalian remains have been scarce. Here, we report new fossils from Seymour
30	Island collected by the Antarctic Peninsula Paleontology Project. These include a mammalian
31	metapodial referred to Xenarthra and avian material including a partial tarsometatarsus referred
32	to Gruiformes (cranes, rails, and allies). Penguin fossils (Sphenisciformes) continue to be most
33	abundant in new collections from these deposits. We report several penguin remains including a
34	large spear-like mandible preserving the symphysis, a nearly complete tarsometatarsus with
35	similarities to the large penguin clade <i>Palaeeudyptes</i> but possibly representing a new species,
36	and two small partial tarsometatarsi similar to those of Delphinornis. These finds expand our
37	view of Eocene vertebrate faunas on Antarctica. Specifically, the new remains referred to
38	Gruiformes and Xenarthra provide support for previously proposed, but contentious, earliest
39	occurrence records of these clades on the continent.
40	
41	
42	
43	

Commenté [EA1]: necessary?

Commenté [EA2]: see my main concern about that

Introduction

4445

46

47

48

49

50

5152

53

54

55

56

57

58

59

60

61

62

63

64

65

66

The Southern Hemisphere biota has been profoundly influenced by Mesozoic-Cenozoic continental breakup and climatic change. Before its fragmentation, the supercontinent Gondwana facilitated dispersal of terrestrial organisms between now-separated southern landmasses (Keast, 1972; Cracraft, 1973; Ali and Krause, 2011; Claramunt and Cracraft, 2015). Early discoveries suggest that Antarctica was central to this pattern of terrestrial movement, acting as a bridge between what is now South America and Australia (Woodburne and Zinsmeister, 1984; Zinsmeister, 1986). This widespread dispersal ended with the final breakup of Gondwana (Reguero et al., 2014, and reviewed by Torsvik and Cocks, 2013). Through the last part of this breakup, the Antarctic climate shifted from being warm and seasonally wet to increased periods of ice cover by the early to middle Eocene (Poole et al., 2001; Ivany et al., 2011; Jacques et al., 2014); by the earliest Oligocene (~33.9 Ma) Antarctica experienced complete glaciation (Zachos et al., 2001; Birkenmajer et al., 2004; Ivany et al., 2006; Barker et al., 2007). Insights into how the Antarctic biota was shaped by tectonic and climatic shifts have come from the Upper upper Eocene La Meseta Formation on Seymour Island (Marambio Island), the best-studied fossil vertebrate fauna from Antarctica (e.g., Reguero et al., 2002; 2014). This assemblage has been proposed to most closely resemble contemporaneous faunas from Patagonia (Reguero et al., 2002) which were separated from what is now the Antarctic Peninsula by the flooding of the Weddellian Isthmus at the end of the Paleocene (Eagles and Jokat, 2014; Reguero et al., 2014). The fossil record of the La Meseta Formation is famously dominated by stem penguins, including some of the tallest penguins that ever lived (Tambussi et al., 2006; Jadwiszczak, 2006; Tambussi and Acosta Hospitaleche, 2007; Jadwiszczak et al., 2013; Acosta Hospitaleche and Reguero, 2014; Jadwiszczak and Mörs, 2019). The non-penguin vertebrate

67	fossil record mostly comprises isolated teeth and bones representing an array of marsupial,
68	gondwanathere, ungulate, cetacean, and other eutherian mammals (see reviews by Marenssi et
69	al., 1994; Reguero et al., 2002; Reguero and Gasparini, 2006; Case, 2006; Buono et al. 2016;
70	Gelfo et al. 2017) as well as non-penguin birds (e.g., Tambussi and Acosta Hospitaleche, 2007;
71	Jadwiszczak et al., 2008; Tambussi and Degrange, 2013; Acosta-Hostpitaleche and Gelfo, 2017)
72	Here we report additional mammalian and avian specimens recovered from Antarctica by the
73	2016 Antarctic Paleontology Project (AP3), including gruoid and xenarthran fossils, and discuss
74	their biogeographic implications.

75

76

89

Geologic setting

77 The fossils here described were collected from the Upper upper Eocene Submeseta 78 Allomember (Telm 6/7) of the La Meseta Formation on Seymour Island (Fig. 1). This island is located approximately 100 km east of the Antarctic Peninsula in the James Ross Basin (Marenssi 79 et al., 2002) and contains Upper Cretaceous and Paleogene deposits represented by the Whisky 80 81 Bay (Albanian to Turonian), Hidden Lake (Coniacian), Santa Marta (Santonian to Campanian), 82 Snow Hill Island (Campanian to Maastrichtian), López de Bertodano (Maastrichtian to Danian), 83 Sobral (Danian), Cross Valley (upper Paleocene), and La Meseta (Eocene) Formations (Bowman 84 et al., 2015). 85 The Submeseta Allomember is a 140-meter-thick level representing the latest Eocene 86 (Priabonian) between 34.96 and 35.13 Ma (Marenssi et al., 1998; Marenssi, 2006). This unit is 87 composed predominantly of fine sandstones and mudstones from a shallow marine environment, 88 but may have experienced a sea level rise towards the top of the section (Marenssi et al., 2002;

Marenssi, 2006). Fossils were surface collected from two locations within the unit at the same

Commenté [EA3]: sentence grammatically strange to me. What has experienced a sea level rise? You mean that the unit reflects a such a rise, right?

