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ABSTRACT

Classification on the basis of gene expression data derived from RNA-seq promises to
become an important part of modern medicine. We propose a new classification
method based on a model where the data is marginally negative binomial but
dependent, thereby incorporating the dependence known to be present between
measurements from different genes. The method, called qtQDA, works by first

performing a quantile transformation (qt) then applying Gaussian quadratic
discriminant analysis (QDA) using regularized covariance matrix estimates.

We show that qtQDA has excellent performance when applied to real data sets and
has advantages over some existing approaches. An R package implementing the
method is also available on https://github.com/goknurginer/qtQDA.
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increasing her chances of survival. One promising idea for achieving such classifications is
to measure the pattern of gene expression in a patient sample and use this pattern of
expression as data to classify which cancer type the patient has.

There are many ways of measuring gene expression. One common approach, due to its
numerous advantages, is RNA-sequencing (RNA-seq) which measures gene expression
across the whole genome simultaneously (see Mardis, 2008; Wang, Gerstein ¢ Snyder,
2009). RNA-seq involves three main steps: (1) mRNA is obtained from a sample and
broken into millions of short segments; (2) these mRNA segments are converted into
cDNA; and (3) these cDNA segments are sequenced using next-generation sequencing.
The resulting sequence data is then mapped to genomic regions of interest, typically genes,
and the number mapping to each region is counted. Thus, in essence, RNA-seq data
consists of counts: for each gene we obtain a non-negative integer count which quantifies
the gene’s expression level; roughly speaking, the larger the count the higher the level of
expression.

Several approaches have been proposed for classifying RNA-seq data. General machine
learning approaches have been investigated, for example, support vector machines
(SVMs) and k-Nearest Neighbour (kNN) classifiers, and general regression approaches
have also been applied, for example, logistic regression (see Tan, Petersen ¢» Witten, 2014;
Zararsiz et al., 2017b). Others have focused on modeling the data more directly.

For example, Witten (2011) proposed the PLDA method, which models the counts using
the Poisson distribution, while Dong et al. (2016) proposed the NBLDA method, which
instead models the counts using the negative binomial distribution, thereby taking

into account the overdispersion known to be present in RNA-seq data on biological
replicates. Others still have proposed transforming the counts, for example, using a log
transformation, so that variations on traditional classification techniques become available,
for example, Gaussian classification. The best example of this sort is the method
voomDLDA (Zararsiz et al., 2017a). One common feature of these direct modeling
approaches is that they are, in classification terminology, “naive”: they assume that
measurements on the features used for classification, that is, the genes, are statistically
independent.

However, this independence assumption is very unrealistic, since genes are typically
involved in networks and pathways, implying that a particular gene’s expression level
is likely to be correlated with the expression level of other genes. Moreover, some
have argued, for example, Zhang (2017), that the assumption of independence has a
non-ignorable impact on our ability to classify: it causes bias in estimated discriminant
scores, making classification inaccurate. Given this, some have focused on models for the
data which incorporate dependence between genes. For example, Sun ¢ Zhao (2015)
proposed the SQDA method which models log-transformed counts with the multivariate
normal distribution using regularized estimates of covariance matrices, which are assumed
to be different for each class. More recently, Zhang (2017) developed a Bayesian
approach where the data is modeled using a (multivariate) Gaussian copula.

In this article we propose a new classification method for RNA-seq data based on a
model where the counts are marginally negative binomial but dependent. Like previous
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work, we use the multivariate normal distribution for classification, where each class is
assumed to have its own covariance matrix. However, our approach has two key
differences: (1) instead of modeling log-transformed counts, we model quantile
transformed counts; and (2) we use a novel application of a powerful regularization
technique for covariance matrix estimation. We call the method qtQDA: quantile
transformed (qt) quadratic discriminant analysis (QDA). We demonstrate the
performance of the method by applying it to several real data sets, showing that it performs
better than, or on par with, existing methods. qtQDA has advantages over some
existing approaches, and an R package qtQDA implementing the method is available on
https://github.com/goknurginer/qtQDA.

