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ABSTRACT
Water pollution has been hindering the world’s sustainable development.
The accurate inversion of water quality parameters in sewage with visible-near
infrared spectroscopy can improve the effectiveness and rational utilization and
management of water resources. However, the accuracy of spectral models of
water quality parameters is usually prone to noise information and high
dimensionality of spectral data. This study aimed to enhance the model accuracy
through optimizing the spectral models based on the sensitive spectral intervals of
different water quality parameters. To this end, six kinds of sewage water taken
from a biological sewage treatment plant went through laboratory physical and
chemical tests. In total, 87 samples of sewage water were obtained by adding different
amount of pure water to them. The raw reflectance (Rraw) of the samples were
collected with analytical spectral devices. The Rraw-SNV were obtained from the Rraw

processed with the standard normal variable. Then, the sensitive spectral intervals of
each of the six water quality parameters, namely, chemical oxygen demand (COD),
biological oxygen demand (BOD), NH3-N, the total dissolved substances (TDS),
total hardness (TH) and total alkalinity (TA), were selected using three different
methods: gray correlation (GC), variable importance in projection (VIP) and set
pair analysis (SPA). Finally, the performance of both extreme learning machine
(ELM) and partial least squares regression (PLSR) was investigated based on the
sensitive spectral intervals. The results demonstrated that the model accuracy based
on the sensitive spectral ranges screened through different methods appeared
different. The GC method had better performance in reducing the redundancy and
the VIP method was better in information preservation. The SPA method could
make the optimal trade-offs between information preservation and redundancy
reduction and it could retain maximal spectral band intervals with good response to
the inversion parameters. The accuracy of the models based on varied sensitive
spectral ranges selected by the three analysis methods was different: the GC was the
highest, the SPA came next and the VIP was the lowest. On the whole, PLSR and
ELM both achieved satisfying model accuracy, but the prediction accuracy of the
latter was higher than the former. Great differences existed among the optimal
inversion accuracy of different water quality parameters: COD, BOD and TN were
very high; TA relatively high; and TDS and TH relatively low. These findings can
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provide a new way to optimize the spectral model of wastewater biochemical
parameters and thus improve its prediction precision.

Subjects Agricultural Science, Biochemistry, Computational Science, Ecohydrology,
Environmental Contamination and Remediation
Keywords Band screen, Hyperspectral remote sensing, Gray correlation method, Variable
importance projection analysis, Set pair analysis, Extreme learning machine

INTRODUCTION
Water pollution, one of the most important causes for the shortage of the utilizable water
resources, has seriously threatened the sustainable development of human society.
According to the statistics of the 4th World Water Forum UN World Water
Development Report, about 420 billion cubic meters of sewage is poured into rivers and
lakes every year, polluting 550 million cubic meters of fresh water, which is equivalent to
over 14% of the total amount of global river. Water quality is affected by the synergy
of multiple pollutants (Brönmark & Hansson, 2002). The excessive presence of these
pollutant particles would make the water quality parameters go beyond the current
standards, so the water becomes too contaminated to use. Therefore, accurately and
efficiently acquiring the water quality parameters of these pollutants can improve the
pertinence and effectiveness of water pollution monitoring.

The traditional procedure of quantitatively estimating the water pollutant parameters
mainly includes such steps as water sampling at fixed points, physical and chemical
examinations in laboratory, and comprehensive statistical analysis. Such a method is
not only time-consuming and laborious, but also limited in observation points and
representation (Esterby, 1996; Shafique et al., 2003). There are more than 117 million lakes
on the earth, only a very small number of which are under regular and continuous
monitoring (Verpoorter et al., 2014). Due to the limitations of the traditional method, it is
impossible to achieve dynamic monitoring of water quality in large areas.

Different from the conventional methods, remote sensing technology can acquire
large-area water spectral information quickly, continuously and inexpensively and obtain
by different methods the multiple components information of water from remote sensing
images (Bukata & Bukata, 2005; Arabi et al., 2016; Campanelli et al., 2017; Deng et al.,
2017). However, due to the influence of spatial and temporal variation and long
transmission distance, about 90–98% of the signals obtained by the remote sensing are
from the surface of the water and the atmosphere, and the remaining 2–10% of the
signals are from the water components. This has led to the complexity of the optical
characteristics of water, which has made it rather difficult to identify the information of
water pollutants, resulting in the uncertainty in the extraction results of water pollutants
(Gitelson & Kondratyev, 1991). In the water, some of the main pollutant parameters
(chemical oxygen demand (COD), biological oxygen demand (BOD)) change the radiation
of light through their own absorption and scattering characteristics of light, and thus
have different characteristic absorption spectra, which strongly correlates the pollutant
content and spectral reflectance (Duan et al., 2006; Cao et al., 2015;Wu, Du & Yan, 2011).
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In recent years, hyper-spectral techniques are still being widely used for various
monitoring of natural resources. Nowadays, the application of hyper-spectral techniques
can facilitate the elimination of the external interference, obtain fine spectral information,
and ensure the accuracy of spectral inversion. Therefore, more researchers have deeply
studied the application of the hyperspectral technology in obtaining the visible and
near-infrared (VIS-NIR) band in order to estimate the content of some pollutants (Palmer,
Kutser & Hunter, 2015; Han & Rundquist, 1997).

At present, the inversion of water quality parameters is mainly aimed at the
physiological parameters of the water, such as transparency and nutrients (Zhang,
Giardino & Li, 2017), but rarely at such biochemical parameters of water as its total
hardness (TH), total dissolved substances (TDS), BOD (Yang, Yan & Lin, 2004), COD
(Rojas, 2009), total alkalinity (TA) and ammonia nitrogen (NH3-N) (Lerch et al., 2015).
These water quality parameters reflect the water pollution degree, which is of great
significance for the purposeful and effective treatment of sewage. Among the spectral
inversion methods of water quality parameters, the empirical statistical method remains
the mainstream. The partial least squares regression (PLSR) (Wold, 1966), as a typical
linear regression method, is of wide use in model construction for its advantage of using all
available bands without multi-collinearity problem. With the gradual promotion of
machine learning algorithms, such advanced semi-empirical machine learning algorithms
(Keller et al., 2018) as artificial neural networks (Isiyaka et al., 2018; Bansal & Ganesan,
2019), support vector machine, extreme learning machine (ELM) have also been gradually
applied in the retrieval of water quality parameters, which have greatly improved the
model inversion accuracy. Compared with traditional neural networks, ELM calculates
faster with the learning accuracy guaranteed. However, in the process of spectral data
modeling, there are two major problems in data processing caused by the large amount of
data information of hyperspectrum (Zhang, Maoguo & Yongqiang, 2018). One problem is
that between the adjacent frequency bands usually has a high correlation, which brings
huge redundant information. Redundant information is of no use to the processing of
hyperspectral data, which will be a great waste of computation and storage. Another
problem is that the detailed information of spectrum will increase the dimension of
hyperspectral data, which may lead to the “Hughes phenomenon.” Hughes phenomenon
means the increase of data dimension will decrease the classification accuracy when the
number of training samples is limited (Hughes, 1968). Therefore, in current researches,
scholars are trying to adopt some methods to screen the characteristic spectrum, to remove
redundant information, and to improve the stability and predictability of the model
(Feng et al., 2018). The variable importance in projection (VIP) algorithm has successfully
distinguished the hyperspectral band subsets of forest species by identifying the
importance of the independent variables (Peerbhay, Mutanga & Ismail, 2013); the gray
correlation (GC) method, using the gray values of the independent variables, has achieved
the screening of spectral intervals of soil ion characteristics (Wang et al., 2019). So far
these two methods have rarely been applied in the screening of the characteristic spectrum
of water pollution parameters. Meanwhile, these band screening methods have different
preferences and significant differences in the performance of different modeling methods,
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which will lead to the uncertainty in the model accuracy (Lerch et al., 2015). Iterative
progressive elimination combined with PLSR has a good performance in the inversion of
chlorophyll A and total suspended solids (Wang et al., 2018a). VIP combined with PLSR
and SVR has significantly improved the inversion effect of characteristic spectra of
water-soluble ions in soil, while GC combined with PLSR and SVR showed relatively
poor inversion effect (Wang et al., 2019). However, GC combined with ELM has a good
effect on the prediction and inversion of total nitrogen content in soil (Zhou et al., 2017).
Moreover, in order for the better universality and stability of band selection method, the
set pair analysis (SPA) theory was used to establish models which can identify the
overall degree as well as the important indicators and subsystems in the influencing factors
(Zhang et al., 2019). SPA theory, for its remarkable capability of dealing with uncertain
problems, has been widely applied in many fields (Wang et al., 2017a; Li et al., 2016), but
not yet applied in band selection. This research applied the band selection methods of GC,
VIP and SPA to select from hyperspectral data the feature subsets, which were used to
establish PLSR and ELM models to estimate such water quality parameters as COD, BOD,
NH3-N, TDS, TH and TA, and to compare and analyze the inversion effects of different
pollutant indicators.