level on the northeastern section of the island (Fig. 1). The first site is located at S64°14.6, W56°36.0 and the second at S64°13.9, W56°39.5. Institutional Abbreviations—FMNH, Field Museum of Natural History, Chicago, Illinois, USA; IB/P/B, Andrzej Myrcha University Museum of Nature, Białystok, Poland; MLP, Museo de La Plata, La Plata, Buenos Aires Province, Argentina; TMM, Jackson School of Geosciences Vertebrate Paleontology Laboratory, Austin, Texas, USA Systematic Paleontology MAMMALIA Linnaeus, 1758 EUTHERIA Gill, 1872 XENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene. Description —TMM 44190-1 is weathered, missing its distal epiphysis, It has a
Institutional Abbreviations—FMNH, Field Museum of Natural History, Chicago, Illinois, USA; IB/P/B, Andrzej Myrcha University Museum of Nature, Białystok, Poland; MLP, Museo de La Plata, La Plata, Buenos Aires Province, Argentina; TMM, Jackson School of Geosciences Vertebrate Paleontology Laboratory, Austin, Texas, USA Systematic Paleontology MAMMALIA Linnaeus, 1758 EUTHERIA Gill, 1872 XENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Illinois, USA; IB/P/B, Andrzej Myrcha University Museum of Nature, Białystok, Poland; MLP, Museo de La Plata, La Plata, Buenos Aires Province, Argentina; TMM, Jackson School of Geosciences Vertebrate Paleontology Laboratory, Austin, Texas, USA Systematic Paleontology MAMMALIA Linnaeus, 1758 EUTHERIA Gill, 1872 XENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Museo de La Plata, La Plata, Buenos Aires Province, Argentina; TMM, Jackson School of Geosciences Vertebrate Paleontology Laboratory, Austin, Texas, USA Systematic Paleontology MAMMALIA Linnaeus, 1758 EUTHERIA Gill, 1872 XENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Geosciences Vertebrate Paleontology Laboratory, Austin, Texas, USA MAMMALIA Linnaeus, 1758 EUTHERIA Gill, 1872 XENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
96 97 Systematic Paleontology 98 99 MAMMALIA Linnaeus, 1758 00 EUTHERIA Gill, 1872 01 XENARTHRA Cope, 1889 02 PILOSA Flower, 1883 03 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 04 Gen. et sp. indet. 05 (Fig. 2, Supplemental Fig. 1) 06 07 Material – TMM 44190-1, left metacarpal II. 08 Locality – Seymour Island, Antarctic Peninsula. 09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
97 Systematic Paleontology 98 99 MAMMALIA Linnaeus, 1758 00 EUTHERIA Gill, 1872 01 XENARTHRA Cope, 1889 02 PILOSA Flower, 1883 03 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 04 Gen. et sp. indet. 05 (Fig. 2, Supplemental Fig. 1) 06 07 Material – TMM 44190-1, left metacarpal II. 08 Locality – Seymour Island, Antarctic Peninsula. 09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
98 99 MAMMALIA Linnaeus, 1758 00 EUTHERIA Gill, 1872 01 XENARTHRA Cope, 1889 02 PILOSA Flower, 1883 03 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 04 Gen. et sp. indet. 05 (Fig. 2, Supplemental Fig. 1) 06 07 Material – TMM 44190-1, left metacarpal II. 08 Locality – Seymour Island, Antarctic Peninsula. 09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
99 MAMMALIA Linnaeus, 1758 60 EUTHERIA Gill, 1872 61 XENARTHRA Cope, 1889 62 PILOSA Flower, 1883 63 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 64 Gen. et sp. indet. 65 (Fig. 2, Supplemental Fig. 1) 66 67 Material – TMM 44190-1, left metacarpal II. 68 Locality – Seymour Island, Antarctic Peninsula. 69 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
DEUTHERIA Gill, 1872 XENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
NENARTHRA Cope, 1889 PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
PILOSA Flower, 1883 FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001 Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Gen. et sp. indet. (Fig. 2, Supplemental Fig. 1) Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
05 (Fig. 2, Supplemental Fig. 1) 06 07 Material – TMM 44190-1, left metacarpal II. 08 Locality – Seymour Island, Antarctic Peninsula. 09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
06 07 Material – TMM 44190-1, left metacarpal II. 08 Locality – Seymour Island, Antarctic Peninsula. 09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
 Material – TMM 44190-1, left metacarpal II. Locality – Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
08 Locality – Seymour Island, Antarctic Peninsula. 09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
09 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
10 Description —TMM 44190-1 is weathered, missing its distal epiphysis. It has a Commenté [EA4]
maximum proximodistal length of 33 mm as preserved and a maximum mediolateral width of 21
mm at both the proximal and distal ends. In medial view, the articular facet for the metacarpal———————————————————————————————————

carpal complex is sharply-defined, forming the proximal part of the palmar margin and projecting well-palmarly of the rest of this margin (Fig. 2A). The remainder of the medial face is marked by two rugosities: one at the proximopalmar part and the other across the entire distal half (Fig. 2A). These rugosities are separated by a smooth sulcus, resulting in a notched medial margin in dorsal/plantar-palmar views (Fig. 2C-D). In lateral view, the articular facet for metacarpal III is rugose and worn (Fig. 2B). Due to the bone being hourglass-shaped in medial and lateral views (Fig. 2A-B) but sub-rectangular in dorsal and palmar views (Fig. 2C-D), the latter faces are broadly concave and saddle-shaped. [The articular face for the trapezoid earpal-is triangular with sharply-defined medial and dorsal margins (Fig. 2E).

Commenté [EA6]: see my main comment about this.

Comparisons —TMM 44190-1 is short and broad with a well-defined articular surface for the metacarpal-carpal complex. TMM 44190-1 is morphologically most consistent with those of Xenarthra (anteaters, armadillos, sloths), especially sloths (Folivora; see De Iuliis and Cartelle, 1999: figs. 6 and 7). The overall proportions of the metacarpal very closely resemble those of adult specimens of the Miocene sloth taxa *Megalonyx* spp. (TMM 30967-1845) and *Hapalops* spp. (Stock, 1925: fig. 23), though due to the worn nature of the fossil we cannot rule out the possibility of belonging to a juvenile. TMM 44190-1 is more robust than the metacarpal II of other xenarthrans such as *Thalassocnus* (Amson et al., 2015) and *Mionothropus cartellei* (De Iuliis et al., 2011: fig. 11), but closer to the proportions of Pleistocene ground-dwelling taxa such as *Megatherium urbinai* (Pujos and Salas, 2004). The trapezoid facet is sub-planar, similar to that of *Scelidotherium*, *Pseudolestodon hexaspondylus*, and *Simomylodon uccasamamensis* (Haro et al., 2017: character 334). The articular facet for the metacarpal-carpal complex does not extend distally to the midpoint of the shaft as in more recent forms such as *Hapalops* (Miocene) and *Nothrotheriopsum* (Pleistocene, Stock, 1925). It is unclear if the rugose surface texture along

Commenté [EA7]: Megalonyx is not only Miocene of age (actually mostly Plio-Pleistocene)...please correct

Commenté [EA8]: taxonomy has changes since.

136	the medial face is consistent with subadult status or with a closely-appressed digit I (as in for	
137	example Mionothropus; De Iuliis et al., 2011). The width of the new metacarpal relative to	
138	dorsopalmar length appears unusual for previously-reported Paleogene sloth material (reviewed	
139	in Amson et al., 2017).	
140	The majority of mammal fossils from the Eocene of Seymour Island comprise teeth of	
141	Astrapotheria (Bond et al., 2011), Gondwanatheria (Goin et al., 2006; Gelfo et al., 2015), and	
142	Litopterna (Bond et al., 2006; Gelfo et al., 2015)The metacarpals of these clades from the	
143	South American record, such as they are known, are markedly different from the stocky, broad	
144	morphology of TMM 44190-1.	
145		
146	AVES Linnaeus, 1758	
147	NEOGNATHAE Pycraft, 1900	
148	GRUIFORMES Bonaparte, 1854 sensu Hackett et al., 2008	
149	?GRUOIDEA Vigors, 1825 sensu Clarke et al., 2005	
150	Gen. et sp. indet.	
151	(Fig. 3)	
152		
153	Material – TMM 44189-2, distal end of left tarsometatarsus.	
154	Locality - Seymour Island, Antarctic Peninsula.	
155	Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.	
156	Description — TMM 44189-2 preserves the bases of trochleae II-IV as well as the dorsa	
157	and plantar openings of the distal vascular foramen. The maximum mediolateral width as	
158	preserved is 25 mm (Fig. 3). The distal vascular foramen is proximodistally elongate in dorsal	