METHODOLOGY

The model

First we describe the model underpinning qtQDA. Suppose we wish to classify data into one 7Qf
K distinct classes on the basis of m genes (i.e., features). Let X0 = ka),Xz(k), . ,X,(,f )

be a random vector from the kth class where Xi(k) denotes the count for gene i. Like others, for
example, NBLDA and the method of Zhang (2017), we assume the counts are marginally
negative binomial, that is,

x® ~ NB(WH o), (1)
(k)

where M,{k) and (I)Ek) are the mean and dispersion for gene i, respectively (strictly speaking,
depends on the “library size,” but for the purposes of clarity, this complication is addressed

later). Note that, for non-zero dispersion,

var(x") = ¥ + ¢ (w7 > ",

i
that is, the data is over-dispersed relative to Poisson variation, consistent with known

properties of RNA-seq data on biological replicates (see McCarthy, Chen ¢ Smyth, 2012).
Unlike others, however, we suppose that X® is generated by the following process:

1. Let Z% be an m-vector from a multivariate normal distribution: Z* ~ MVN(0, X,),
where Z(,-k) ~ N(0,1).

2. Then let the ith component of X*) be the transformed random variable

xM = FHe(z), )
(k))

i

where @ is the standard normal distribution function and Fy is the NB(}LEk), ¢
distribution function.

We make two observations. Firstly, observe that the transformation in Eq. (2) generates a
vector X*® with the negative binomial margins specified in Eq. (1). This is a consequence
of the following elementary fact from probability theory: if F and G are distribution
functions, and X has distribution function F, then the transformed variable G *{F(X)} has
distribution function G (see Lange, 2010, p. 432). We call the kind of transformation
invoked here a quantile transformation. Note that, given the discreteness of the
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negative binomial distribution, the ambiguity of F, "' is obviated by imposing that
F.'(q) = inf{x : Fx(x) > g}, for g € [0, 1].

Secondly, observe that the negative binomial components of X® are not independent:
the underlying MVN distribution, with a dependence structure encoded in X, generates
a dependence structure between the components of X'®. Note especially that each
class is assigned a different covariance matrix. As Sun ¢ Zhao (2015) have suggested,
since the presence of disease, and different disease types, leads to “rewiring” of genetic
networks, and hence changes in gene associations, assuming a different covariance matrix
for each class is likely to lead to better classifications. Finally, note that while the model
specified by the process above is reminiscent of the Gaussian copula model of
Zhang (2017), the two models are quite different.

Classification
We now turn to how the model above is used for classification. Suppose we observe
x* = [xi‘, Xy ,x;‘n] T from unknown class y*, where y* € {1, 2, ..., K}. For each class we

apply the inverse of the quantile transformation Eq. (2) to the components of x* to produce
a new vector z*®, that is, where

Z® = o Y {H(x)} (3)

and Hy is a continuity-corrected version of Fy. Here Hy is defined by

Hi(x]) = Pr(X < x}) 4+ 0.5 x Pr(X = x}),

1

where X is a NB (Mgk), d),(-k)) distributed random variable, and Hy(X) is more nearly
uniformly distributed than F,(X) itself (Routledge, 1994). The transformation from x; to

Z;f<k)

is implemented by the zscoreNBinom function in the R package edgeR (see below).
Once this transformation has been made, given the assumptions of the model,

traditional QDA now becomes available, as follows. Under the model, if x* is from the kth

class then z*® is an observation from the MVN(0, ;) distribution. Thus, by Bayes

theorem, the posterior probability that x* belongs to the kth class is

Pr(y" = k|x") oc]‘k(z*(k))'rrk, (4)
where T is the prior probability that Pr(y* = k), and fj is the density
1 1 pels }
V)=————————exps — =V X, V
fk( ) (Zﬂ)m/2|2k|l/2 p{ P k

evaluated at z*®), We classify x* into the class that maximizes this posterior probability. It is
worth noting that since maximizing Eq. (4) is equivalent to maximizing log Pr(y* = k|x*),
this classification rule entails the following (quadratic) discriminant function:

