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Abstract

The middle-late Eocene of Antarctica was characterized by dramatic change as the continent
became isolated from the other southern landmasses and the Antarctic Circumpolar Current
formed. These events were crucial to the formation of the permanent Antarctic ice cap, affecting

both regional and global climate change|. Our best insight into how life in the high latitudes

CCommenté [EA1]: necessary?

responded to this climatic shift is provided by the fossil record from Seymour Island, near the
eastern coast of the Antarctic Peninsula. While extensive collections have been made from the
La Meseta Formation of this island, few avian taxa other than penguins have been described and
postcranial mammalian remains have been scarce. Here, we report new fossils from Seymour
Island collected by the Antarctic Peninsula Paleontology Project. These include a mammalian

metapodial referred to [Xenarthra and avian material including a partial tarsometatarsus referred

to Gruiformes (cranes, rails, and allies). Penguin fossils (Sphenisciformes) continue to be most
abundant in new collections from these deposits. We report several penguin remains including a
large spear-like mandible preserving the symphysis, a nearly complete tarsometatarsus with
similarities to the large penguin clade Palaeeudyptes but possibly representing a new species,
and two small partial tarsometatarsi similar to those of Delphinornis. These finds expand our
view of Eocene vertebrate faunas on Antarctica. Specifically, the new remains referred to
Gruiformes and Xenarthra provide support for previously proposed, but contentious, earliest

occurrence records of these clades on the continent.

- '(Commenté [EA2]: see my main concern about that
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Introduction

The Southern Hemisphere biota has been profoundly influenced by Mesozoic-Cenozoic
continental breakup and climatic change. Before its fragmentation, the supercontinent Gondwana
facilitated dispersal of terrestrial organisms between now-separated southern landmasses (Keast,
1972; Cracraft, 1973; Ali and Krause, 2011; Claramunt and Cracraft, 2015). Early discoveries
suggest that Antarctica was central to this pattern of terrestrial movement, acting as a bridge
between what is now South America and Australia (Woodburne and Zinsmeister, 1984;
Zinsmeister, 1986). This widespread dispersal ended with the final breakup of Gondwana
(Reguero et al., 2014, and reviewed by Torsvik and Cocks, 2013). Through the last part of this
breakup, the Antarctic climate shifted from being warm and seasonally wet to increased periods
of ice cover by the early to middle Eocene (Poole et al., 2001; Ivany et al., 2011; Jacques et al.,
2014); by the earliest Oligocene (~33.9 Ma) Antarctica experienced complete glaciation (Zachos
et al., 2001; Birkenmajer et al., 2004; Ivany et al., 2006; Barker et al., 2007).

Insights into how the Antarctic biota was shaped by tectonic and climatic shifts have
come from the Upper-upper Eocene La Meseta Formation on Seymour Island (Marambio Island),
the best-studied fossil vertebrate fauna from Antarctica (e.g., Reguero et al., 2002; 2014). This
assemblage has been proposed to most closely resemble contemporaneous faunas from Patagonia
(Reguero et al., 2002) which were separated from what is now the Antarctic Peninsula by the
flooding of the Weddellian Isthmus at the end of the Paleocene (Eagles and Jokat, 2014; Reguero
et al., 2014). The fossil record of the La Meseta Formation is famously dominated by stem
penguins, including some of the tallest penguins that ever lived (Tambussi et al., 2006;
Jadwiszczak, 2006; Tambussi and Acosta Hospitaleche, 2007; Jadwiszczak et al., 2013; Acosta

Hospitaleche and Reguero, 2014; Jadwiszczak and Mors, 2019). The non-penguin vertebrate
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fossil record mostly comprises isolated teeth and bones representing an array of marsupial,
gondwanathere, ungulate, cetacean, and other eutherian mammals (see reviews by Marenssi et
al., 1994; Reguero et al., 2002; Reguero and Gasparini, 2006; Case, 2006; Buono et al. 2016;
Gelfo et al. 2017) as well as non-penguin birds (e.g., Tambussi and Acosta Hospitaleche, 2007;
Jadwiszczak et al., 2008; Tambussi and Degrange, 2013; Acosta-Hostpitaleche and Gelfo, 2017).
Here we report additional mammalian and avian specimens recovered from Antarctica by the
2016 Antarctic Paleontology Project (AP3), including gruoid and xenarthran fossils, and discuss

their biogeographic implications.