159

160

161

162

163

164

165

166167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

and plantar views (Fig. 3A-B), and the dorsal opening of the foramen is set in a deep sulcus (Fig. 3A). The plantar opening of the foramen is slightly lateral to and near the midline and is positioned distal to the juncture of trochleae II and III (Fig. 3B). The fossa for the m. supratrochlearis plantaris is shallow (Fig. 3B). Most of trochlea II is missing but appears to lack a well-defined plantar crest extending proximally from the ala of the trochlea (Fig. 3B). In distal view, trochlea II is plantarly deflected, and trochleae III and IV are widely spaced (Fig. 3E). Comparison — A portion of a tarsometatarsus (MLP 90-I-20-9) recovered from Seymour Island was previously figured as gruiform but not described (Tambussi and Degrange, 2013: fig. 6.1g). This specimen comprises a distal diaphysis that is broken proximal to the trochleae, of which only the proximal-most part of trochlea IV is preserved. Despite the partial preservation, this fossil does not clearly show the splayed trochlear arrangement present in extant Gruoidea (cranes, trumpeters and limpkins) and in TMM 44189-2. The lack of measurements or description for MLP 90-I-20-9 make comparisons with the new fossil difficult, but as figured it appears that this fossil is larger than TMM 44189-2. Further evaluation is needed to determine the exact relationship between the two fossils, but TMM 44189-2 exhibits a suite of character states that allows for a more detailed assessment. TMM 44189-2 exhibits a combination of character states most similar to those observed in Gruiformes (cranes, rails and allies), including: 1) trochleae III and IV projecting well distal of II; 2) plantar deflection of trochlea II (as inferred from the base and preserved ala); 3) trochlea III positioned dorsal to trochlea IV in distal view; 4) dorsoplantar flattening and mediolateral broadening of the supratrochlear region; 5) position of the distal vascular foramen near the midline and away from the lateral margin in plantar view; and 6) wide spacing of trochlea III and

IV. Within Gruiformes, TMM 44189-2 is more similar to Gruoidea than Ralloidea (rails, finfoots

and flufftails) based on the following characteristics: 1) trochlea II is not as plantarly deflected in the new fossil as in ralloids; 2) trochlea II projects farther distally relative to III and IV in the new fossil than in ralloids; 3) the distal vascular foramen is located midway between the midline and the lateral margin in plantar view, unlike in ralloids where it is located on the midline; 4) the supratrochlear region of the new fossil is mediolaterally broader and trochleae II and IV are more widely spaced than in ralloids; 5) the distal margin of the distal vascular foramen is in line with the proximal extent of trochlea III in dorsal view, unlike in ralloids; 6) the distal vascular foramen is located closer to the intertrochlear incisure in plantar view than in ralloids; and 7) in dorsal view, the proximal extents of trochlea III and IV are subequal, whereas IV is proximal to III in ralloids.

The morphology of TMM 44189-2 is not unambiguously consistent with any particular gruoid subclade. Trochlea II is not as plantarly deflected as in Gruidae (cranes) or *Aramus guarauna* (limpkin) and is more like the condition observed in Psophiidae (trumpeters). As in *A. guarana* and Gruidae, trochlea III is the most dorsally positioned trochlea. There is a shallow depression at the plantar base of trochlea IV along the beginning of an ala that is most like that of *B. pavonica* and *G. canadensis* among compared Gruiformes. However, the trochlear bases of TMM 44189-2 are not as dorsoventrally thick as those of *A. guarana* and Gruidae and are more like those of *Psophia viridis*. The distal vascular foramen of TMM 44189-2 is ovoid in plantar view, with the long axis at an oblique angle to the long axis of the shaft, as in Gruidae but unlike *A. guarauna* and Psophiidae. In dorsal view, the distal vascular foramen is set in a broad, shallow sulcus as in *B. pavonica* and Psophiidae; by contrast, this sulcus is deep and sharply defined in Gruoidea. The fossil lacks the sharp plantar crest extending proximally from the ala of trochlea II observed in Gruoidea. A marked, circular depression is located between trochleae II and III, and

205 appears to be most like the condition in Psophiidae, A. guarana, and B. pavonica, although the 206 observed depth may be an artifact of preservation. 207 208 SPHENISCIFORMES Sharpe, 1891 sensu Clarke et al., 2003 209 Gen. et sp. indet. A 210 (Fig. 4A-H) 211 212 Material – TMM 44189-1, left tarsometatarsus. 213 Locality - Seymour Island, Antarctic Peninsula. 214 Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene. 215 **Description** — TMM 44189-1 (Fig. 4 A-D) is missing its proximal end and trochlea IV. 216 It is the more complete example of the two tarsometatarsi (including TMM 44188-2, described 217 below) recovered by the 2016 AP3 expedition that represent a small-bodied penguin. The 218 specimen is similar in size to the tarsometatarsus of the extant Spheniscus humboldti (Humboldt 219 Penguin). The hypotarsal crests are not preserved; however, an abraded surface appears to mark 220 the former distal-most extent of the medial hypotarsal crest. The medial proximal vascular 221 foramen is positioned directly medial to the abraded surface that potentially corresponds to the 222 medial hypotarsal crest. 223 Comparison — TMM 44189-1 is referable to Sphenisciformes (penguins) based on its 224 overall proportions, morphology, and extreme osteosclerosis. The specimen possesses both 225 intertarsal grooves (Fig. 4A), unlike the much larger penguin tarsometatarsus described below 226 (TMM 44188-1). Although apparent, the medial intertarsal groove is shallower than that of all 227 comparable extant species. The lateral intertarsal groove is present and deep, similar to the

228	condition in extant species as well as the extinct taxa Delphinornis, Marambiornis, and	
229	Mesetaornis (Myrcha et al., 2002; Jadwiszczak and Mörs, 2019). The groove does not taper	
230	strongly distally as in Marambiornis and Mesetaornis. The trochlea of metatarsal II is positioned	
231	more medially than those of all comparable extant penguin species (Fig. 4A-B, D), resulting in a	
232	wide medial intertrochlear incisure that appears most similar to that of Delphinornis (Myrcha et	
233	al., 2002; Jadwiszczak and Mörs, 2019). A distal vascular foramen is present (Fig. 4A-B) as in	
234	taxa from the Paleocene of New Zealand, including Muriwaimanu, as well as the small Antarctic	
235	taxa Delphinornis, Marambiornis, and Mesetaornis (Myrcha et al., 2002; Chávez Hoffmeister,	
236	2014; Jadwiszczak, 2015; Jadwiszczak and Mörs, 2019). The distally-opening passage of the m.	
237	extensor brevis digiti IV is confluent with the distal vascular foramen (Fig. 4A), as in	
238	Delphinornis, Marambiornis, and Mesetaornis (Myrcha et al., 2002; Hoffmeister, 2014;	
239	Jadwiszczak, 2015; Jadwiszczak and Mörs, 2019). The plantar opening of the distal vascular	
240	foramen is more distally positioned (Fig. 4B) than in Marambiornis and Mesetaornis and is	
241	similar in morphology to that of <i>Delphinornis</i> (Myrcha et al., 2002; Jadwiszczak and Mörs,	
242	2019).	
243		
244	Material – TMM 44188-2, left tarsometatarsus.	
245	Locality - Seymour Island, Antarctic Peninsula.	
246	Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.	
247	Description — TMM 44188-2 (Fig. 4E-H) is missing the proximal end and all three	
248	trochleae. It is the less complete of the two 2016 specimens that represent a small penguin	
249	morphotype. It is comparable in size to TMM 44189-1 and identical to that specimen in all	
250	preserved morphologies.	