1
O(x") = — E“E“k + log my,

), which has the following insightful interpretation: for a given class k,

~1/2
where uy = 2, [244(k

the further the vector uy is from the origin, the less likely x* is to belong to that class.
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Parameter estimation
To use the classifier in practice the parameters of the underlying model need to be
estimated, that is, the classifier needs to be “trained.” Specifically, for each gene
i=1,2,...,mandclass k=1, 2, ..., K, we need to estimate the negative binomial means
pblm and dispersions ¢§"), to parametrize the quantile transformation Eq. (3), and we need
to estimate the covariance matrix X, of the transformed variables, so QDA can be
performed with Eq. (4). For each class k, suppose we have a set of n RNA-seq samples
xgk), xgk) b ,xgk) known to belong to class k.

To estimate the negative binomial parameters we use the methodology implemented
in the R package edgeR (McCarthy, Chen ¢ Smyth, 2012; Chen, Lun & Smyth, 2014)
which is extremely fast and reliable, and offers three sophisticated approaches for
dispersion estimation. Maximum likelihood estimates (MLEs) of the gene means are found
by fitting a negative binomial generalized linear model (GLM) with logarithmic link

function:
k k
log i = B + log N,

where log N; is a model offset and N; is the “library size” for sample j, that is, the total
counts E,-xi( ) across all observed genes in the RNA-seq sample. The resulting gene
mean estimates are then given by ﬁ,gjk) =N; exp(BEk)). Note that the use of a GLM
with log N; as an offset allows us to avoid the use of “size factors” which are commonly
employed in other Poisson or negative binomial based methods to scale counts to
account for differences in library sizes (e.g., PLDA, NBLDA, and the method of
Zhang (2017)).

The dispersion d)l(»k) for each gene is estimated using the Cox-Reid adjusted profile

likelihood (APL) function:
APLI(6F) = #(¢F) — %log det(s W), 5)

where ¢ is the log-likelihood and .#{* is the Fisher information of ng), both functions
being evaluated at the MLE ng). This modified likelihood function adjusts for the fact that
the gene mean is estimated from the same data, thereby reducing the bias of the MLE of
d)gk). Instead of simply maximizing Eq. (5), however, to achieve even better dispersion
estimates, an approximate empirical Bayes strategy is applied, where the APL for each gene
is substituted by a weighted sum of APLs from carefully chosen sets of genes, resulting in
“information sharing” between genes, and thereby better dispersion estimates for
individual genes (see Chen, Lun ¢ Smyth, 2014 for details). Using different variations
of this general approach, edgeR offers three kinds of dispersion estimates: “common,”
“trended,” and “tag-wise.” By default, qtQDA uses the “tag-wise” dispersion estimates
(but, the user is free to choose any of these kinds).

Once the negative binomial parameters have been estimated we apply the quantile
transformation Eq. (3) to the components of the RNA-seq sample vectors to produce a

6 L0

corresponding set of transformed vectors z, ', z, ',...,zy  where, under the assumed
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model, zj(k) ~ MVN(0, =¢). To estimate the covariance matrix X, we begin by calculating
the standard estimate:

o L & s [om "
2"_n—lz{zj —z }{ZJ' —z }

=1
where z ¥ = ]’lej(k)
context where the data is typically “high dimensional,” that is, where the number of genes

/n. As it stands, however, this estimate is not useful in the present

used for classification will be approximately the same or greater than the number of
samples (i.e., m = n or m > n). In such situations this standard covariance matrix estimate
is known to perform poorly (see Tong, Wang ¢ Wang, 2014). To remedy this, we
regularize the standard estimate using the approach developed in Schdfer ¢» Strimmer
(2005) and Opgen-Rhein ¢ Strimmer (2007) which is implemented in the R package
corpcor (see also Strimmer, 2008). The corpcor method separately shrinks the
corresponding correlation estimates p;; toward zero and the variance estimates v; toward
their median to produce the regularized estimates

pir = (1= M)pw
Vi = AaVmedian + (1 — A2)¥i
where the shrinkage intensities are estimated via
— m
= Zi#i’ Vai(zpii’) and N — Zi:l Var(v;)
Zi;ﬁl’/ plll