Geologic setting

The fossils here described were collected from the Upper-upper Eocene Submeseta
Allomember (Telm 6/7) of the La Meseta Formation on Seymour Island (Fig. 1). This island is
located approximately 100 km east of the Antarctic Peninsula in the James Ross Basin (Marenssi
et al., 2002) and contains Upper Cretaceous and Paleogene deposits represented by the Whisky
Bay (Albanian to Turonian), Hidden Lake (Coniacian), Santa Marta (Santonian to Campanian),
Snow Hill Island (Campanian to Maastrichtian), Lépez de Bertodano (Maastrichtian to Danian),
Sobral (Danian), Cross Valley (upper Paleocene), and La Meseta (Eocene) Formations (Bowman
et al., 2015).

The Submeseta Allomember is a 140-meter-thick level representing the latest Eocene
(Priabonian) between 34.96 and 35.13 Ma (Marenssi et al., 1998; Marenssi, 2006). This unit is
composed predominantly of fine sandstones and mudstones from a shallow marine environment,

but may have experienced a sea level rise towards the top of the section (Marenssi et al., 2002;

Marenssi, 2006). Fossils were surface collected from two locations within the unit at the same

~| Commenté [EA3]: sentence grammatically strange to me.
What has experienced a sea level rise? You mean that
the unit reflects a such a rise, right?
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level on the northeastern section of the island (Fig. 1). The first site is located at S64°14.6,
W56°36.0 and the second at S64°13.9, W56°39.5.

Institutional Abbreviations—FMNH, Field Museum of Natural History, Chicago,
Illinois, USA; IB/P/B, Andrzej Myrcha University Museum of Nature, Biatystok, Poland; MLP,
Museo de La Plata, La Plata, Buenos Aires Province, Argentina; TMM, Jackson School of

Geosciences Vertebrate Paleontology Laboratory, Austin, Texas, USA

Systematic Paleontology

MAMMALIA Linnaeus, 1758
EUTHERIA Gill, 1872
XENARTHRA Cope, 1889
PILOSA Flower, 1883
FOLIVORA Delsuc, Catzefilis, Stanhope, and Douzery, 2001
Gen. et sp. indet.

(Fig. 2, Supplemental Fig. 1)

Material - TMM 44190-1, left metacarpal I1.
Locality — Seymour Island, Antarctic Peninsula.
Formation/Age — Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.

Description —TMM 44190-1 is weathered, missing its distal epiphysis. It has a

- '(Commenté [EA4]: see my main comment about that

)

maximum proximodistal length of 33 mm as preserved and a maximum mediolateral width of 21

mm at both the proximal and distal ends. In medial view, the articular facet for the metacarpal-

~| Commenté [EA5]: | would give the dorsopalmar depth at
mid-diaphysis as well.

)
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carpal complex is sharply-defined, forming the proximal part of the palmar margin and
projecting well-palmarly of the rest of this margin (Fig. 2A). The remainder of the medial face is
marked by two rugosities: one at the proximopalmar part and the other across the entire distal
half (Fig. 2A). These rugosities are separated by a smooth sulcus, resulting in a notched medial
margin in dorsal/plantar-palmar views (Fig. 2C-D). In lateral view, the articular facet for
metacarpal I1I is rugose and worn (Fig. 2B). Due to the bone being hourglass-shaped in medial
and lateral views (Fig. 2A-B) but sub-rectangular in dorsal and palmar views (Fig. 2C-D), the
latter faces are broadly concave and saddle-shaped. The articular face for the trapezoid earpakis

triangular with sharply-defined medial and dorsal margins (Fig. 2E)/

[Commenté [EA6]: see my main comment about this.