251	
252	Gen. et sp. indet. B
253	(Fig. 4I-L)
254	
255	Material – TMM 44188-1, left tarsometatarsus.
256	Locality - Seymour Island, Antarctic Peninsula.
257	Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
258	Description — TMM 44188-1 is a mostly complete tarsometatarsus that is missing
259	trochlea IV (Fig. 4I-L). It has a proximodistal length of 45 mm and proximal mediolateral width
260	of 39 mm. The medial and lateral proximal cotyla are separated dorsally by a pronounced
261	intercotylar eminence and plantarly by a planar intercotylar area. The medial proximal vascular
262	foramen is positioned just distal to the distal terminus of the medial hypotarsal crest, and is less
263	developed than the lateral proximal vascular foramen. A scar for the m. tibialis cranialis is
264	present on the dorsal face as a short ridge that extends distally from the proximal margin. The
265	new tarsometatarsus lacks an appreciable medial dorsal intertarsal sulcus but exhibits a lateral
266	sulcus.
267	Comparison — TMM 44188-1 most closely resembles the tarsometatarsus of the
268	contemporaneous Seymour Island penguin Palaeeudyptes gunnari based on the following
269	features: 1) a concave medial margin, 2) a medial proximal vascular foramen that is larger than
270	the lateral vascular foramen, and 2) a proximally-positioned scar for the m. tibialis cranialis. The
271	new specimen can be differentiated from the contemporaneous and similarly sized
272	Archaeospheniscus, known from Seymour Island and New Zealand, based on the lack of a
273	medial dorsal intertarsal sulcus and unequally sized proximal vascular foramina (Simpson, 1971;

274275

276

277

278

279

280

281

282283

284

285

286

287

288

289

290

291

292

293

294

295

Myrcha et al., 2002). The new specimen is also distinct from the contemporaneous Anthropornis, known from Seymour Island and New Zealand, in which the scar for the m. tibialis cranialis is positioned more distally and the medial proximal vascular foramen is larger than the lateral (Myrcha et al., 2002). TMM 44188-1 is significantly smaller than P. gunnari and may therefore represent a juvenile specimen of P. gunnari or a new species within Palaeeudyptes. Gen. et sp. indet. C (Fig. 4M-P) Material – TMM 44187-1, partial mandible with associated caudal fragments. Locality - Seymour Island, Antarctic Peninsula. Formation/Age – Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene. **Description** — TMM 44187-1 comprises the rostral end of a mandible that includes most of the symphyseal region, with the left mandibular ramus being more complete than the right (Fig. 4M-P). The rostralmost tip is missing. The preserved portion of the left ramus measures 171 mm in length and 7 mm in maximum width. An additional fragment of this ramus measures 81 mm in length, demonstrating that, when complete, the left mandibular ramus was at least 252 mm. However, the articular regions of the mandible are missing, indicating that the original length of the bone was even greater. The preserved portion of the symphysis measures 37 mm in length and 10 mm wide at its rostrocaudal midpoint. We estimate the length of the complete symphysis at 40 mm. The mandible is slender and pointed but sturdily constructed, and is excavated by vascular canals throughout much of its length. The tip of the mandible is straight,

and the rami meet the symphysis along a straight line rather than at an angle. Mandibular fossae are not preserved.

Comparison — TMM 44187-1 is larger and more robust than the more complete penguin mandibles previously described from Seymour Island (MLP 91-II-4-221, MLP 92-II-2-195, IB/P/B-0653; Jadwiszczak 2006; Acosta Hospitaleche and Haidr, 2011), which are more tapered towards the distal end and have thinner rami. However, the overall morphology of the symphysis is comparable to other Seymour Island fossils described despite differing in overall dimensions (MLP 96-I-6-48, MLP 78-X-26-144, IB/P/B-0617e; Jadwiszczak, 2006; Acosta Hospitaleche and Haidr, 2011; Jadwiszczak, 2011). The fossil MLP 96-I-6-48 has vascular pitting and a flattened dorsal surface similar to those seen on TMM 44187-1 (Acosta Hospitaleche and Haidr, 2011), and the pitting is consistent with the morphology of extant adult Aptenodytes forsteri (Emperor penguin; Sosa and Acosta Hospitaleche, 2018). The shape of the rami of MLP 96-I-6-48, MLP 78-X-26-144, and IB/P/B-167e are all similar to that of TMM 44187-1 (Acosta Hospitaleche and Haidr, 2011; Jadwiszczak, 2011). These fossils pertain to Paleogene penguins with spear- or dagger-like bills characteristic of stem species (Slack et al., 2006; Clarke et al., 2007; Clarke et al. 2010; Ksepka and Clarke, 2010; Jadwiszczak, 2011; Acosta Hospitaleche and Haidr 2012). Notably, the symphysis of TMM 44187-1 is longer than those described by Acosta Hospitaleche and Haidr (2011), and the preserved rami are also longer than those of previously reported spear-billed Antarctic penguins (Jadwiszczak, 2006; Haidr and Acosta Hospitaleche, 2011; Jadwiszczak, 2011). Due to these differences and the partial preservation, TMM 44187-1 is not considered referable to any known Eocene taxa at this time.

316317

318

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Discussion

319 Though recently collected Eocene material is still fragmentary, it provides additional 320 support for records of the presence of mammalian and avian taxa previously proposed from even 321 more fragmentary and controversial single elements. These new records are also consistent with 322 those expected for the Eocene of Antarctica given longstanding hypotheses of a biotic 323 connection between Antarctica and South America during the Paleogene as well as 324 penecontemporaneous fossil discoveries from Patagonia (see Reguero et al., 2002; 2014). The 325 Eocene mammalian record otherwise comprises gondwanatheres, marsupials, cetaceans, 'South 326 American native ungulates' (e.g., a litoptern, astrapotheres), and additionally, enigmatic 327 eutherians (Woodburne and Zinsmeister, 1984; Borsuk-Bialynicka, 1988; Case et al., 1988; 328 Bond et al., 1990; Hooker, 1992; Marenssi et al., 1994; Bargo and Reguero, 1998; Fostowicz-329 Frelik, 2003; Reguero and Gasparini, 2006; Case, 2006; Reguero et al., 2013; Gelfo et al., 2015; 330 Buono et al. 2016). Indeed, in addition to the described metacarpal, the 2016 AP3 expedition 331 recovered a vertebra and tooth consistent with referral to a basilosaurid archaeocete and a 332 previously described ungulate species, respectively. Although new collections improve our 333 understanding of biodiversity on Antarctica during the Eocene, they also highlight the need to 334 recover and describe more material to elucidate a nuanced understanding of biotic exchange 335 during this key time period. 336 Previous reports of xenarthrans from the Eocene of Seymour Island—based on a distal 337 phalanx and a tooth—were initially assigned to Tardigrada (= Folivora) (Marenssi et al., 1994; 338 Vizcaíno and Scillato-Yané, 1995), but were later questioned (Bargo and Reguero, 1998; 339 MacPhee and Reguero, 2010). The phalanx lacks formal description and has been reportedly lost, 340 precluding reevaluation, and was noted to be indistinguishable from the earliest known 341 Vermilingua (anteaters) fossil from Patagonia (Bargo and Reguero, 1998; MacPhee and

Commenté [EA9]: is that what is meant?