A .
’ Zil (Vi - Vmedian)2

The regularized covariance matrix estimate 3 then has entries [ik]ii, = P\ Vivi.
This estimate has two excellent statistical properties: (1) it is always positive definite and
well conditioned (making the inverse computable); and (2) it is guaranteed to have
minimum mean squared error, which is a consequence of an important result proved by
Ledoit & Wolf (2003). Moreover, since the shrinkage intensities are calculated with analytic
formulas, the estimate also has two significant practical advantages: (1) it is
computationally very fast to compute; and (2) it does not require any “tuning” parameters.
We note that the corpcor approach to covariance matrix regularization is quite different
to the computationally intensive approach used in SQDA (Sun ¢ Zhao, 2015). Note
also that, while the corpcor method has previously been used for classification of gene
expression data from microarrays (see Xu, Brock ¢ Parrish, 2009), we appear to be the first
to use it for RNA-seq data.

The final parameter needed for classification with Bayes theorem Eq. (4) is the prior
probability of belonging to the kth class m; = Pr(y* = k). This probability can either be
specified by the user, for example, if epidemiological knowledge is available, or estimated
directly from the training data using

Sy =k

Ty =
n ’

where I{-} is the indicator function, and #’ is the total number of samples in all K classes.
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Feature selection

Lastly, we turn to the question of which genes to use for classification. When RNA-seq is
performed we typically obtain data on more than 20,000 genes. A vast number of these
genes, however, will not be informative for the purposes to distinguishing between different
classes. We therefore employ the following simple strategy for selecting m genes for
classification: (1) we filter genes with low expression across all samples; (2) for each
remaining gene we perform a likelihood ratio test (LRT) to test for genes differentially
expressed between groups; (3) a list of genes is made, sorted by LRT statistic; (4) finally,
the top m genes from this list is used for classification. As with negative binomial parameter
estimation, this strategy is implemented using edgeR. Others have adopted essentially the
same gene selection strategy, for example, NBLDA, SQDA, and the method of Zhang (2017).

RESULTS

To assess the performance of gtQDA we apply it to three publicly available data sets:

1. Cervical cancer data (see Witten et al., 2010). This consists of two classes, cancer and
non-cancer, each with 29 samples. Each sample consists of counts for 714 different
microRNAs obtained using RNA-seq.

2. Prostate cancer data (see Kannan et al., 2011). This consists of two classes, 20 samples
from cancer patients and 10 samples from benign matched controls. Each sample
consists of RNA-seq data for the whole transcriptome.

3. HapMap data (see Montgomery et al., 2010; Pickrell et al., 2010). The data considered
here consists of two of the HapMap populations: CEU (Utah residents with Northern
and Western European ancestry) and YRI (Yoruba in Ibadan, Nigeria). There are
60 CEU samples and 69 YRI samples, each consisting of RNA-seq data for the whole
transcriptome, and all from “healthy” individuals.

These data sets are very common in the RNA-seq classification literature (see Witten, 2011;
Tan, Petersen ¢ Witten, 20145 Dong et al., 2016; Zhang, 2017). Using these data sets,

we also compare the performance of qtQDA to a number of general machine learning
classifiers and specialized RNA-seq classifiers (corresponding R packages used for our
analysis are listed in brackets):

SVM (e1071)

kNN (e1071)

Logistic regression (glmnet)

PLDA (PoiClaClu)

NBLDA (http://www.comp.hkbu.edu.hk/xwan/NBLDA.R)
voomDLDA (MLSeq)

SQDA (SQDA)