Comparisons —TMM 44190-1 is short and broad with a well-defined articular surface
for the metacarpal-carpal complex. TMM 44190-1 is morphologically most consistent with those
of Xenarthra (anteaters, armadillos, sloths), especially sloths (Folivora; see De luliis and
Cartelle, 1999: figs. 6 and 7). The overall proportions of the metacarpal very closely resemble

those of adult specimens of the Miocene sloth taxa [Megalonyx spp. (TMM 30967-1845) and

Hapalops spp. (Stock, 1925: fig. 23), though due to the worn nature of the fossil we cannot rule
out the possibility of belonging to a juvenile. TMM 44190-1 is more robust than the metacarpal
11 of other xenarthrans such as Thalassocnus (Amson et al., 2015) and Mionothropus cartellei
(De Iuliis et al., 2011: fig. 11), but closer to the proportions of Pleistocene ground-dwelling taxa
such as Megatherium urbinai (Pujos and Salas, 2004). The trapezoid facet is sub-planar, similar
to that of Scelidotherium, Pseudolestodon hexaspondylus, and Simomylodon uccasamamensis
(Haro et al., 2017: character 334). The articular facet for the metacarpal-carpal complex does not
extend distally to the midpoint of the shaft as in more recent forms such as Hapalops (Miocene)

and [Nothrotheriopsum (Pleistocene, Stock, 1925). It is unclear if the rugose surface texture along

| Commenté [EA7]: Megalonyx is not only Miocene of age
(actually mostly Plio-Pleistocene)...please correct

)

- 'CCommenté [EA8]: taxonomy has changes since.
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the medial face is consistent with subadult status or with a closely-appressed digit I (as in for
example Mionothropus; De luliis et al., 2011). The width of the new metacarpal relative to
dorsopalmar length appears unusual for previously-reported Paleogene sloth material (reviewed
in Amson et al., 2017).

The majority of mammal fossils from the Eocene of Seymour Island comprise teeth of
Astrapotheria (Bond et al., 2011), Gondwanatheria (Goin et al., 2006; Gelfo et al., 2015), and
Litopterna (Bond et al., 2006; Gelfo et al., 2015). -The metacarpals of these clades from the
South American record, such as they are known, are markedly different from the stocky, broad

morphology of TMM 44190-1.

AVES Linnaeus, 1758
NEOGNATHAE Pycraft, 1900
GRUIFORMES Bonaparte, 1854 sensu Hackett et al., 2008
?GRUOIDEA Vigors, 1825 sensu Clarke et al., 2005

Gen. et sp. indet.

(Fig. 3)

Material — TMM 44189-2, distal end of left tarsometatarsus.

Locality — Seymour Island, Antarctic Peninsula.

Formation/Age — Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Description — TMM 44189-2 preserves the bases of trochleae II-IV as well as the dorsal

and plantar openings of the distal vascular foramen. The maximum mediolateral width as

preserved is 25 mm (Fig. 3). The distal vascular foramen is proximodistally elongate in dorsal
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and plantar views (Fig. 3A-B), and the dorsal opening of the foramen is set in a deep sulcus (Fig.
3A). The plantar opening of the foramen is slightly lateral to and near the midline and is
positioned distal to the juncture of trochleae II and III (Fig. 3B). The fossa for the m.
supratrochlearis plantaris is shallow (Fig. 3B). Most of trochlea II is missing but appears to lack
a well-defined plantar crest extending proximally from the ala of the trochlea (Fig. 3B). In distal
view, trochlea II is plantarly deflected, and trochleae III and IV are widely spaced (Fig. 3E).

Comparison — A portion of a tarsometatarsus (MLP 90-1-20-9) recovered from
Seymour Island was previously figured as gruiform but not described (Tambussi and Degrange,
2013: fig. 6.1g). This specimen comprises a distal diaphysis that is broken proximal to the
trochleae, of which only the proximal-most part of trochlea IV is preserved. Despite the partial
preservation, this fossil does not clearly show the splayed trochlear arrangement present in extant
Gruoidea (cranes, trumpeters and limpkins) and in TMM 44189-2. The lack of measurements or
description for MLP 90-1-20-9 make comparisons with the new fossil difficult, but as figured it
appears that this fossil is larger than TMM 44189-2. Further evaluation is needed to determine
the exact relationship between the two fossils, but TMM 44189-2 exhibits a suite of character
states that allows for a more detailed assessment.