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

Reguero, 2010). The tooth was recently reassigned to Mammalia indet. (MacPhee and Reguero, 2010). Therefore, the newly described specimen is either further evidence, or new evidence, that Xenarthra was indeed present on Antarctica during the Eocene depending upon one's stance with reference to prior controversies. This record is consistent with the estimated timing of origin for Folivora by the Early Eocene, and of Xenarthra in the Paleocene (e.g., Presslee et al., 2019). Xenarthra is proposed to have originated in South America, and thus is plausibly anticipated in the Paleogene of Antarctica given inferred land connections between these continents during the early Cenozoic (Woodburne and Case, 1996; Delsuc et al., 2019; Presslee et al., 2019). The new record of Folivora extends the known Paleogene geographic range of Xenarthra into Antarctica. Xenarthran limb bones and osteoderms have been reported from the early Eocene (55-50 Ma) of Brazil (Gaudin and Croft, 2015; Superina and Loughry, 2015), but the earliest reported members of Folivora date to 31.5 Ma in Chile and Argentina (McKenna et al., 2006; Gaudin and Croft, 2015). The new material would indicate that this clade was also present in Antarctica by at least 35 Ma, four million years earlier. The paucity of other described Paleogene folivoran postcranial material (Amson et al., 2015) limits more nuanced analysis of the phylogenetic affinities and ecology of this individual. Antarctic bird fossils from non-penguins are rare, and only a few have been named as species. They account for less than half of known extinct avian species diversity on the continent (Tambussi and Acosta Hospitaleche, 2007), but comprise an even smaller fraction of unnamed material in collections. Therefore, the distal tarsometatarsus, although fragmentary, expands our understanding of Antarctic avian diversity during the late Eocene. A proposed gruiform from

Seymour Island was previously figured (Tambussi and Degrange, 2013: fig. 6.1g) but its relation

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

to the new fossil is difficult to assess. The new fossil exhibits preserved characters that allow for a more confident referral, providing new evidence for the presence of the clade in Antarctica.

Our understanding of the paleobiogeography of Gruoidea remains incomplete due to a near lack of known remains of Gruidae from the Paleogene of the Southern Hemisphere and of reported parts of stem Aramidae and Psophiidea from the Paleogene (Mayr, 2009; Mayr, 2017; Musser and Cracraft, 2019). Of these three clades, Gruidae has the most extensive fossil record, with Eocene fossils primarily restricted to the Northern Hemisphere (e.g. Wetmore, 1933, 1940; Cracraft 1969, 1973; Chandler and Wall, 2001; Clarke et al., 2005; Mayr, 2009; 2014; 2017). The new tarsometatarsus cannot confidently be referred to a subgroup within Gruoidea, and as such has different biogeographic implications depending on its affinities. If more closely related to Psophiidae or Aramidae, the new record suggests that these largely South American gruoid families were more broadly distributed at least as far back as the late Eocene and supports hypotheses of a distribution across Antarctic landmasses (Cracraft, 1982; Claramunt and Cracraft, 2015; Musser and Cracraft, 2019). If placed within Gruidae, the new tarsometatarsus could suggest that the gruid radiation may have been multi-directional; one radiation of cranes could have dispersed from North America to Eurasia via the Bering Land Bridge during the early Eocene and then dispersed towards west Eurasia over time (Claramunt and Cracraft, 2015), and another radiation could have arrived in Antarctica by the late Eocene via South America. However, more fossils are needed in order to gain a better understanding of the biogeography of this group and core-Gruiformes as a whole within the Southern Hemisphere.

The penguin mandible described here is the largest and most complete from a spear-billed penguin yet reported from the Eocene of Antarctica. Although fossil penguin cranial material is rare from Seymour Island, two beak morphotypes are known: long and narrow, spear-like shapes

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

(proposed to indicate a primarily piscivorous diet) and shorter, broad morphs (proposed to indicate feeding on small crustaceans; Ksepka and Clarke, 2010; Acosta Hospitaleche and Jadwiszczak, 2011; Haidr and Acosta Hospitaleche, 2013). The shape of the mandible is consistent with a spearbilled morphology seen in other Antarctic remains (Acosta Hospitaleche and Jadwiszczak, 2011) and similar to those of penecontemporaneous species from Peru (Perudyptes devriesi, mid-Eocene [Clarke et al., 2007]; Icadyptes salasi, mid- to late-Eocene [Clarke et al., 2007; Ksepka et al., 2008]) as well as Paleocene penguins from New Zealand (Muriwaimanu tuatahi; Sequiwaimanu rosieae: Slack et al., 2006; Ksepka and Clarke, 2010; Mayr et al., 2018). The spear-billed morphology is typically reported in stem species (Clarke et al., 2007; Ksepka and Clarke, 2010), a pattern the newly described mandible is consistent with. Measurements of the symphysis and estimates of mandible length indicate that the individual represented by the new mandible would have been larger than the older, New Zealand species Muriwaimanu tuatahi (Slack et al., 2006) and larger than other Eocene Antarctic spear-bills recovered (Acosta Hospitaleche and Jadwiszczak, 2011). However, the mandible does not reach the maximum mandibular length recorded for the South American Icadyptes salasi (Clarke et al., 2007), further supporting that a potential intermediate size class of these spear-billed taxa was present on Antarctica.

Penguins were diverse across the globe during the Eocene, with 14+ species described from Seymour Island alone (Jadwiszczak, 2006; Ksepka and Clarke, 2010; Acosta Hospitaleche, 2013 and references therein). The materials described here add to our understanding of this diversity with new material from a range of size classes: one large spear-billed taxon, one medium-sized taxon represented by a tarsometatarsus, and small taxa represented by two tarsometatarsi. It has been proposed that penguins were diverse in the mid- to late Eocene in part because of the increasing productivity in the southern oceans (Diester-Haass and Zahn, 1996;

10	Clarke et al. 2007; Haidr and Acosta Hospitaleche, 2012; Villa et al., 2014). The range of body
11	sizes and bill morphotypes observed have also been hypothesized to be the result of increased
12	interspecific competition and size-based resource partitioning (Ksepka et al., 2008; Ksepka and
13	Clarke, 2010; Haidr and Acosta Hospitaleche, 2012). The morphological diversity reported here
14	may lend further support to these hypotheses.
15	
16	Conclusions
17	New records from Antarctica expand our understanding of the biodiversity on the continent
18	during the Eocene and support previously controversial reports of Gruiformes and Xenarthra. A
19	metacarpal is proposed to possibly represent the first record of Folivora and lends support to
20	previously reported xenarthran materials that have been subsequently questioned or lost. The
21	new tarsometatarsus supports the presence of Gruiformes in Antarctica during the Eocene,
22	adding to our understanding of the avian fossil record of Seymour Island. Newly reported
23	penguin remains, including a spear-shaped mandible and three tarsometatarsi, add to the
24	diversity of penguins known from this time. The nature of the Antarctic fossil record is
25	characterized by isolated elements and is dominated by penguins, making new discoveries vital
26	to furthering our understanding diversity during a period of climate change and tectonic shifts.
27	While historically fragmentary, new material from Antarctica is needed to elucidate trends in
28	biodiversity and biotic exchange during a key episode of Earth's history.
29	
30	Acknowledgements
31	This project was supported by the National Science Foundation Office of Polar Programs (NSF
32	OPP ANT-1141820 to J. A. Clarke, ANT- 1142129 to M. Lamanna, ANT-1142102 to P.

433	O'Connor, and ANT-1142052 to R. MacPhee). We gratefully acknowledge the assistance of all
434	members of the Antarctic Peninsula Paleontology Project (antarcticdinos.org) participating in the
435	2016 field season. We are indebted to S. Shelley, J. Wible, E. Amson, R. MacPhee, A. Kramarz,
436	and M. Lorente for comments on the mammalian material. We thank M. Brown and C. Sagebiel
437	for curatorial assistance and specimen access, D. Wagner for fossil preparation, and P.
438	O'Connor, L. English and H. McDonald for discussion and comments that improved this
439	manuscript.