In particular, the study aims to: (1) determine the optimal spectral interval
corresponding to the six water pollution indicators, build the optimal inversion models of
six water pollution parameters, and achieve quantitative estimation of water pollution
parameters through hyperspectrum; (2) verify the SPA method in weighing the
different wavelength screening methods and provide an approach to band selection by
applying the set optimization idea; (3) determine the corresponding optimal models for
different water quality parameters by comparing the performance of GC, VIP and SPA
models.

MATERIALS AND METHODS
Sample preparation and chemical analysis
The water samples were taken from different spots (water inlet, anoxic tank, aerobic tank,
sedimentation tank and water outlet) under different treatment methods at a domestic
sewage treatment plant in China. The domestic sewage treatment plant gave field permit
approval to us (NO. 51409221, 51979234). According to our pre-analysis (Table 1)
(CESP, 2002; Kotti et al., 2018), the water samples collected at the inlet were abundantly
rich in COD, BOD and NH3-N (COD: 425 mg/L, BOD: 101.15 mg/L, NH3-N: 34.853 mg/
L), whilst the water samples collected in other treatment ponds were relatively low in COD
of 20–140 mg/L, BOD of 3.1–13 mg/L and NH3-N of 0–1.723 mg/L. Such large variations
suited well to represent the range of water quality collected from different locations
investigated in this study, but also leaving non-negligible deficiency in representing water
quality of moderate concentrations. Therefore, to make the hyperspectral model more
robust and responsive to minor changes of water quality at other potential locations, we
further diluted the water samples into subsamples to form a full range of distribution
within the minimum and maximum values detected in this study. To be specific, following
the minimum and maximum COD measured from the inlet and other treatment ponds,
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the water samples rich in COD were diluted by adding different amount of pure water,
forming different COD concentrations varying at unit of five mg/L. In total, 87 water
samples were obtained to establish the hyperspectral model and strengthen its
applicability. In a real application of hyperspectral model, the water quality of targeted
samples often covers a variety of concentrations, and thus can be measured and applied
directly without any dilution. The laboratory was kept in a constant temperature during
the experiments. The main water quality parameters included NH3-N, TA, TH, TDS, COD
and BOD.

Acquisition and pretreatment of spectral data
The wastewater samples were put into black cylindrical cups with a depth of five cm and a
diameter of 10 cm for spectral data collection in the laboratory. The hyperspectral data for
wastewater samples were measured using an ASD (Analytical Spectral Devices, Inc.,
Boulder, CO, USA) FieldSpec� 3 spectrometer with spectral range from 350 to 2,500 nm.
The instrument was equipped with one sensor with 1.4 nm spectral resolution for the
range of 350–1,000 nm and the other sensor two nm, 1,000–2,500 nm. The spectral data
were collected in a dark room by exposing the water sample surfaces to a halogen lamp
of 50 W above with a 30� of incident angle and 50 cm in distance and a fiber-optics
probe 5�, 15 cm, so as to minimize the effects of external factors (Wang & Zhao, 2000).
Before each measurement, we had fully preheated the spectrometer and light source and
checked the spectrometer with a standardized white panel of 99% reflectance in order to
reduce measurement errors. Each water sample was measured twice vertically, and at
each of which the spectral data were gathered 10 times. Altogether there were 20 spectrum
curves for each sample (Hong et al., 2018). From the 20 curves the raw spectral reflectance
(Rraw), namely, arithmetic mean, were obtained by using ViewSpecPro software
(6.0 version). The fluctuation of Rraw would influence the accuracy of subsequent modeling
due to the disturbance of the random error, instrument noise and external environment in

Table 1 Main water quality parameters.

Parameters Water
inlet

Anoxic
tank

Aerobic
tank

Sedimentation
tank

Outlet of
water

Experiment methods

NH3-N (mg/L) 34.853 1.723 1.499 0 0 According to Nessler’s reagent spectrophotometer with
the amount of visible light spectrophotometer 722 N
for determining NH3-N

Total alkalinity (mg/L) 251.70 147.02 148.20 101.15 103.50 According to acid base indicator titration method

Total hardness (mmol/L) 1.09 1.13 1.13 1.17 1.11 According to the EDTA titration method (GB11914-
1989)

Total dissolved
substance (mg/L)

351 323 317 344 343 According to Gravimetric method (GB T5750.5-2006)

COD (mg/L) 425 140 134 23 20 According to the dichromate method (GB11914-1989)
using a standard COD digestion apparatus (K-100) to
determine COD

BOD (mg/L) 86 8.5 13 3.1 6.2 According to the dilution and inoculation method
(HJ505-2009) with a constant temperature incubator
(HWS-150 type) for determining the content of BOD5
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spectral data collection. In general, the external noise can be eliminated to some degree
with such effective pretreatments as resampling, smoothing and transformation, which can
improve the spectral characteristics (Ding et al., 2018). Therefore, two steps were adopted
to pretreat the Rraw: (1) removing the marginal wavelengths (2,401–2,500 nm and
350–399 nm) of higher noise in each water sample, then smoothing the remaining
spectrum data through filter method (polynomial order = 2; window size = 5) of
Savitzky-Golay (Savitzky & Golay, 1964) by Origin Pro software (2017SR2 version); and
(2) obtaining the precise Rraw−SNV using the standard normal variable (SNV) to remove the
effects of baseline shift and surface scattering on the spectral data (Xiao, Yi & Hao,
2016). The spectral curves of Rraw and Rraw−SNV are shown in Figs. 1A and 1B. As can be
seen, the spectral curve in Fig. 1B is much smoother than that in Fig. 1A.