TMM 44189-2 exhibits a combination of character states most similar to those observed
in Gruiformes (cranes, rails and allies), including: 1) trochleae III and IV projecting well distal of
1I; 2) plantar deflection of trochlea II (as inferred from the base and preserved ala); 3) trochlea 111
positioned dorsal to trochlea IV in distal view; 4) dorsoplantar flattening and mediolateral
broadening of the supratrochlear region; 5) position of the distal vascular foramen near the
midline and away from the lateral margin in plantar view; and 6) wide spacing of trochlea III and

IV. Within Gruiformes, TMM 44189-2 is more similar to Gruoidea than Ralloidea (rails, finfoots
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and flufftails) based on the following characteristics: 1) trochlea II is not as plantarly deflected in
the new fossil as in ralloids; 2) trochlea II projects farther distally relative to III and IV in the
new fossil than in ralloids; 3) the distal vascular foramen is located midway between the midline
and the lateral margin in plantar view, unlike in ralloids where it is located on the midline; 4) the
supratrochlear region of the new fossil is mediolaterally broader and trochleae I and IV are more
widely spaced than in ralloids; 5) the distal margin of the distal vascular foramen is in line with
the proximal extent of trochlea III in dorsal view, unlike in ralloids; 6) the distal vascular
foramen is located closer to the intertrochlear incisure in plantar view than in ralloids; and 7) in
dorsal view, the proximal extents of trochlea III and IV are subequal, whereas IV is proximal to
111 in ralloids.

The morphology of TMM 44189-2 is not unambiguously consistent with any particular
gruoid subclade. Trochlea II is not as plantarly deflected as in Gruidae (cranes) or Aramus
guarauna (limpkin) and is more like the condition observed in Psophiidae (trumpeters). As in 4.
guarana and Gruidae, trochlea 111 is the most dorsally positioned trochlea. There is a shallow
depression at the plantar base of trochlea IV along the beginning of an ala that is most like that of
B. pavonica and G. canadensis among compared Gruiformes. However, the trochlear bases of
TMM 44189-2 are not as dorsoventrally thick as those of 4. guarana and Gruidae and are more
like those of Psophia viridis. The distal vascular foramen of TMM 44189-2 is ovoid in plantar
view, with the long axis at an oblique angle to the long axis of the shaft, as in Gruidae but unlike
A. guarauna and Psophiidae. In dorsal view, the distal vascular foramen is set in a broad, shallow
sulcus as in B. pavonica and Psophiidae; by contrast, this sulcus is deep and sharply defined in
Gruoidea. The fossil lacks the sharp plantar crest extending proximally from the ala of trochlea II

observed in Gruoidea. A marked, circular depression is located between trochleae II and III, and
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appears to be most like the condition in Psophiidae, 4. guarana, and B. pavonica, although the

observed depth may be an artifact of preservation.

SPHENISCIFORMES Sharpe, 1891 sensu Clarke et al., 2003
Gen. et sp. indet. A

(Fig. 4A-H)

Material - TMM 44189-1, left tarsometatarsus.
Locality — Seymour Island, Antarctic Peninsula.
Formation/Age — Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.

Description — TMM 44189-1 (Fig. 4 A-D) is missing its proximal end and trochlea IV.
It is the more complete example of the two tarsometatarsi (including TMM 44188-2, described
below) recovered by the 2016 AP3 expedition that represent a small-bodied penguin. The
specimen is similar in size to the tarsometatarsus of the extant Spheniscus humboldti (Humboldt
Penguin). The hypotarsal crests are not preserved; however, an abraded surface appears to mark
the former distal-most extent of the medial hypotarsal crest. The medial proximal vascular
foramen is positioned directly medial to the abraded surface that potentially corresponds to the
medial hypotarsal crest.