440	LITERATURE CITED	
441		
442	Acosta Hospitaleche, C. 2013. New crania from Seymour Island (Antarctica) shed light on	
443	anatomy of Eocene penguins. Polish Polar Research 34:397-412.	
444	Acosta Hospitaleche, C., and J. N. Gelfo. 2015. New Antarctic findings of Upper Cretaceous and	
445	lower Eocene loons (Aves: Gaviiformes). Annales de Paléontologie 101:315-324.	Commenté [EA10]: note discrepancy with previous ref
446	Acosta Hospitaleche, C., and J. N. Gelfo. 2017. Procellariiform remains and a new species from	
447	the latest Eocene of Antarctica. Historical Biology 29:755-769.	
448	Acosta Hospitaleche, C., and N. Haidr. 2011. Penguin cranial remains from the Eocene La	
449	Meseta Formation, Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic	
450	Science 23:369–378.	
451	Acosta Hospitaleche, C., and P. Jadwiszczak. 2011. Enigmatic morphological disparity in	
452	tarsometatarsi of giant penguins from the Eocene of Antarctica. Polish Polar Research	
453	32:175–180.	
454	Acosta Hospitaleche, C., and M. Reguero. 2014. Palaeeudyptes klekowskii, the best-preserved	
455	penguin skeleton from the Eocene-Oligocene of Antarctica: taxonomic and evolutionary	
456	remarks. Geobios 47:77–85.	
457	Ali, J. R., and D. W. Krause. 2011. Late Cretaceous bioconnections between Indo-Madagascar	
458	and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. Journal of	
459	Biogeography 38:1855–1872.	
460	Amson, E., C. de Muizon, and T.J. Gaudin. 2017. A reappraisal of the phylogeny of the	

161	Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the
162	Thalassocninae, the marine sloths. Zoological Journal of the Linnean Society 179:217-
163	236.
164	Amson, E., C. Argot, H.G. McDonald, and C. de Muizon. 2015. Osteology and functional
165	morphology of the forelimb of the marine sloth <i>Thalassocnus</i> (Mammalia, Tardigrada).
166	Journal of Mammalian Evolution 22:169–242.
167	Bargo, M. S., and M. A. Reguero. 1998. Annotated catalogue of the fossil vertebrates from
168	Antarctica housed in the Museo de La Plata. I. Birds and land mammals from La Meseta
169	Formation (Eocene-? early Oligocene); pp. 211-221, in S. Casadio, ed. Paleógeno de
170	América del Sur y de la Península Antártica, vol. 5. Asociación Paleontológica
1 71	Argentina, Publicación Especial.
172	Barker, P. F., B. Diekmann, and C. Escutia. 2007. Onset of Cenozoic Antarctic glaciation.
173	Deep-Sea Research II 54:2293–2307.
174	Birkenmajer, K., A. Gadźicki, K. Krajewski, A. Przybycin, A. Solecki, A. Tatur, and H. I. Yoon.
175	2004. First Cenozoic glaciers in West Antarctica. Polish Polar Research 26:3–12.
176	Bond, M., M. A. Reguero, and S. F. Vizcaíno. 2006. A new 'South American ungulate'
177	(Mammalia: Litopterna) from the Eocene of the Antarctic Peninsula; pp 163-176 in
178	Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica.
179	Special Publications, Geological Society of London.
180	Bond, M., A. Kramarz, R. MacPhee, and M. Reguero. 2011. A new astrapothere (Mammalia,
181	Meridiunugulata) from La Meseta Formation, Seymour (Marambio) Island, and a
182	reassessment of previous records of Antarctic astrapotheres. American Museum
183	Novitates 3718:1016.

484	Bond, M., R. Pascual, M. A. Reguero, S. H. Santillana, and S. A. Marenssi. 1990. Los primeros
485	ungulados extinguidos sudamericanos de la Antártida. Ameghiniana 26:240.
486	Borsuk-Bialynicka, M. 1988. New remains of Archaeoceti from the Paleogene of Antarctica.
487	Polish Polar Research 9:437-445.
488	Bowman, V., Ineson, J., Riding, J., Crame, J., Francis, J., Condon, D., Whittle, R., and
489	Ferraccioli, F. 2015. The Paleocene of Antarctica: dinoflagellate cyst biostratigraphy,
490	chronostratigraphy and implications for the palaeo-Pacific margin of Gondwana.
491	Gondwana Research 38:132-148.
492	Buono, M.R., Fernández, M.S., Reguero, M.A., Marenssi, S.A., Santillana, S.N. and Mörs, T.,
493	2016. Eocene basilosaurid whales from the La Meseta Formation, Marambio (Seymour)
494	Island, Antarctica. Ameghiniana, 53: 296-315.
495	Case, J. A. 2006. The late Middle Eocene terrestrial vertebrate fauna from Seymour Island: the
496	tails of the Eocene Patagonian size distribution. Geological Society, London, Special
497	Publications 258:177–186.
498	Case, J., Woodburne, M.O., and Chaney, D. 1988. A new genus of polydolopid marsupial from
499	Antarctica; In Feldmann, R. M. & Woodbourne, M.O. eds. Geology and paleontology of
500	Seymour Island, Antarctic Peninsula. Memoir of the Geological Society of America
501	169:503-521
502	Chávez Hoffmeister, M. 2014. Phylogenetic characters in the humerus and tarsometatarsus of
503	penguins. Polish Polar Research 35:469-496.
504	Claramunt, S., and J. Cracraft. 2015. A new time tree reveals Earth history's imprint on the
505	evolution of modern birds. Science Advances 1:1-13.

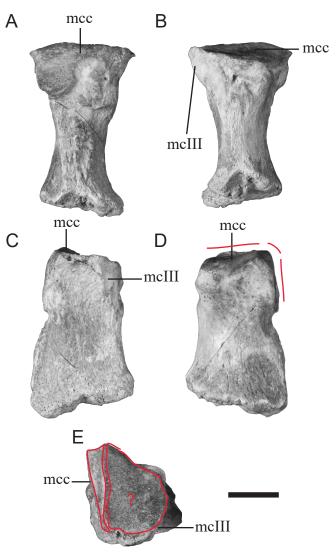
506	Clarke, J.A., M.A. Norell, and D. Dashzeveg. 2005. New avian remains from the Eocene of
507	Mongolia and the phylogenetic position of the Eogruidae (Aves, Gruoidea). American
508	Museum Novitates 3494:1-17.
509	Clarke J.A., E. Olivero, and P. Puerta. 2003. Description of the earliest fossil penguin from
510	South America and first Paleogene vertebrate locality reported from Tierra del Fuego.
511	American Museum Novitates 3423:1-18.
512	Clarke, J.A., D. T. Ksepka, M. Stucchi, M. Urbina, N. Giannini, S. Bertelli, Y. Narváez, and C.
513	Boyd. 2007. Paleogene equatorial penguins challenge the proposed relationship between
514	biogeography, diversity, and Cenozoic climate change. Proceedings of the National
515	Academy of Sciences 104:11545–11550.
516	Cracraft, J. 1973. Continental drift, paleoclimatology and the biogeography of birds. Journal of
517	Zoology 169:455–545.
518	Cracraft, J. 1982. Phylogenetic relationships and transantarctic biogeography of some gruiform
519	birds. Geobios 15: 393-402.
520	De Iuliis, G., and C. Cartelle. 1999. A new giant megatheriine ground sloth (Mammalia:
521	Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida.
522	Zoological Journal of the Linnean Society 127:495-515.
523	De Iuliis, T. J. Gaudin, and M. J. Vicars. 2011. A new genus and species of nothrotheriid sloth
524	(Xenarthra, Tardigrada, Northrotheriidae) from the Late Miocene (Huayqierian) of Peru.
525	Palaeontology 51:171–205.
526	Delsuc, F., M. Kuch, G.C. Gibb, E. Karpinski, D. Hackenberger, P. Szpak, J.G. Martínez, J.I.