Wavelength selection methods
Gray correlation
The GC method, one of the gray system theories, seeks the primary and secondary
relations and analyzes the different effects of all the factors in a system (Ju-Long, 1982; Liu,
Yang & Wu, 2015). The gray correlation degree (GCD), varying from one moment and
object to the other, refers to the measurement of the factor correlation between two
systems. In the process of system development, higher consistency of change trend of the
two factors reflects higher correlation degree and vice versa (Zhu et al., 2017). The main

Figure 1 Spectral data curve. (A) Reflectance spectral curves. (B) Standard normal variable reflectance
curves. Full-size DOI: 10.7717/peerj.8255/fig-1
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calculation steps are: first, determining signature and factor sequences with the former
marked as x0(t) which is a collection of m data—x0(t) = {x0(1), x0(2),…, x0(m)} and
the latter marked as xi(t) which contains n sub-sequences with each as a collection of
m data—xi(t) = {xi(1), xi(2),…, xi(m)}; and second, processing the data sequences
dimensionlessly using averaging operators. Xi = {xi(1), xi(2),…, xi(m)} represents the
behavior sequence of factor xi and D the averaging sequence operator, and thus
XiD = {xi(1)d, xi(2)d,…, xi(m)d}. So the mean data value is calculated as

xiðkÞd ¼ xiðkÞ
Xi

Xi ¼ 1
n

Xn
k¼1

xiðkÞ k ¼ 1; 2; ::; n (1)

j0iðtÞ ¼
Dmin þ rDmax

D0iðtÞ þ rDmax
(2)

where Δmax is the maximum of |x0(t) − xi(t)|; Δmin is the minimum of |x0(t) − xi(t)|;
|x0(t) − xi(t)| is the value at time t; ρ is the coefficient of discrimination. Therefore, GCD
between the signature and factor sequences is calculated as

g0i ¼
1
n

Xn
t¼1

j30iðtÞ (3)

From the interaction between the signature and factor sequences, the factors’ primary and
secondary influences can be predicted (Wang et al., 2018b). In this paper, the higher the
GCD of a certain band is, the more sensitive the band is to the water quality parameter, and
vice versa.

Variable importance projection
The VIP is a variable screening analysis method based on PLSR model. The VIP value of a
spectral variable reflects the importance of this variable in the prediction of the substance
to be measured (Oussama et al., 2012; De Almeida et al., 2013). The VIP value reflects
the explanatory power of independent variable over dependent variable, and represents
the importance of independent variable to model fitting (Chavana-Bryant et al., 2019).
If the explanatory ability of each variable to Y is the same, then the VIP value of all
independent variables is 1. If the VIP value of an independent variable is less than 1,
it means that the variable makes little contribution to the model and has a very low ability
to explain the dependent variable, so it can be eliminated. In the PLSR model, VIPi to an
independent variable Xi is defined as:

VIPi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p �

Xm

h¼1
RdðY; thÞW2

hj

RdðY; t1; t2; � � �; tmÞ

s
(4)

where p is the dimension of independent variable; th is the component h; m is the number
of components selected in the model; Whj is the component of Xj corresponding to
axis Wh; Rd (Y; th) represents the variation of Y explained by the component th; and
Rd (Y; t1, t2, ···tm) represents the cumulative variation accuracy of Y explained by t1–tm.
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In PLSR model, the explanatory power of xj over Y is passed through th, so if th bears a
strong explanatory power over Y, and meanwhile xj plays a very important role in the
process of th construction, th can be reasonably regarded as very important variable in
explaining Y. In this way of wavelengths selection, the wavelengths with strong explanatory
power are reserved while those with weak explanatory power are eliminated (Chemura,
Mutanga & Dube, 2017).

Set pair analysis
Set pair analysis integrates uncertainty analysis and determinacy analysis (Zhao & Xuan,
1996). The basis of SPA is set pair whose key is correlation degree, which has been
applied as a criterion for the analysis of certainty and uncertainty (Zhang et al., 2019).
During the hyperspectral band selection, the GC value Yi = (y1, y2,···, yn) can be defined as
set A, and VIP value Zi = (z1, z2, ···, zn) as set B, and then the two sets compose a set pair
H = (A, B). To study the correlation degree of the set pair, the formulas are as follows:

mi ¼ Si þ Fi � Ii þ Pi � J¼ si
n
þ fi
n
Ii þ pi

n
J (5)

Ii¼ Si � Pi
Si þ Pi

(6)

vi ¼ 1=nþ 1=n � ui (7)

Wi ¼ viPN
i vi

ði ¼ 1; 2; . . . ;NÞ (8)

where Si, Fi, Pi are the identity degree, discrepancy degree and opposite degree of the
two sets in the context of the same problem, respectively. They describe the association of
the two sets from different aspects. Si, Fi, Pimeet the relationship: Si + Fi + Pi = 1, n denotes
the total number of characteristics of the set pair; si is the number of the common
characteristics of the two sets; fi is the number of the different characteristics of the
two sets (Li et al., 2016); pi is the number of the opposite characteristics of the two sets.
When J = −1, the contact number ui, the relative membership degree vi, and the weighted
value, Wi, of the VIP value and GC value, were calculated.

Model construction and validation
Classification of modeling and validation sets
Kennard-Stone algorithm (K-S) (Kennard & Stone, 1969) was used to classify the sample
sets to select representative calibration sample sets. K-S was used to calculate the minimum
Euclidean distance of the unselected samples according to the selected samples. Then
the samples with the maximum Euclidean distance were selected into the calibration set in
a repeated way until the samples of a specified number were selected. K-S algorithm has
turned out to be effective in selecting representative samples (Morais et al., 2019).
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Two-third of the water quality samples were selected for the modeling set (n = 58) and
one-third for the validation set (n = 29).

Modeling methods and evaluation
The PLSR and ELM methods were applied to the quantitative inversion of different water
quality parameters in this paper. The PLSR model has been widely applied and can
overcome the multicollinearity of independent variables because of its dimensionality
reduction, information integration and band optimization in the modeling process, which
has greatly improved the ability of the system to extract principal components (Ryan & Ali,
2016; Wang et al., 2017b). The ELM is a machine learning algorithm based on feed
forward neural network. It has the advantages of high learning efficiency, high accuracy
and simple parameter adjustment over the traditional feed forward neural network (Song
et al., 2013). The optimal model was selected to inverse the water quality parameters
through comparing the models’ root mean square error of calibration (RMSEC),
determination of coefficients (R2

c), root mean square error of prediction (RMSEP),
prediction determination of coefficients (R2p) and relative prediction deviation (RPD). R2c
and R2

p are used to evaluate the stability degree of a model. The closer its value is to 1, the
higher stability the model has. RMSEC and RMSEP represent the accuracy of the model.
The smaller their value is, the higher the model accuracy is. A model is considered
excellent when RPD > 3.0, very good when 2.5 < RPD ≤ 3, good when 2 < RPD ≤ 2.5,
satisfactory when 1.5 < RPD ≤ 2 and poor when RPD ≤ 1.5 (Williams, 2001).

RESULT AND ANALYSIS
Correlation between water quality parameters content and spectral
reflectance
The Pearson correlation coefficients between each water quality parameter and the
Rraw−SNV (400–2,400 nm) were tested with the significance level (P < 0.001, |r| = 0.324 or
above). The curves of correlation coefficients of water quality parameters were plotted in
Fig. 2.