Comparison — TMM 44189-1 is referable to Sphenisciformes (penguins) based on its
overall proportions, morphology, and extreme osteosclerosis. The specimen possesses both
intertarsal grooves (Fig. 4A), unlike the much larger penguin tarsometatarsus described below
(TMM 44188-1). Although apparent, the medial intertarsal groove is shallower than that of all

comparable extant species. The lateral intertarsal groove is present and deep, similar to the

10
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condition in extant species as well as the extinct taxa Delphinornis, Marambiornis, and
Mesetaornis (Myrcha et al., 2002; Jadwiszczak and Mors, 2019). The groove does not taper
strongly distally as in Marambiornis and Mesetaornis. The trochlea of metatarsal II is positioned
more medially than those of all comparable extant penguin species (Fig. 4A-B, D), resulting in a
wide medial intertrochlear incisure that appears most similar to that of Delphinornis (Myrcha et
al., 2002; Jadwiszczak and Mors, 2019). A distal vascular foramen is present (Fig. 4A-B) as in
taxa from the Paleocene of New Zealand, including Muriwaimanu, as well as the small Antarctic
taxa Delphinornis, Marambiornis, and Mesetaornis (Myrcha et al., 2002; Chavez Hoffmeister,
2014; Jadwiszczak, 2015; Jadwiszczak and Mors, 2019). The distally-opening passage of the m.
extensor brevis digiti IV is confluent with the distal vascular foramen (Fig. 4A), as in
Delphinornis, Marambiornis, and Mesetaornis (Myrcha et al., 2002; Hoffmeister, 2014;
Jadwiszczak, 2015; Jadwiszczak and Mdrs, 2019). The plantar opening of the distal vascular
foramen is more distally positioned (Fig. 4B) than in Marambiornis and Mesetaornis and is
similar in morphology to that of Delphinornis (Myrcha et al., 2002; Jadwiszczak and Mérs,

2019).

Material — TMM 44188-2, left tarsometatarsus.

Locality — Seymour Island, Antarctic Peninsula.

Formation/Age — Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Description — TMM 44188-2 (Fig. 4E-H) is missing the proximal end and all three

trochleae. It is the less complete of the two 2016 specimens that represent a small penguin

morphotype. It is comparable in size to TMM 44189-1 and identical to that specimen in all

preserved morphologies.

11
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Gen. et sp. indet. B

(Fig. 41-L)

Material — TMM 44188-1, left tarsometatarsus.
Locality — Seymour Island, Antarctic Peninsula.
Formation/Age — Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.

Description — TMM 44188-1 is a mostly complete tarsometatarsus that is missing
trochlea IV (Fig. 41-L). It has a proximodistal length of 45 mm and proximal mediolateral width
of 39 mm. The medial and lateral proximal cotyla are separated dorsally by a pronounced
intercotylar eminence and plantarly by a planar intercotylar area. The medial proximal vascular
foramen is positioned just distal to the distal terminus of the medial hypotarsal crest, and is less
developed than the lateral proximal vascular foramen. A scar for the m. tibialis cranialis is
present on the dorsal face as a short ridge that extends distally from the proximal margin. The
new tarsometatarsus lacks an appreciable medial dorsal intertarsal sulcus but exhibits a lateral
sulcus.

Comparison — TMM 44188-1 most closely resembles the tarsometatarsus of the
contemporaneous Seymour Island penguin Palaeeudyptes gunnari based on the following
features: 1) a concave medial margin, 2) a medial proximal vascular foramen that is larger than
the lateral vascular foramen, and 2) a proximally-positioned scar for the m. tibialis cranialis. The
new specimen can be differentiated from the contemporaneous and similarly sized
Archaeospheniscus, known from Seymour Island and New Zealand, based on the lack of a

medial dorsal intertarsal sulcus and unequally sized proximal vascular foramina (Simpson, 1971;

12
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Myrcha et al., 2002). The new specimen is also distinct from the contemporaneous Anthropornis,
known from Seymour Island and New Zealand, in which the scar for the m. tibialis cranialis is
positioned more distally and the medial proximal vascular foramen is larger than the lateral
(Myrcha et al., 2002). TMM 44188-1 is significantly smaller than P. gunnari and may therefore

represent a juvenile specimen of P. gunnari or a new species within Palaeeudyptes.