For logistic regression, we use the GLMnet method proposed in Friedman, Hastie &
Tibshirani (2010) since this is one of the best representatives of this approach. This method
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Figure 1 Error rate vs genes selected. These plots show classification error rate as a function of the number of genes chosen for classification for the
(A) cervical cancer, (B) prostate cancer, and (C) HapMap data sets. Full-size 4] DOL: 10.7717/peer;j.8260/fig-1

uses a “lasso” (i.e., £;) penalty in the log-likelihood function which thus overcomes many of
the problems with logistic regression in high-dimensional settings (see Tan, Petersen ¢
Witten, 2014) and encourages regularized regression coefficients, that is, shrunken to
zero. For the SVM method we used a radial basis kernel, and for the kNN method we used
k =1, 3, and 5 (but only report results for k = 1 since this consistently performed best),
and both methods were applied to log transformed counts. We apply all methods as
recommended in their documentation and any “tuning” parameters were chosen with the
cross-validation tools provided in the corresponding software package or chosen with our
own cross-validation. The Gaussian copula method of Zhang (2017) has no publicly
available implementation.

For evaluation, we estimated the true error rate, that is, the rate at which false
classifications are made, using the following bootstrap procedure: (1) each data set is
randomly divided into two parts, one part consisting of 70% of the data, put aside for
training the classifier, and one part consisting of 30% of the data, used as a test set to
apply the trained classifier from which an error rate is recorded; (2) this is repeated 1,000
times and the error rates from each iteration is averaged to produce an estimate of the
true error rate. This is the same procedure used by Dong et al. (2016) and Zhang (2017).
We estimated the error rates for m = 100, 200, 300, 500, 700 genes, where these genes are
selected using the procedure detailed in the previous section.

Results are shown in Fig. 1 and Table 1. We see that qtQDA performs best for both
cancer data sets, achieving the lowest error rate at 200 genes for the cervical cancer
data and 100 genes for the prostate cancer data. Interestingly, for the cervical cancer data,
qtQDA uniformly achieves the smallest error rate. For the HapMap data, qtQDA
essentially performs as well as the SVM, kNN, and logistic regression classifiers. We note
that even though these classifiers have similar performance, we think qtQDA or logistic
regression would be preferred, at least in a medical context, since these classifiers do
more than merely assign a sample to a particular class: they also provide a posterior
probability of belonging to each class. This is important in a medical context where the
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Table 1 Minimum error rates. This table shows the minimum error rates achieved for each classifier in
each data set. The number of genes used to obtain this minimum error rate is reported in brackets.

Method Cervical cancer Prostate cancer HapMap

qtQDA 0.0125 (200) 0.0203 (100) 0.0018 (300)
SVM 0.0276 (100) 0.0364 (100) 0.0014 (500)
kNN 0.0277 (100) 0.0523 (200) 0.0009 (200)
GLMnet 0.0406 (200) 0.0341 (300) 0.0009 (500)
PLDA 0.0608 (100) 0.1609 (100) 0.0123 (100)
NBLDA 0.0402 (200) 0.0634 (200) 0.0058 (100)
voomDLDA 0.0425 (100) 0.1076 (300) 0.0029 (100)
SQDA 0.0318 (100) 0.0483 (100) 0.0046 (300)

different treatments or further diagnostic procedures which could be prescribed, following
a classification, may be associated with very different risks.

DISCUSSION

Early investigations into classification with gene expression data from microarrays, for
example, Dudoit, Fridlyand & Speed (2002), showed that making the (unrealistic) assumption
of independence between measurements from different genes can still lead to classifiers with
good performance. Our results, however, seem to suggest that incorporating dependence
between genes can lead to even better performance, at least for RNA-seq data.