The change of the correlation coefficients of water quality parameters was complex.
There were significant differences in the correlation coefficients between different water
quality parameters and the wavelengths but their curve patterns were similar (Peng et al.,
2018). There were many concentrated similar sensitive ranges but in general, the curves
took “sharp fall, fluctuation, and oscillation” (Fig. 2). The COD, BOD, NH3-N and TA
were all highly correlated and represented a positive correlation (the correlation
coefficients > 0.6) at the wavelengths of 900–1,300 nm and 1,500–1,800 nm. In contrast,
the correlation between the TDS and spectral data and that between the TH and spectral
data were not so satisfied (the correlation coefficients <0.6). The six parameters could
pass the test of significance (P = 0.001) at the wavelengths of 400–450 nm and 850–1,800
nm. The band range was wide and the peak value of the correlation coefficients was
relatively flat, so it was difficult to screen the characteristic bands based on the correlation
coefficients.
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Selection of characteristic wavelength
GC-based selection of characteristic wavelength
The curves of GCD for water quality parameters and Rraw−SNV are shown in Fig. 3.
An obvious peak wavelength appeared in the curves with the similar patterns of

Figure 2 Correlation coefficients of water quality parameters with standard normal variable
reflectance. Full-size DOI: 10.7717/peerj.8255/fig-2

Figure 3 Gray correlation degree (GCD) for water quality parameters with standard normal variable
reflectance. Full-size DOI: 10.7717/peerj.8255/fig-3
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“sharp rise, fall and stabilization” on the whole (Fig. 3). The gray value of each water
quality parameter gradually went up from 400 nm to a peak at about 820 nm, and then
gradually down to 1,000 nm where it remained flat. The overall gray values of TDS and TH
were relatively high, generally above 0.5, while those of COD, BOD, NH3-N and TA were
generally between 0.3 and 0.4 with only a few peak bands greater than 0.4 and above 0.8
at the most. It reflected that the GC method excels in eliminating a great amount of
redundant information and selecting a few most sensitive bands.

The sensitive bands of the six parameters were counted based on their GCD analysis
(Table 2). Of all the GCD values, the maximum ones were concentrated within the
spectral wavelengths of 815–830 nm. The numbers of the sensitive bands were sequenced
from large to small as: TH (601) > TDS (381) > TA (93) > BOD (50) > COD (49) >
NH3-N (46), and those of the maximum GCD values as: TH (0.8504) > TDS (0.802) >
BOD (0.7974) > NH3-N (0.7973) > COD (0.7949) > TA (0.7878). The comparison between
the correlation coefficients and the GCD indicated a great difference: the higher correlation
coefficient the parameters had, the lower the GCD values was, and the smaller number
of sensitive bands were selected. This result revealed that for the parameters with strong
spectral response the GCD method had better band screening ability.

VIP-based selection of characteristic wavelength
The curves of VIP scores for water quality parameters and Rraw−SNV are shown in Fig. 4.
The curves patterns of the six parameters were similar and the overall scores of the VIP
were relatively high (Fig. 4). These curves exhibited a sharp drop in the wavelength
intervals of 400–450 nm, a sharp rise in 460–500 nm, a violent fluctuation in 700–1,000
nm, but in 1,100–2,000 nm TH and TDS displayed a less violent fluctuation and COD,
BOD, NH3-N and TA showed flat fluctuation. Many peak points existed in the VIP curves,
and their peak intervals were relatively scattered, completely different from the single
peak value in the GC curves. The principle of VIP > 1 was used to select and count the
spectral sensitive bands of the six parameters (Table 3). The comparison of the maximum
spectral response bands showed five parameters were found in the wavelength intervals of
460–480 nm except for NH3-N in 990–999 nm.

The numbers of sensitive bands selected through VIP method were sequenced from
large to small as BOD (770) > NH3-N (768) > COD (753) > TA (709) > TH (543) >

Table 2 Maximum gray correlation degree and band intervals of water quality parameters content
with standard normal variable reflectance.

Water quality
parameters

Sensitive band
numbers

Maximum
GCD

Maximum GCD
band intervals (nm)

COD 49 0.7949 820–830

BOD 50 0.7974 820–830

NH3-N 46 0.7973 820–830

TA 93 0.7878 820–830

TDS 381 0.802 815–825/766

TH 601 0.8504 815–825
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TDS (497), and those of the maximum VIP scores as: TH (4.893) > TDS (4.275) > TA
(2.466) > COD (1.634) > BOD (1.439) > NH3-N (1.397). The comparison between the
two sequences indicated a great difference: the larger the VIP score was, the smaller
number of selected sensitive bands was. On the whole, the effective bands could be retained
as many as possible with the VIP method during bands screening.

SPA-based selection of characteristic wavelength
The curves of SPA scores for water quality parameters and Rraw−SNV are shown in Fig. 5.
The curves patterns of TDS and TH were similar and exhibited a gentle flatness except
for obvious peaks at the wavelengths of about 460 and 990 nm. Those of BOD, NH3-N
and TA were similar and showed notable valleys at the wavelengths of about 500 and
700 nm and notable peaks at the wavelengths of about 760 and 1,000 nm. Those of COD

Figure 4 The VIP scores of water quality parameters with standard normal variable reflectance.
Full-size DOI: 10.7717/peerj.8255/fig-4

Table 3 The maximum VIP scores of water quality parameters with standard normal variable
reflectance.

Water quality
parameters

Sensitive
band numbers

Maximum
VIP scores

Maximum VIP
band interval (nm)

Maximum
VIP band (nm)

COD 753 1.634 465–475 466

BOD 770 1.439 464–474 762

NH3-N 768 1.397 990–999 999

TA 709 2.466 460–470 464

TDS 497 4.275 460–470 463

TH 543 4.893 460–470 463
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displayed notable peaks at the wavelengths of about 460 and 1,000 nm and fluctuation at
other wavelengths. On the whole, great difference existed among the six curves, and the
sensitive interval of each parameter was quite notable and different from each other.

The principles of GCD > 0.5 and VIP > 1 were used to select and count the spectral
sensitive bands of the six parameters (Table 4). The comparison of the maximum
spectral response bands revealed NH3-N was in the wavelength intervals of 990–999 nm,
BOD in 760–770 nm and the other four in 460–475nm. The numbers of sensitive bands
selected through SPA method were arranged in a descending order as: BOD (767) >
NH3-N (765) > COD (750) > TA (696) > TDS (280) > TH (223), the scores of the
maximum SPA as: TA (2.409) >TH (1.944) > TDS (1.928) > COD (1.598) > BOD (1.409) >
NH3-N (1.364). The comparison between the two orders indicated a great difference:
the larger the SPA score was, the smaller number of the selected sensitive bands had.

Figure 5 The SPA scores of water quality parameters with standard normal variable reflectance.
Full-size DOI: 10.7717/peerj.8255/fig-5

Table 4 The Set pair analysis (SPA) scores of water quality parameter with standard normal variable
reflectance.

Water quality
parameters

Sensitive
band numbers

Maximum
SPA

Maximum SPA
band interval (nm)

Maximum
SPA band (nm)

COD 750 1.598 465–475 466

BOD 767 1.409 762–763 762

NH3-N 765 1.364 990–999 999

TA 696 2.409 460–470 464

TDS 280 1.928 460–470 463

TH 223 1.944 460–470 463
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Construction and analysis of PLSR model
The sensitive bands selected by different methods as GC, VIP and SPA were applied to
PLSR modeling. The results of PLSR model are shown in Table 5.