Gen. et sp. indet. C

(Fig. 4M-P)

Material - TMM 44187-1, partial mandible with associated caudal fragments.
Locality — Seymour Island, Antarctic Peninsula.
Formation/Age — Submeseta Allomember (Telm 6/7), La Meseta Formation, late Eocene.
Description — TMM 44187-1 comprises the rostral end of a mandible that includes most
of the symphyseal region, with the left mandibular ramus being more complete than the right
(Fig. 4M-P). The rostralmost tip is missing. The preserved portion of the left ramus measures
171 mm in length and 7 mm in maximum width. An additional fragment of this ramus measures
81 mm in length, demonstrating that, when complete, the left mandibular ramus was at least 252
mm. However, the articular regions of the mandible are missing, indicating that the original
length of the bone was even greater. The preserved portion of the symphysis measures 37 mm in
length and 10 mm wide at its rostrocaudal midpoint. We estimate the length of the complete
symphysis at 40 mm. The mandible is slender and pointed but sturdily constructed, and is

excavated by vascular canals throughout much of its length. The tip of the mandible is straight,

13
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and the rami meet the symphysis along a straight line rather than at an angle. Mandibular fossae
are not preserved.

Comparison — TMM 44187-1 is larger and more robust than the more complete
penguin mandibles previously described from Seymour Island (MLP 91-11-4-221, MLP 92-11-2-
195, IB/P/B-0653; Jadwiszczak 2006; Acosta Hospitaleche and Haidr, 2011), which are more
tapered towards the distal end and have thinner rami. However, the overall morphology of the
symphysis is comparable to other Seymour Island fossils described despite differing in overall
dimensions (MLP 96-1-6-48, MLP 78-X-26-144, IB/P/B-0617¢; Jadwiszczak, 2006; Acosta
Hospitaleche and Haidr, 2011; Jadwiszczak, 2011). The fossil MLP 96-1-6-48 has vascular
pitting and a flattened dorsal surface similar to those seen on TMM 44187-1 (Acosta
Hospitaleche and Haidr, 2011), and the pitting is consistent with the morphology of extant adult
Aptenodytes forsteri (Emperor penguin; Sosa and Acosta Hospitaleche, 2018). The shape of the
rami of MLP 96-1-6-48, MLP 78-X-26-144, and IB/P/B-167¢ are all similar to that of TMM
44187-1 (Acosta Hospitaleche and Haidr, 2011; Jadwiszczak, 2011). These fossils pertain to
Paleogene penguins with spear- or dagger-like bills characteristic of stem species (Slack et al.,
2006; Clarke et al., 2007; Clarke et al. 2010; Ksepka and Clarke, 2010; Jadwiszczak, 2011;
Acosta Hospitaleche and Haidr 2012). Notably, the symphysis of TMM 44187-1 is longer than
those described by Acosta Hospitaleche and Haidr (2011), and the preserved rami are also longer
than those of previously reported spear-billed Antarctic penguins (Jadwiszczak, 2006; Haidr and
Acosta Hospitaleche, 2011; Jadwiszczak, 2011). Due to these differences and the partial

preservation, TMM 44187-1 is not considered referable to any known Eocene taxa at this time.

Discussion

14
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Though recently collected Eocene material is still fragmentary, it provides additional
support for records of the presence of mammalian and avian taxa previously proposed from even
more fragmentary and controversial single elements. These new records are also consistent with
those expected for the Eocene of Antarctica given longstanding hypotheses of a biotic
connection between Antarctica and South America during the Paleogene as well as
penecontemporaneous fossil discoveries from Patagonia (see Reguero et al., 2002; 2014). The

Eocene mammalian record otherwise comprises gondwanatheres, marsupials, cetaceans, ‘South

American native ungulates’ (e.g., a litoptern, astrapotheres), and additionally,, enigmatic . CCommenté [EA9]: is that what is meant?

eutherians (Woodburne and Zinsmeister, 1984; Borsuk-Bialynicka, 1988; Case et al., 1988;
Bond et al., 1990; Hooker, 1992; Marenssi et al., 1994; Bargo and Reguero, 1998; Fostowicz-
Frelik, 2003; Reguero and Gasparini, 2006; Case, 2006; Reguero et al., 2013; Gelfo et al., 2015;
Buono et al. 2016). Indeed, in addition to the described metacarpal, the 2016 AP3 expedition
recovered a vertebra and tooth consistent with referral to a basilosaurid archaeocete and a
previously described ungulate species, respectively. Although new collections improve our
understanding of biodiversity on Antarctica during the Eocene, they also highlight the need to
recover and describe more material to elucidate a nuanced understanding of biotic exchange
during this key time period.