Our method has two key advantages. Firstly, unlike some approaches (e.g., KNN,
GLMnet, PLDA, SQDA), qtQDA does not have any “tuning” parameters which need to be
chosen with cross-validation, thus making it more straightforward to apply in practice.
Secondly, in comparison to approaches which take gene dependence into account, for
example, SQDA and the method of Zhang (2017), qtQDA is computationally much faster.
SQDA adopts a computationally intensive method for covariance matrix regularization.
In an effort to reduce the required computation, the authors impose a block diagonal
structure on the covariance matrix where each block is assumed to be the same size
(but which needs to be determined by cross-validation), simplifications which even the
authors acknowledge are unrealistic (e.g., under these assumptions the order of the genes
used for classification matters). Yet, despite these simplifications, extensive computation is
still required, making the method very slow. On the other hand, the regularization
approach applied in qtQDA requires no special assumptions for the covariance matrix
and requires minimal computation since the regularized estimate is obtained with
analytic formulas. The Gaussian copula method of Zhang (2017) is also computationally
intensive, but for a different reason: it is cast in a Bayesian framework and requires a
Metropolis-Hasting algorithm, in combination with Gibbs sampling, for parameter
estimation. As the author acknowledges, the computations required are time consuming
even when implemented in a fast language like C++.

As Dudoit, Fridlyand & Speed (2002) points out, there are three related statistical
problems in the area of classifying disease with gene expression data: (1) identifying new
disease subclasses, that is, cluster analysis; (2) classifying samples into known disease
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classes, that is, discriminant analysis; and (3) identifying “marker” genes that characterize
different disease subclasses, that is, variable selection. This paper has firmly focused on
problem (2), which is why it was sufficient to evaluate classifier performance solely in
terms of error rate and not sparsity, that is, the number of features used to make
classifications. The feature selection method we proposed, while likely to deliver many
genes informative for classification, is clearly too simplistic to deliver only those genes
which are informative for distinguishing between classes. Thus, future research will aim
at developing a sparse version of qtQDA, involving some level of regularization for
features, that is, identifying less informative features and reducing their influence to
zero (e.g., like the GLMnet logistic regression classifier). A sparse qtQDA may also help
address problem (3) above, the answer to which has practical advantages, for example,
knowing which subset of genes need to be measured for effective classification, and
theoretical advantages, for example, obtaining insight into the underlying biological
process driving the disease (or subclass) in question. A sparse qtQDA may also deliver a
further bonus: it may lead to a better answer to problem (2), that is, to even better disease
classifications.

CONCLUSION

We have proposed a new classification method for RNA-seq data based on a model where
the data is marginally negative binomial but dependent, thereby incorporating dependence
between genes. The method works by first performing a quantile transformation then
applying Gaussian QDA, where each class is assumed to have its own covariance matrix.
The classifier is trained by using the sophisticated edgeR methodology for negative
binomial parameter estimation, to parametrize the quantile transformation, and by using
the powerful corpcor methodology for regularized covariance matrix estimation, so that
effective QDA can be performed on the transformed data. We have shown that, when
applied to real data sets, the classifier has excellent performance in comparison to other
methods, and has two key advantages which makes it easy to apply in practice: (1) it does
not have any tuning parameters; and (2) it is computationally very fast. An R package
called qtQDA implementing the method is also available on https://github.com/
goknurginer/qtQDA.

ACKNOWLEDGEMENTS

We thank Prof. Terry Speed for helping us clarify the differences between our qtQDA
model and the Gaussian copula model of Zhang (2017), for recommending the corpcor
covariance matrix regularization method, and for commenting on a draft manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Scientific and Technical Research Council of Turkey
(TUBITAK 2214/A—1059B141601270) and by the Australian National Health and
Medical Research Council (Program Grant 1054618 and Fellowship 1154970 to Gordon K.

Kochan et al. (2019), PeerdJ, DOI 10.7717/peerj.8260 10/13


https://github.com/goknurginer/qtQDA
https://github.com/goknurginer/qtQDA
http://dx.doi.org/10.7717/peerj.8260
https://peerj.com/

Peer/

Smyth), the Cancer Therapeutics CRC, Victorian State Government Operational
Infrastructure Support and Australian Government NHMRC IRIIS. Funding for the article
processing fee was provided by Smyth Lab funds. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The Scientific and Technical Research Council of Turkey (TUBITAK):
2214/A—1059B141601270.

The Australian National Health and Medical Research Council (Grant and Fellowship):
1054618 and 1154970.