In general, the PLSR model had a good spectral prediction of water quality parameters
(Wang et al., 2019). The GC-PLSR model was proved to be optimal for COD, BOD,
NH3-N and TH with the best prediction. SPA-PLSR model was proved to be optimal for
TDS and TA with the best prediction (Table 5). The VIP-PLSR model of BOD had the
best modeling effect (R2c = 0.99). The GC-PLSR model of NH3-N had the best prediction
effect (R2

p = 0.962, RPD = 5.894). The inversion effects of TDS and TH were relatively
less satisfying, with the R2

c and R
2
p generally around 0.8. Overall, the PLSR models based on

the characteristic bands of the six parameters exhibited good modeling and prediction
effect as well as a greater improvement than those full band-based models.

Construction and analysis of ELM model
The sensitive bands selected using GC, VIP and SPA methods were applied to build ELM
model. The results of ELM model are shown in Table 6.

Table 5 PLSR model results based on full band, GC, SPA and VIP screening band.

Water quality
parameters

Wavelength
selection methods

Main factor
numbers

Modeling set Validation set Relative percent deviation Robustness
R2
c R2

p RPD Robust

COD GC 6 0.970 0.954 4.690 0.984

VIP 4 0.938 0.917 3.238 0.978

SPA 4 0.938 0.917 3.237 0.978

All 9 0.992 0.956 4.532 0.964

BOD GC 5 0.976 0.965 5.335 0.988

VIP 10 0.992 0.951 4.424 0.958

SPA 4 0.958 0.930 3.348 0.971

All 7 0.990 0.960 4.998 0.970

NH3-N GC 5 0.972 0.970 5.894 0.998

VIP 7 0.970 0.935 3.977 0.965

SPA 7 0.969 0.935 3.974 0.965

All 8 0.985 0.962 5.228 0.977

TDS GC 8 0.876 0.772 2.049 0.880

VIP 3 0.767 0.758 1.892 0.988

SPA 5 0.820 0.793 2.150 0.964

All 5 0.862 0.791 2.126 0.918

TA GC 5 0.917 0.890 2.963 0.971

VIP 4 0.883 0.927 3.578 1.049

SPA 4 0.883 0.927 3.588 1.050

All 7 0.956 0.921 3.206 0.963

TH GC 12 0.978 0.900 2.871 0.920

VIP 4 0.779 0.733 1.764 0.941

SPA 3 0.794 0.708 1.701 0.892

All 5 0.820 0.817 2.228 0.996
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The ELMmodels based on the characteristic bands of the six parameters exhibited good
modeling and prediction effect as well as a greater improvement than those based on the
full band. The GC-ELM model was proved optimal for COD, BOD and NH3-N with
the best prediction. SPA-ELM was proved optimal for TDS, TA and TH with the best
prediction. The VIP-ELM model of BOD had the best modeling effect (R2

c = 0.986).
The GC-ELM model of NH3-N exhibited the best prediction effect (R2

p= 0.976,
RPD = 6.596). The ELM models of COD, TH and TA had the satisfying modeling and
validation effect. The validation effect of TDS was relatively less satisfying (R2

c = 0.820,
R2
p = 0.790, RPD = 2.198).

DISCUSSION
Comparison among the estimating results of different water quality
parameters
The optimal wavelength selection methods varied when the optimal modeling methods
were different (Tables 5 and 6). The hyper-spectrally estimated value and the chemically

Table 6 ELM model results based on full band, GC, SPA and VIP screening band.

Water quality
parameters

Wavelength
selection methods

The number of neurons
in the hidden layer

Modeling set Validation set Relative percent deviation Robustness
R2c R2p RPD Robust

COD GC 23 0.964 0.956 4.667 0.991

VIP 51 0.884 0.885 2.892 1.001

SPA 55 0.959 0.928 3.567 0.967

All 48 0.936 0.920 3.513 0.983

BOD GC 230 0.986 0.976 6.192 0.989

VIP 36 0.949 0.933 3.872 0.983

SPA 37 0.939 0.930 3.783 0.990

All 30 0.914 0.876 2.764 0.959

NH3-N GC 200 0.979 0.976 6.596 0.997

VIP 144 0.982 0.965 5.391 0.983

SPA 37 0.960 0.959 4.901 1.019

All 48 0.949 0.940 4.155 1.093

TDS GC 23 0.595 0.613 1.431 1.029

VIP 19 0.714 0.715 1.822 1.001

SPA 50 0.820 0.790 2.198 0.964

All 48 0.735 0.706 1.627 0.961

TA GC 103 0.907 0.895 3.059 0.986

VIP 22 0.827 0.828 2.150 1.001

SPA 68 0.952 0.924 3.651 0.970

All 30 0.778 0.784 2.089 1.008

TH GC 6 0.570 0.560 1.250 0.982

VIP 45 0.673 0.688 1.606 1.022

SPA 37 0.937 0.910 3.358 0.971

All 32 0.535 0.497 1.132 0.930
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measured value of the six water quality parameters were compared under the optimal
model (Fig. 6).

Different water components can change the spectral radiation by their own absorption
and scattering characteristics of light. The water components (such as SPM, CDOM,
phytoplankton, blue-green algae) can be obtained by separating the factors of various
parameters from the total water radiation (Dörnhöfer & Oppelt, 2016). However, the
problem of “lower ion content and weaker spectral response” often exists in the spectral
analysis of water components, and was also reflected in the verification results of this
study. All the six parameters produced satisfying inversion results, which indicated the
feasibility of quantitative inversion of sewage water quality parameters by hyperspectrum
(Pu et al., 2017). The sequence of the predicting power of the water quality parameters
was NH3-N > BOD > COD > TA > TH > TDS. The validation results showed that
most data points of the five water parameters, NH3-N, BOD, COD, TA and TH, were
concentrated near line 1:1. This indicated that the hyperspectral analysis values of the five
parameters were very close to the chemically estimated values and the optimal models
of these five parameters had strong prediction ability (RPD > 3.0) (Tables 5 and 6).
Comparatively, due to its lower content, the data points of TDS were relatively discrete,
indicating that the model prediction ability was average (RPD = 2.198).

Correlation analysis and inversion performance
The raw spectral reflectance curve of each water sample exhibited different shapes
(Fig. 2A). This difference results from the inconsistency between the contents and types
of the water quality parameters, and the different characteristics of spectrum obtained
through absorption and scattering of light. The results accord with those in previous
studies (Abdelmalik, 2018; Abd-Elrahman et al., 2011; Rostom et al., 2017; Wang, Pu &
Sun, 2016), which demonstrates that the VIS-NIR spectrum can be used to quantitatively
determine water quality parameters.