527	Mead, G. McDonald, R.D.E. MacPhee, G. Billet, L. Hautier, and H.N. Poinar. 2019.
528	Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Current
529	Biology 29: 1-12.
530	Diester-Haass, L. and R. Zahn, 1996. Eocene-Oligocene transition in the Southern Ocean:
531	history of water mass circulation and biological productivity. Geology 24:163-166.
532	Eagles, G., and W. Jokat, 2014. Tectonic reconstructions for paleobathymetry in Drake Passage.
533	Tectonophysics 611:28–50.
534	Fostowicz-Frelik, L. 2003. An enigmatic whale tooth from the Upper Eocene of Seymour Island,
535	Antarctica. Polish Polar Research 24(1):13-28.
536	Gaudin, T. J., and D.A. Croft. 2015. Paleogene Xenarthra and the evolution of South American
537	mammals. Journal of Mammalogy 96(4): 622-634.
538	Gelfo, J. N., G. M. Lopez, and S. N. Santillana. 2017. Eocene ungulate mammals from West
539	Antarctica: implications from their fossil record and a new species. Antarctic Science 29:
540	1-11.
541	Gelfo, J. N., T. Mors, M. Lorente, G. M. López, and M. Reguero. 2015. The oldest mammals
542	from Antarctica, Early Eocene of the La Meseta Formation, Seymour Island.
543	Palaeontology 58:101-110.
544	Goin, F. J., M. O. Woodburne, A. N. Zimicz, G. M. Martin, and L. Chornoqubsky. 2016.
545	Dispersal of vertebrates from between the Americas, Antarctica, and Australia in the Late
546	Cretaceous and Early Cenozoic; pp. 77-124 in A Brief History of South American
547	Metatherians. Springer, Dordrecht.
548	Goin, F. J., M. A. Reguero, R. Pascual, W. Von Koenigswald, M. O. Woodburne, J. A. Case, C.

549	Vieytes, S. A., Marenssi, and S. F. Vizcaino. 2006. First gondwanatherian mammal from
550	Antarctica; pp. 135-144 in Cretaceous-Teriary high-latitue palaeoenvironments, James
551	Ross Basin, Antartica. Geological Society of London, Special Publications.
552	Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J., Chojnowski,
553	J.L., Cox, W.A., Han, K., Harshman, J., Huddleston, C.J., Marks, B.D., Miglia, K.J.,
554	Moore, W.S., Sheldon, F.H., Steadman, D.W., Witt, C.C., and Yuri, T. 2008. A
555	phylogenomic study of birds reveals their evolutionary history. Science, 320: 1763-1768.
556	Haidr, N., and C. Acosta Hospitaleche. 2012. Feeding habits of Antarctic Eocene penguins from
557	a morpho-functional perspective. Neues Jahrbuch für Geologie und Paläontologie –
558	Abhandlungen 263:125–131.
559	Haro, J. A., A. A. Tauber, and J. M. Krapovickas. 2017. Thoracic member (pectoral girdle and
560	forelimb) bones of Mylodon darwinii Owen (Xenarthra, Mylodontidae) from the Late
561	Pleistocene of Central Argentina and their phylogenetic implications. Paläontologische
562	Zeitschrift 91:439–457
563	Hoffmeister, C. 2014. Phylogenetic characters in the humerus and tarsometatarsus of penguins.
564	Polish Polar Research 35:469–496.
565	Hooker, J. J. 1992. An additional record of a placental mammal (Order Astrapotheria) from the
566	Eocene of West Antarctica. Antarctic Science 4:107–108.
567	Ivany, L. C., S. Van Simaeys, E. W. Domack, and S. D. Samson. 2006. Evidence for an earliest
568	Oligocene ice sheet on the Antarctic Peninsula. Geology 34:377–380.
569	Ivany, L. C., T. Brey, M. Huber, D. P. Buick, and B. R. Schöne. 2011. El Niño in the Eocene
570	greenhouse recorded by fossil bivalves and wood from Antarctica. Geophysical Research
571	Letters 38:1-6.

572	Jacques, F. M. B., G. Shi, H. Li, and W. Wang. 2014. An early-middle Eocene Antarctic summer
573	monsoon: evidence of "fossil climates". Gondwana Research 25:1422-1428.
574	Jadwiszczak, P. 2006. Eocene penguins of Seymour Island, Antarctica: Taxonomy. Polish Polar
575	Research 27(1):3-62.
576	Jadwiszczak, P. 2011. Short note: new data on morphology of late Eocene penguins and
577	implications for their geographic distribution. Antarctic Science 23(6):605-606.
578	Jadwiszczak, P. 2015. Another look at tarsometatarsi of early penguins. Polish Polar Research
579	36:343–354.
580	Jadwiszczak, P., A. J. Gazdicki, and A. Tatur. 2008. Short note: an ibis-like bird from the
581	Upper La Meseta Formation (Late Eocene) of Seymour Island, Antarctica. Antarctic
582	Science 20(4):413-414.
583	Jadwiszczak, P., and T. Mörs. 2019. First partial skeleton of <i>Delphinornis larseni</i> Wiman, 1905,
584	a slender-footed penguin from the Eocene of Antarctic Peninsula. Paleontologia
585	Electronica, 22.2.32A 1-31.
586	Keast, A. 1972. Introduction: The southern continents as backgrounds for mammalian evolution;
587	pp. 19-22, in A. Keast, F. C. Erk, and B. Glass, eds. Evolution, Mammals, and Southern
588	Continents. State University of New York Press, Albany.
589	Ksepka, D.T., and S. Bertelli. 2006. Fossil penguin (Aves: Sphenisciformes) cranial material
590	from the Eocene of Seymour Island (Antarctica). Historical Biology, 18(4):389-395.
591	Ksepka, D. T., and J. A. Clarke. 2010. The basal penguin (Aves: Sphenisciformes) <i>Perudyptes</i>
592	devriesi and a phylogenetic evaluation of the penguin fossil record. Bulletin of the
593	American Museum of Natural History 337:1–77.
594	Ksepka, D. T., J. A. Clarke, T. J. DeVries, and M. Urbina. 2008. Osteology of <i>Icadyptes salasi</i> , a