Cancer Therapeutics CRC, Victorian State Government Operational Infrastructure
Support and Australian Government NHMRC IRIIS.

Smyth Lab funds.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Necla Koghan conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

e G. Yazgi Tutuncu conceived and designed the experiments, authored or reviewed drafts
of the paper, approved the final draft.

e Gordon K. Smyth conceived and designed the experiments, contributed reagents/
materials/analysis tools, authored or reviewed drafts of the paper, approved the final
draft.

e Luke C. Gandolfo conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

e Goknur Giner conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:
qtQDA R package is available on https://github.com/goknurginer/qtQDA.

REFERENCES
Chen Y, Lun AT, Smyth GK. 2014. Differential expression analysis of complex RNA-seq

experiments using edgeR. In: Datta S, Nettleton D, eds. Statistical Analysis of Next Generation
Sequencing Data. Cham: Springer, 51-74.

Dong K, Zhao H, Tong T, Wan X. 2016. NBLDA: negative binomial linear discriminant analysis
for RNA-seq data. BMC Bioinformatics 17(1):369 DOI 10.1186/s12859-016-1208-1.

Kochan et al. (2019), PeerdJ, DOI 10.7717/peerj.8260 11/13


https://github.com/goknurginer/qtQDA
http://dx.doi.org/10.1186/s12859-016-1208-1
http://dx.doi.org/10.7717/peerj.8260
https://peerj.com/

Peer/

Dudoit S, Fridlyand J, Speed TP. 2002. Comparison of discrimination methods for the
classification of tumors using gene expression data. Journal of the American Statistical
Association 97(457):77-87 DOI 10.1198/016214502753479248.

Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software 33(1):1-22 DOI 10.18637/jss.v033.i01.

Kannan K, Wang L, Wang J, Ittmann MM, Li W, Yen L. 2011. Recurrent chimeric RNAs
enriched in human prostate cancer identified by deep sequencing. Proceedings of the National
Academy of Sciences of the United States of America 108(22):9172-9177
DOI 10.1073/pnas.1100489108.

Lange K. 2010. Numerical analysis for statisticians. New York: Springer.

Ledoit O, Wolf M. 2003. Improved estimation of the covariance matrix of stock returns with an
application to portfolio selection. Journal of Empirical Finance 10(5):603-621
DOI 10.1016/s0927-5398(03)00007-0.

Mardis ER. 2008. Next-generation DNA sequencing methods. Annual Review of Genomics and
Human Genetics 9:387-402 DOI 10.1146/annurev.genom.9.081307.164359.

McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-seq
experiments with respect to biological variation. Nucleic Acids Research 40(10):4288-4297
DOI 10.1093/nar/gks042.

Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R,
Dermitzakis ET. 2010. Transcriptome genetics using second generation sequencing in a
caucasian population. Nature 464(7289):773-777 DOI 10.1038/nature08903.

Opgen-Rhein R, Strimmer K. 2007. Accurate ranking of differentially expressed genes by a
distribution-free shrinkage approach. Statistical Applications in Genetics and Molecular Biology
6(1):1-18 DOI 10.2202/1544-6115.1252.

Perou CM, Serlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT,
Johnsen H, Akslen LA, Fluge @, Pergamenschikov A, Williams C, Zhu SX, Lenning PE,
Borresen-Dale A-L, Brown PO, Botstein D. 2000. Molecular portraits of human breast
tumours. Nature 406(6797):747-752.

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB,
Stephens M, Gilad Y, Pritchard JK. 2010. Understanding mechanisms underlying human gene
expression variation with RNA sequencing. Nature 464(7289):768-772
DOI 10.1038/nature08872.

Routledge RD. 1994. Practicing safe statistics with the mid-p. Canadian Journal of Statistics
22(1):103-110 DOIT 10.2307/3315826.

Schifer J, Strimmer K. 2005. A shrinkage approach to large-scale covariance matrix estimation
and implications for functional genomics. Statistical Applications in Genetics and Molecular
Biology 4(1):1-30 DOI 10.2202/1544-6115.1175.