Traditionally, correlation analysis is helpful to reveal the relationship between water
quality parameters and the VIS-NIR spectrum (Peng et al., 2018). In this paper, the
numbers of the significant wavebands of the six water quality parameters can be
arranged in an order, in which the numbers of NH3-N, BOD and COD were close to one
another but larger than those of the other three parameters. The number of TA followed,
and those of TH and TDS came last. This order agreed with that of their correlation
coefficient ranges. Therefore, significant correlations exist between NH3-N, BOD,
COD and their reflectance spectrum, which reflects the optimal models of the three
parameters have a very good prediction performance (Fig. 6). By contrast, the correlations
between the other three water quality parameters and their reflectance spectrum were
relatively low, which led to poor model prediction performance, especially for the TDS
model. However, by comparing the three screening methods, the numbers of the sensitive
wavebands of TA, TH and TDS were not as small as had been expected (Tables 3, 4 and 5).
This is because different waveband screening methods use different calculation
mechanisms, which leads to different methods to screen optimal response spectrum
for different parameters (Zhang, Maoguo & Yongqiang, 2018). From the perspective of
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Figure 6 Validation of water quality parameters based on the best model. (A) COD with GC-PLSR
model. (B) BOD with GC-ELM model. (C) NH3-N with GC-ELM model. (D) TDS with SPA-ELM
model. (E) TA with SPA-ELM model. (F) TH with SPA-ELM model.

Full-size DOI: 10.7717/peerj.8255/fig-6
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modeling methods, ELM model performed better than PLSR model, which also
indicated the superiority and strong learning ability of machine learning algorithm
(Keller et al., 2018). From the perspective of band selection methods, GC and SPA are
superior to VIP. Therefore, the selection of band screening methods will be of practical
significance for the quantitative inversion of water quality parameters in the future
research.

Effects of wavelength selection on hyperspectral estimation models
In the process of hyperspectral analysis, due to the mass of hyperspectral information,
there exists a large amount of redundant information irrelevant to parameters content.
This makes it difficult to mine and extract effective information. This problem complicates
the hyperspectral analysis and decrease the analysis accuracy, which hinders the
development and utilization of related testing equipment. Therefore, characteristic
selection of hyperspectral data information is required. The characteristic selection
methods are devised to find the smallest subset from the original characteristics
without reducing the accuracy (Zhang, Maoguo & Yongqiang, 2018). For the hyperspectral
band selection, there are two key aspects, namely, effective information preservation
and redundancy elimination, which has a great impact on subsequent modeling and
validation.

In this study, GC and VIP methods were used to explore their spectral characteristic
response intervals for six main water quality parameters in wastewater. These two methods
had their fixed preferences in terms of information preservation and redundancy
elimination. Therefore, the two methods had quite different performance in the band
selection for the parameters and modeling methods, and their performance was very
unstable (Wang et al., 2019). Of the two methods, the GC method had better performance
in redundancy elimination. Better spectral response of the water quality parameters means
smaller number of bands filtered by the GC method, so the GC method is the best
screening method for COD, BOD and NH3-N with a satisfying screening performance in
this study.

However, the VIP method performed better in information preservation, and it
could retain as many spectral band intervals with good response to the inversion
parameters as possible (Oussama et al., 2012; De Almeida et al., 2013). So, the VIP
method retained the largest number of bands during band selection. Meanwhile, compared
with the GC method, VIP was more applicable to characteristic band selection of TA
and TDS.

As to this condition, some researchers considered it necessary to make the optimal
trade-offs between information preservation and redundancy elimination according to the
different characteristics of the datasets, and have conducted some explorations (Zhang,
Maoguo & Yongqiang, 2018). This study put forward a band screening method based on
SPA to optimize the trade-offs between GC and VIP. From its application to the datasets in
this study, the SPA method could well balance effective information retaining and
redundant information eliminating. Compared with GC and VIP, the SPA method had a
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more stable ability of band screening. It had a strong applicability to predicting the six
water quality parameters as well as building the linear modeling method PLSR and the
nonlinear modeling method ELM. Therefore, the SPA method had the superiority in
certainty and uncertainty analysis of characteristic bands, and it is applicable to the
integrative optimization of GC and VIP.

Research limitations and future research
This study was only the statistical application of characteristic band screening methods to
the inversion of different water quality parameters and failed to explore the spectral
response mechanism of the various water quality parameters (Hu & Wang, 2017),
which would lead to some limitations in the applicability of the model. Meanwhile, the
optimized band screening method based on the SPA needs further study, which can focus
on further:

1. Exploring the different spectral sensitive intervals and analyzing the spectral response
mechanism of each water quality parameter.

2. Probing into the band screening mechanism and optimizing various screening methods
so as to propose a band screening method suitable for various models; and applying
various screening methods at the same time in the longitudinal study to achieve multiple
screening.

CONCLUSIONS
This paper studied the feasibility of quantitatively estimating water quality parameters
via VIS-NIR spectral model. The GC, VIP and SPA methods were used to screen the
sensitive intervals based on the spectral responses of different water quality parameters in
sewage. The inversion accuracy of the six water quality parameters by the linear PLSR
and nonlinear ELM modeling methods was compared, and finally the research arrived at
the following conclusions:

1. Band screening plays an important role in spectral data processing and spectral model
accuracy improvement. In this study, the GC had the best performance in redundancy
elimination (up to 97%), the VIP performed best in information preservation, and
the SPA could make the optimal trade-offs between information preservation and
redundancy reduction, so the SPA had the best applicability.

2. Both the PLSR and ELM models have good performance in modeling and validation.
The PLSR model was more applicable and the ELM model had higher prediction
accuracy. Among the six corresponding optimal models for the six water quality
parameters, five were ELM models while only one was a PLSR model.

3. The optimal spectral inversion models of the six water quality parameters had quite
different validation results: the prediction of the COD, BOD, NH3-N and TA models
was quite satisfying (their RPD values are 4.69, 6.192, 6.596 and 3.651, respectively),
while that of the TH and TDS was relatively poor.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 19/25

http://dx.doi.org/10.7717/peerj.8255
https://peerj.com/


ACKNOWLEDGEMENTS
The authors want to thank A.P. Ying Meng and Yinwen Chen for their help in language
standardization of this manuscript and providing helpful suggestions. We are especially
grateful to the reviewers and editors for appraising our manuscript and for offering
instructive comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research is supported by National Natural Science Foundation of China (51409221,
51979234), National Key Research and Development Program of China
(2017YFC0403302) and Humanities and Social Science Program of Northwest A&F
University (Z109021405). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 51409221, 51979234.
National Key Research and Development Program of China: 2017YFC0403302.
Humanities and Social Science Program of Northwest A&F University: Z109021405.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Zheng Xing conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

� Junying Chen conceived and designed the experiments, authored or reviewed drafts of
the paper, approved the final draft.

� Xiao Zhao conceived and designed the experiments, authored or reviewed drafts of the
paper, approved the final draft.

� Yu Li conceived and designed the experiments, contributed reagents/materials/analysis
tools, authored or reviewed drafts of the paper, approved the final draft.

� Xianwen Li conceived and designed the experiments, authored or reviewed drafts of the
paper, approved the final draft.

� Zhitao Zhang conceived and designed the experiments, contributed reagents/materials/
analysis tools, authored or reviewed drafts of the paper, approved the final draft.

� Congcong Lao conceived and designed the experiments, prepared figures and/or tables,
approved the final draft.

� Haifeng Wang conceived and designed the experiments, prepared figures and/or tables,
approved the final draft.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 20/25

http://dx.doi.org/10.7717/peerj.8255
https://peerj.com/


Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Field experiments were approved by the domestic sewage treatment plant, Zhouzhi,
Shaanxi, China (No. 51409221, 51979234).