595	giant penguin from the Eocene of Peru. Journal of Anatomy 213:131–147.
596	Lydekker, R. 1891. Catalogue of the fossil birds in the British Museum (Natural History). British
597	Museum (Natural History), London.
598	MacPhee, R. D. E. and M. A. Reguero. 2010. Reinterpretation of a Middle Eocene record of
599	Tardigrada (Pilosa, Xenarthra, Mammalia) from La Meseta Formation, Seymour Island,
600	West Antarctica. American Museum Novitates 3689:1–21.
601	Marenssi, S. A. 2006. Eustatically controlled sedimentation recorded by Eocene strata of the
602	James Ross Basin, Antarctica. Geological Society, London, Special Publications
603	258:125–133.
604	Marenssi, S. A., L. I. Net, and S. N. Santillana. 2002. Provenance, environmental and
605	paleogeographical controls on sandstone composition in an incised-valley system: the
606	Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology 150:
607	301-321.
608	Marenssi, S. A., S. N. Santillana, and C. A. Rinaldi, 1998. Stratigraphy of La Meseta Formation
609	(Eocene), Marambio Island, Antarctica; pp. 137-146, in S. Casadío, ed. Paleógeno de
610	América del Sur y de la Península Antártica, vol. 5. Asociación Paleontológica
611	Argentina, Publicación Especial.
612	Marenssi, S. A., M. A. Reguero, S. N. Santillana, and S. F. Vizcaíno. 1994. Eocene land
613	mammals from Seymour Island, Antarctica: palaeobiogeographical implications.
614	Antarctic Science 6:3–15.
615	Mayr, G. 2009. Paleogene Fossil Birds. Springer Berlin Heidelberg.
616	Mayr, G., R. P. Scoffeld, V. L. De Pietri, and A. J. D. Tennyson. 2017. A Paleocene penguin


639

47:579–604.

617	from New Zealand substantiates multiple origins of gigantism in fossil Sphenisciformes.	
618	Nature Communications. 8:1-8.	
619	Mayr, G., V. L. Pietri, A. A. Mannering, and R. P. Scofield. 2018. A well-preserved new mid-	
620	Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New	
621	Zealand. Journal of Vertebrate Paleontology 37.	
622	McKenna, M. C., A. R. Wyss, and J. J. Flynn. 2006. Paleogene pseudoglyptodont xenarthrans	
623	from Central Chile and Central Patagonia. American Museum Novitates 3536:1-18.	
624	Musser, G. M., and J. Cracraft. 2019. A new morphological dataset reveals a novel	
625	relationship for the Adzebill of New Zealand (Aptornis) and provides a foundation total	
626	evidence neoavian phylogenetics. American Museum Novitates 3927: 1-70.	
627	Myrcha, A., P. Jadwiszczak, C. P. Tambussi, J. I. Noriega, A. Gaździcki, A. Tatur, and R. A. Del	
628	Valle. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal	
629	morphology. Polish Polar Research 23:5–46.	
630	Poole, I., R. J. Hunt, and D. J. Cantrill. 2001. A fossil wood flora from King George Island:	
631	ecological implications for Antarctic Eocene vegetation. Annals of Botany 88:35-54.	
632	Presslee, S., G. J. Slater, F. Pujos, A.M. Forasiepi, R. Fischer, K. Molloy, M. Mackie, J.V. Olsen,	
633	A. Kramerz, M. Taglioretti, F. Scaglia, M. Lezcano, J.L. Lanata, J. Southon, R. Feranec,	
634	J. Bloch, A. Hajkuk, F.M. Martin, R.S. Gismodni, M. Reguero, C. de Muizon, A.	
635	Greenwood, B.T. Chait, K. Penkman, M. Collins, and R.D.E. MacPhee. 2019.	
636	Palaeoproteomics resolves sloth relationships. Nature Ecology and Evolution.	Commenté [EA11]: this should have its full format by now
637	Pujos, F., and R. Salas. 2004. A new species of Megatherium (Mammalia: Xenarthra:	Mis en forme : Police : Italique
638	Megatheriidae) from the Pleistocene of Sacaco and Tres Ventanas. Peru Palaeontology	

540	Reguero, M., and Z. Gasparini. 2006. Late Cretaceous - Early Tertiary marine and terrestrial
641	vertebrates from James Ross Basin, Antarctic Peninsula: A review; pp. 55-76, in J.
542	Rabassa and M. L. Borla, eds. Antarctic Peninsula and Tierra del Fuego: 100 Years of
543	Swedish-Argentine Scientific Cooperation at the End of the World. Taylor & Francis,
544	London.
545	Reguero, M. A., S. A. Marenssi, and S. N. Santillana. 2002. Antarctic Peninsula and South
646	America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic
547	relationships. Palaeogeography, Palaeoclimatology, Palaeoecology 179:189-210.
548	Reguero, M. A., J. N. Gelfo, G. M. López, M. Bond, A. Abello, S. N. Santillana, and S. A.
549	Marenssi. 2014. Final Gondwana breakup: The Paleogene South American native
550	ungulates and the demise of the South America-Antarctica land connection. Global and
551	Planetary Change 123:400–413.
552	Simpson, G. G. 1971. Review of fossil penguins from Seymour Island. Proceedings of the Royal
653	Society of London B: Biological Sciences 178:357–387.
654	Slack, K. E., C. M. Jones, A. Tatsuro, G. L. Harrison, R. E. Fordyce, U. Arnason, and D. Penny.
555	2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.
656	Molecular Biology and Evolution 23:1144–1155.
557	Sosa, M.A. and C. Acosta Hospitaleche. 2018. Ontogenetic variation of the head of <i>Aptenodytes</i>
558	foresteri (Aves, Sphenisciformes): muscular and skull morphology. Polar Biology
559	41:225–235.
660	Stock, C. 1925. Cenozoic gravigrade edentates of western North America with special reference
661	to the Pleistocene Megalonychinae and Mylodontidae of Rancho La Brea. Carnegie
662	Institution of Washington Publication 331:1-206.

663	Superina, M., and W. J. Loughry. 2015. Why do xenarthrans matter? Journal of Mammalogy
664	96(4):617-621.
665	Tambussi, C., and C. Acosta Hospitaleche. 2007. Antarctic birds (Neornithes) during the
666	Cretaceous-Eocene times. Revista de la Asociación Geológica Argentina 62:604-617.
667	Tambussi, C. P., and F. J. Degrange. 2013. South American and Antarctic Continental Cenozoic
668	Birds. Springer: Dordrecht p.53.
669	Tambussi, C. P., C. I. Acosta Hospitaleche, M. A. Reguero, and S. A. Marenssi. 2006. Late
670	Eocene penguins from West Antarctica: systematics and biostratigraphy. Geological
671	Society, London, Special Publications 258:145–161.
672	Torsvik, T. H., and L. R. M. Cocks. 2013. Gondwana from top to base in space and time.
673	Gondwana Research 24:999–1030.
674	Villa, G., C. Fioroni, and D. Persico. 2014. Middle Eocene to Late Oligocene Antarctic
675	glaciation/deglaciation and Southern Ocean productivity. Paleoceanography 29:223-237.
676	Vizcaíno, S. F., and G. J. Scillato-Yané. 1995. An Eocene tardigrade (Mammalia, Xenarthra)
677	from Seymour Island, West Antarctica. Antarctic Science 7:407-408.
678	Woodburne, M. O., and Case, J. A. 1996. Dispersal, vicariance, and the Late Cretaceous to early
679	Tertiary land mammal biogeography from South America to Australia. Journal of
680	Mammalian Evolution 3(2):121-161.
681	Woodburne, M. O., and W. J. Zinsmeister. 1984. The first land mammal from Antarctica and its
682	biogeographic implications. Journal of Paleontology 58:913-948.
683	Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and
684	aberrations in global climate 65 Ma to present. Science 292:686–693.
685	Zinsmeister, W. J. 1986. Fossil windfall at Antarctica's edge. Natural History 95:60-67.