Strimmer K. 2008. Comments on: augmenting the bootstrap to analyze high dimensional genomic
data. Test 17(1):25-27 DOI 10.1007/s11749-008-0101-2.

Sun J, Zhao H. 2015. The application of sparse estimation of covariance matrix to quadratic
discriminant analysis. BMC Bioinformatics 16(1):48 DOI 10.1186/s12859-014-0443-6.

Tan KM, Petersen A, Witten D. 2014. Classification of RNA-seq data. In: Datta S, Nettleton D,
eds. Statistical Analysis of Next Generation Sequencing Data. Cham: Springer, 219-246.

Tong T, Wang C, Wang Y. 2014. Estimation of variances and covariances for high-dimensional
data: a selective review. Wiley Interdisciplinary Reviews: Computational Statistics 6(4):255-264
DOI 10.1002/wics.1308.

Kochan et al. (2019), PeerdJ, DOI 10.7717/peerj.8260 1213


http://dx.doi.org/10.1198/016214502753479248
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1073/pnas.1100489108
http://dx.doi.org/10.1016/s0927-5398(03)00007-0
http://dx.doi.org/10.1146/annurev.genom.9.081307.164359
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1038/nature08903
http://dx.doi.org/10.2202/1544-6115.1252
http://dx.doi.org/10.1038/nature08872
http://dx.doi.org/10.2307/3315826
http://dx.doi.org/10.2202/1544-6115.1175
http://dx.doi.org/10.1007/s11749-008-0101-2
http://dx.doi.org/10.1186/s12859-014-0443-6
http://dx.doi.org/10.1002/wics.1308
http://dx.doi.org/10.7717/peerj.8260
https://peerj.com/

Peer/

Wang Z, Gerstein M, Snyder M. 2009. RNA-seq: a revolutionary tool for transcriptomics.
Nature Reviews Genetics 10(1):57-63 DOI 10.1038/nrg2484.

Witten DM. 2011. Classification and clustering of sequencing data using a poisson model.
Annals of Applied Statistics 5(4):2493-2518 DOI 10.1214/11-a0as493.

Witten D, Tibshirani R, Gu SG, Fire A, Lui W-O. 2010. Ultra-high throughput sequencing-based
small RNA discovery and discrete statistical biomarker analysis in a collection of cervical
tumours and matched controls. BMC Biology 8(1):58 DOI 10.1186/1741-7007-8-58.

Xu P, Brock GN, Parrish RS. 2009. Modified linear discriminant analysis approaches for
classification of high-dimensional microarray data. Computational Statistics ¢ Data Analysis
53(5):1674-1687 DOI 10.1016/j.csda.2008.02.005.

Zararsiz G, Goksuluk D, Klaus B, Korkmaz S, Eldem V, Karabulut E, Ozturk A. 2017a.
voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.

Peer] 5:€3890 DOI 10.7717/peer;j.3890.

Zararsiz G, Goksuluk D, Korkmaz S, Eldem V, Zararsiz GE, Duru IP, Ozturk A. 2017b.

A comprehensive simulation study on classification of RNA-Seq data. PLOS ONE
12(8):€0182507 DOI 10.1371/journal.pone.0182507.

Zhang Q. 2017. Classification of RNA-Seq data via Gaussian copulas. Stat 6(1):171-183
DOI 10.1002/sta4.144.

Kochan et al. (2019), PeerdJ, DOI 10.7717/peerj.8260 13/13


http://dx.doi.org/10.1038/nrg2484
http://dx.doi.org/10.1214/11-aoas493
http://dx.doi.org/10.1186/1741-7007-8-58
http://dx.doi.org/10.1016/j.csda.2008.02.005
http://dx.doi.org/10.7717/peerj.3890
http://dx.doi.org/10.1371/journal.pone.0182507
http://dx.doi.org/10.1002/sta4.144
http://dx.doi.org/10.7717/peerj.8260
https://peerj.com/

	qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
	Introduction
	Methodology
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