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8255#supplemental-information.

REFERENCES
Abd-Elrahman A, Croxton M, Pande-Chettri R, Toor GS, Smith S, Hill J. 2011. In situ

estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral
imaging system. ISPRS Journal of Photogrammetry and Remote Sensing 66(4):463–472
DOI 10.1016/j.isprsjprs.2011.02.005.

Abdelmalik KW. 2018. Role of statistical remote sensing for Inland water quality parameters
prediction. Egyptian Journal of Remote Sensing and Space Science 21(2):193–200
DOI 10.1016/j.ejrs.2016.12.002.

Arabi B, Salama M, Wernand M, Verhoef W. 2016. MOD2SEA: a coupled atmosphere-hydro-
optical model for the retrieval of chlorophyll-a from remote sensing observations in complex
turbid waters. Remote Sensing 8(9):722 DOI 10.3390/rs8090722.

Bansal S, Ganesan G. 2019. Advanced evaluation methodology for water quality assessment using
artificial neural network approach. Water Resources Management 33(9):3127–3141
DOI 10.1007/s11269-019-02289-6.

Brönmark C, Hansson L. 2002. Environmental issues in lakes and ponds: current state and
perspectives. Environmental Conservation 29(3):290–307 DOI 10.1017/S0376892902000218.

Bukata RP, Bukata RP. 2005. Satellite monitoring of inland and coastal water quality:
retrospection, introspection, future directions. Oxford: CRC Taylor & Francis.

Campanelli A, Pascucci S, Betti M, Grilli F, Marini M, Pignatti S, Guicciardi S. 2017. An
empirical ocean colour algorithm for estimating the contribution of coloured dissolved organic
matter in North-Central Western Adriatic Sea. Remote Sensing 9(2):180 DOI 10.3390/rs9020180.

Cao Y, Ye Y, Zhang X, Shi Y, Jiang Y, Zhao H. 2015. Turbidity hyperspectral inversion model of
nansihu water body. South-to-North Water Transfers and Water Science & Technology
13:883–887 [in Chinese].

CESP. 2002. Analysis methods for water and wastewater monitoring. Fourth Edition. Beijing: China
Environmental Science Press [in Chinese].

Chavana-Bryant C, Malhi Y, Anastasiou A, Enquist BJ, Cosio EG, Keenan TF, Gerard FF. 2019.
Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. Science of
the Total Environment 666:1301–1315 DOI 10.1016/j.scitotenv.2019.01.379.

Chemura A, Mutanga O, Dube T. 2017. Separability of coffee leaf rust infection levels with
machine learning methods at Sentinel-2 MSI spectral resolutions. Precision Agriculture
18(5):859–881 DOI 10.1007/s11119-016-9495-0.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 21/25

http://dx.doi.org/10.7717/peerj.8255#supplemental-information
http://dx.doi.org/10.7717/peerj.8255#supplemental-information
http://dx.doi.org/10.7717/peerj.8255#supplemental-information
http://dx.doi.org/10.1016/j.isprsjprs.2011.02.005
http://dx.doi.org/10.1016/j.ejrs.2016.12.002
http://dx.doi.org/10.3390/rs8090722
http://dx.doi.org/10.1007/s11269-019-02289-6
http://dx.doi.org/10.1017/S0376892902000218
http://dx.doi.org/10.3390/rs9020180
http://dx.doi.org/10.1016/j.scitotenv.2019.01.379
http://dx.doi.org/10.1007/s11119-016-9495-0
http://dx.doi.org/10.7717/peerj.8255
https://peerj.com/


De Almeida MR, Correa DN, Rocha WFC, Scafi FJO, Poppi RJ. 2013. Discrimination between
authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty
estimation. Microchemical Journal 109:170–177 DOI 10.1016/j.microc.2012.03.006.

Deng Y, Zhang Y, Li D, Shi K, Zhang Y. 2017. Temporal and spatial dynamics of phytoplankton
primary production in Lake Taihu derived from MODIS data. Remote Sensing 9(3):195
DOI 10.3390/rs9030195.

Ding J, Yang A, Wang J, Sagan V, Yu D. 2018.Machine-learning-based quantitative estimation of
soil organic carbon content by VIS/NIR spectroscopy. PeerJ 6:e5714 DOI 10.7717/peerj.5714.

Dörnhöfer K, Oppelt N. 2016. Remote sensing for lake research and monitoring – recent
advances. Ecological Indicators 64:105–122 DOI 10.1016/j.ecolind.2015.12.009.

Duan H, Wen Y, Zhang B, Song K, Wang Z. 2006. Quantitative inversion of water quality
parameters in chagan lake using hyperspectral data. Journal of Arid Land Resources and
Environment 6:104–108 [in Chinese].

Esterby SR. 1996. Review of methods for the detection and estimation of trends with emphasis on
water quality applications. Hydrological Processes 10:127–149.

Feng X, Li G, Yu H, Wang S, Yi X, Lin L. 2018. Wavelength selection for portable noninvasive
blood component measurement system based on spectral difference coefficient and dynamic
spectrum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 193:40–46
DOI 10.1016/j.saa.2017.10.063.

Gitelson AA, Kondratyev KY. 1991. Optical models of mesotrophic and eutrophic water bodies.
International Journal of Remote Sensing 12(3):373–385 DOI 10.1080/01431169108929659.

Han LH, Rundquist DC. 1997. Comparison of NIR/RED ratio and first derivative of reflectance in
estimating algal-chlorophyll concentration: a case study in a turbid reservoir. Remote Sensing of
Environment 62(3):253–261 DOI 10.1016/S0034-4257(97)00106-5.

Hong Y, Chen Y, Yu L, Liu Y, Liu Y, Zhang Y, Liu Y, Cheng H. 2018. Combining fractional order
derivative and spectral variable selection for organic matter estimation of homogeneous soil
samples by VIS–NIR spectroscopy. Remote Sensing 10(3):479 DOI 10.3390/rs10030479.

Hu Y, Wang X. 2017. Application of surrogate parameters in characteristic UV–vis absorption
bands for rapid analysis of water contaminants. Sensors and Actuators B: Chemical 239:718–726
DOI 10.1016/j.snb.2016.08.072.

Hughes G. 1968. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on
Information Theory 14(1):55–63 DOI 10.1109/TIT.1968.1054102.

Isiyaka HA, Mustapha A, Juahir H, Phil-Eze P. 2018. Water quality modelling using artificial
neural network and multivariate statistical techniques.Modeling Earth Systems and Environment
5(2):583–593 DOI 10.1007/s40808-018-0551-9.

Ju-Long D. 1982. Control problems of grey systems. Systems & Control Letters 1(5):288–294
DOI 10.1016/S0167-6911(82)80025-X.

Keller S, Maier PM, Riese FM, Norra S, Holbach A, Boersig N, Wilhelms A, Moldaenke C,
Zaake A, Hinz S. 2018. Hyperspectral data and machine learning for estimating CDOM,
chlorophyll a, diatoms, green algae and turbidity. International Journal of Environmental
Research and Public Health 15(9):1881 DOI 10.3390/ijerph15091881.

Kennard RW, Stone LA. 1969. Computer aided design of experiments. Technometrics
11(1):137–148 DOI 10.1080/00401706.1969.10490666.