Previous reports of xenarthrans from the Eocene of Seymour Island—based on a distal
phalanx and a tooth—were initially assigned to Tardigrada (= Folivora) (Marenssi et al., 1994;
Vizcaino and Scillato-Yané, 1995), but were later questioned (Bargo and Reguero, 1998;
MacPhee and Reguero, 2010). The phalanx lacks formal description and has been reportedly lost,
precluding reevaluation, and was noted to be indistinguishable from the earliest known

Vermilingua (anteaters) fossil from Patagonia (Bargo and Reguero, 1998; MacPhee and
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Reguero, 2010). The tooth was recently reassigned to Mammalia indet. (MacPhee and Reguero,
2010). Therefore, the newly described specimen is either further evidence, or new evidence, that
Xenarthra was indeed present on Antarctica during the Eocene depending upon one’s stance with
reference to prior controversies. This record is consistent with the estimated timing of origin for
Folivora by the Early Eocene, and of Xenarthra in the Paleocene (e.g., Presslee et al., 2019).

Xenarthra is proposed to have originated in South America, and thus is plausibly
anticipated in the Paleogene of Antarctica given inferred land connections between these
continents during the early Cenozoic (Woodburne and Case, 1996; Delsuc et al., 2019; Presslee
et al., 2019). The new record of Folivora extends the known Paleogene geographic range of
Xenarthra into Antarctica. Xenarthran limb bones and osteoderms have been reported from the
early Eocene (55-50 Ma) of Brazil (Gaudin and Croft, 2015; Superina and Loughry, 2015), but
the earliest reported members of Folivora date to 31.5 Ma in Chile and Argentina (McKenna et
al., 2006; Gaudin and Croft, 2015). The new material would indicate that this clade was also
present in Antarctica by at least 35 Ma, four million years earlier. The paucity of other described
Paleogene folivoran postcranial material (Amson et al., 2015) limits more nuanced analysis of
the phylogenetic affinities and ecology of this individual.

Antarctic bird fossils from non-penguins are rare, and only a few have been named as
species. They account for less than half of known extinct avian species diversity on the continent
(Tambussi and Acosta Hospitaleche, 2007), but comprise an even smaller fraction of unnamed
material in collections. Therefore, the distal tarsometatarsus, although fragmentary, expands our
understanding of Antarctic avian diversity during the late Eocene. A proposed gruiform from

Seymour Island was previously figured (Tambussi and Degrange, 2013: fig. 6.1g) but its relation
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to the new fossil is difficult to assess. The new fossil exhibits preserved characters that allow for
a more confident referral, providing new evidence for the presence of the clade in Antarctica.

Our understanding of the paleobiogeography of Gruoidea remains incomplete due to a
near lack of known remains of Gruidae from the Paleogene of the Southern Hemisphere and of
reported parts of stem Aramidae and Psophiidea from the Paleogene (Mayr, 2009; Mayr, 2017;
Musser and Cracraft, 2019). Of these three clades, Gruidae has the most extensive fossil record,
with Eocene fossils primarily restricted to the Northern Hemisphere (e.g. Wetmore, 1933, 1940;
Cracraft 1969, 1973; Chandler and Wall, 2001; Clarke et al., 2005; Mayr, 2009; 2014; 2017).
The new tarsometatarsus cannot confidently be referred to a subgroup within Gruoidea, and as
such has different biogeographic implications depending on its affinities. If more closely related
to Psophiidae or Aramidae, the new record suggests that these largely South American gruoid
families were more broadly distributed at least as far back as the late Eocene and supports
hypotheses of a distribution across Antarctic landmasses (Cracraft, 1982; Claramunt and
Cracraft, 2015; Musser and Cracraft, 2019). If placed within Gruidae, the new tarsometatarsus
could suggest that the gruid radiation may have been multi-directional; one radiation of cranes
could have dispersed from North America to Eurasia via the Bering Land Bridge during the early
Eocene and then dispersed towards west Eurasia over time (Claramunt and Cracraft, 2015), and
another radiation could have arrived in Antarctica by the late Eocene via South America.
However, more fossils are needed in order to gain a better understanding of the biogeography of
this group and core-Gruiformes as a whole within the Southern Hemisphere.

The penguin mandible described here is the largest and most complete from a spear-billed
penguin yet reported from the Eocene of Antarctica. Although fossil penguin cranial material is

rare from Seymour Island, two beak morphotypes are known: long and narrow, spear-like shapes
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(proposed to indicate a primarily piscivorous diet) and shorter, broad morphs (proposed to indicate
feeding on small crustaceans; Ksepka and Clarke, 2010; Acosta Hospitaleche and Jadwiszczak,
2011; Haidr and Acosta Hospitaleche, 2013). The shape of the mandible is consistent with a spear-
billed morphology seen in other Antarctic remains (Acosta Hospitaleche and Jadwiszczak, 2011)
and similar to those of penecontemporaneous species from Peru (Perudyptes devriesi, mid-Eocene
[Clarke et al., 2007]; Icadyptes salasi, mid- to late-Eocene [Clarke et al., 2007; Ksepka et al.,
2008]) as well as Paleocene penguins from New Zealand (Muriwaimanu tuatahi; Sequiwaimanu
rosieae: Slack et al., 2006; Ksepka and Clarke, 2010; Mayr et al., 2018). The spear-billed
morphology is typically reported in stem species (Clarke et al., 2007; Ksepka and Clarke, 2010),
a pattern the newly described mandible is consistent with. Measurements of the symphysis and
estimates of mandible length indicate that the individual represented by the new mandible would
have been larger than the older, New Zealand species Muriwaimanu tuatahi (Slack et al., 2006)
and larger than other Eocene Antarctic spear-bills recovered (Acosta Hospitaleche and
Jadwiszczak, 2011). However, the mandible does not reach the maximum mandibular length
recorded for the South American Icadyptes salasi (Clarke et al., 2007), further supporting that a
potential intermediate size class of these spear-billed taxa was present on Antarctica.

Penguins were diverse across the globe during the Eocene, with 14+ species described
from Seymour Island alone (Jadwiszczak, 2006; Ksepka and Clarke, 2010; Acosta Hospitaleche,
2013 and references therein). The materials described here add to our understanding of this
diversity with new material from a range of size classes: one large spear-billed taxon, one
medium-sized taxon represented by a tarsometatarsus, and small taxa represented by two
tarsometatarsi. It has been proposed that penguins were diverse in the mid- to late Eocene in part

because of the increasing productivity in the southern oceans (Diester-Haass and Zahn, 1996;
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Clarke et al. 2007; Haidr and Acosta Hospitaleche, 2012; Villa et al., 2014). The range of body
sizes and bill morphotypes observed have also been hypothesized to be the result of increased
interspecific competition and size-based resource partitioning (Ksepka et al., 2008; Ksepka and
Clarke, 2010; Haidr and Acosta Hospitaleche, 2012). The morphological diversity reported here

may lend further support to these hypotheses.

Conclusions

New records from Antarctica expand our understanding of the biodiversity on the continent
during the Eocene and support previously controversial reports of Gruiformes and Xenarthra. A
metacarpal is proposed to possibly represent the first record of Folivora and lends support to
previously reported xenarthran materials that have been subsequently questioned or lost. The
new tarsometatarsus supports the presence of Gruiformes in Antarctica during the Eocene,
adding to our understanding of the avian fossil record of Seymour Island. Newly reported
penguin remains, including a spear-shaped mandible and three tarsometatarsi, add to the
diversity of penguins known from this time. The nature of the Antarctic fossil record is
characterized by isolated elements and is dominated by penguins, making new discoveries vital
to furthering our understanding diversity during a period of climate change and tectonic shifts.
While historically fragmentary, new material from Antarctica is needed to elucidate trends in

biodiversity and biotic exchange during a key episode of Earth’s history.
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