Kotti M, Zacharioudaki D, Kokinou E, Stavroulakis G. 2018. Characterization of water quality of
Almiros river (Northeastern Crete, Greece): physicochemical parameters, polycyclic aromatic
hydrocarbons and anionic detergents.Modeling Earth Systems and Environment 4(4):1285–1296
DOI 10.1007/s40808-018-0504-3.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 22/25

http://dx.doi.org/10.1016/j.microc.2012.03.006
http://dx.doi.org/10.3390/rs9030195
http://dx.doi.org/10.7717/peerj.5714
http://dx.doi.org/10.1016/j.ecolind.2015.12.009
http://dx.doi.org/10.1016/j.saa.2017.10.063
http://dx.doi.org/10.1080/01431169108929659
http://dx.doi.org/10.1016/S0034-4257(97)00106-5
http://dx.doi.org/10.3390/rs10030479
http://dx.doi.org/10.1016/j.snb.2016.08.072
http://dx.doi.org/10.1109/TIT.1968.1054102
http://dx.doi.org/10.1007/s40808-018-0551-9
http://dx.doi.org/10.1016/S0167-6911(82)80025-X
http://dx.doi.org/10.3390/ijerph15091881
http://dx.doi.org/10.1080/00401706.1969.10490666
http://dx.doi.org/10.1007/s40808-018-0504-3
http://dx.doi.org/10.7717/peerj.8255
https://peerj.com/


Lerch RN, Baffaut C, Kitchen NR, Sadler EJ. 2015. Long-term agroecosystem research in the
Central Mississippi River Basin: dissolved nitrogen and phosphorus transport in a high-runoff-
potential watershed. Journal of Environment Quality 44(1):44 DOI 10.2134/jeq2014.02.0059.

Li C, Sun L, Jia J, Cai Y, Wang X. 2016. Risk assessment of water pollution sources based on an
integrated k-means clustering and set pair analysis method in the region of Shiyan, China.
Science of the Total Environment 557–558:307–316 DOI 10.1016/j.scitotenv.2016.03.069.

Liu S, Yang Y, Wu L. 2015. Grey system theory and its application. Beijing: Science Press
[in Chinese].

Morais CLM, Santos MCD, Lima KMG, Martin FL. 2019. Improving data splitting for
classification applications in spectrochemical analyses employing a random-mutation Kennard-
Stone algorithm approach. Bioinformatics btz421 DOI 10.1093/bioinformatics/btz421.

Oussama A, Elabadi F, Platikanov S, Kzaiber F, Tauler R. 2012. Detection of olive oil
adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP)
scores. Journal of the American Oil Chemists’ Society 89(10):1807–1812
DOI 10.1007/s11746-012-2091-1.

Palmer SCJ, Kutser T, Hunter PD. 2015. Remote sensing of inland waters: challenges, progress
and future directions. Remote Sensing of Environment 157:1–8 DOI 10.1016/j.rse.2014.09.021.

Peerbhay KY, Mutanga O, Ismail R. 2013. Commercial tree species discrimination using airborne
AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in
KwaZulu–Natal, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing 79:19–28
DOI 10.1016/j.isprsjprs.2013.01.013.

Peng J, Xu F, Deng K, Wu J. 2018. Spectral difference of water quality different index
concentrations: in Langya mountain scenic area. Spectroscopy and Spectral Analysis
38:1499–1507 [in Chinese].

Pu H, Liu D, Qu JH, Sun DW. 2017. Applications of imaging spectrometry in inland water quality
monitoring—a review of recent developments. Water, Air, & Soil Pollution 228(4):131
DOI 10.1007/s11270-017-3294-8.

Rojas FS. 2009. Process analytical chemistry: applications of ultraviolet/visible spectrometry in
environmental analysis: an overview. Applied Spectroscopy Reviews 44:245–265
DOI 10.1080/05704920902717898.

Rostom NG, Shalaby AA, Issa YM, Afifi AA. 2017. Evaluation of Mariut Lake water quality using
hyperspectral remote sensing and laboratory works. Egyptian Journal of Remote Sensing and
Space Science 20:S39–S48 DOI 10.1016/j.ejrs.2016.11.002.

Ryan K, Ali K. 2016. Application of a partial least-squares regression model to retrieve
chlorophyll-a concentrations in coastal waters using hyper-spectral data. Ocean Science Journal
51(2):209–221 DOI 10.1007/s12601-016-0018-8.

Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least squares
procedures. Analytical Chemistry 36:1627–1639 DOI 10.1021/ac60214a047.

Shafique NA, Fulk F, Autrey BC, Flotemersch J. 2003. Hyperspectral remote sensing of water
quality parameters for large rivers in the Ohio River basin. In: Proceedings of the 1st Interagency
Conference on Research in the Watersheds, 27–30 October, Benson, AZ, USA.

Song K, Lin L, Shuai L, Tedesco L, Duan H, Li Z, Shi K, Jia D, Ying Z, Shao T. 2013. Using
partial least squares-artificial neural network for inversion of inland water chlorophyll-a.
IEEE Transactions on Geoscience and Remote Sensing 52(2):1502–1517
DOI 10.1109/TGRS.2013.2251888.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 23/25

http://dx.doi.org/10.2134/jeq2014.02.0059
http://dx.doi.org/10.1016/j.scitotenv.2016.03.069
http://dx.doi.org/10.1093/bioinformatics/btz421
http://dx.doi.org/10.1007/s11746-012-2091-1
http://dx.doi.org/10.1016/j.rse.2014.09.021
http://dx.doi.org/10.1016/j.isprsjprs.2013.01.013
http://dx.doi.org/10.1007/s11270-017-3294-8
http://dx.doi.org/10.1080/05704920902717898
http://dx.doi.org/10.1016/j.ejrs.2016.11.002
http://dx.doi.org/10.1007/s12601-016-0018-8
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1109/TGRS.2013.2251888
http://dx.doi.org/10.7717/peerj.8255
https://peerj.com/


Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. 2014. A global inventory of lakes based on
high-resolution satellite imagery. Geophysical Research Letters 41(18):6396–6402
DOI 10.1002/2014GL060641.

Wang H, Chen Y, Zhang Z, Chen H, Li X, Wang M, Chai H. 2019. Quantitatively estimating
main soil water-soluble salt ions content based on visible-near infrared wavelength selected
using GC, SR and VIP. PeerJ 7(5):e6310 DOI 10.7717/peerj.6310.

Wang Y, Jing H, Yu L, Su H, Luo N. 2017a. Set pair analysis for risk assessment of water inrush in
karst tunnels. Bulletin of Engineering Geology and the Environment 76(3):1199–1207
DOI 10.1007/s10064-016-0918-y.

Wang L, Pu H, Sun D. 2016. Estimation of chlorophyll-a concentration of different seasons in
outdoor ponds using hyperspectral imaging. Talanta 147:422–429
DOI 10.1016/j.talanta.2015.09.018.

Wang Z, Sakuno Y, Koike K, Ohara S. 2018a. Evaluation of chlorophyll-a estimation approaches
using iterative stepwise elimination partial least squares (ISE-PLS) regression and several
traditional algorithms from field hyperspectral measurements in the Seto Inland Sea, Japan.
Sensors 18(8):2656 DOI 10.3390/s18082656.

Wang J, Tiyip T, Ding J, Dong Z, Wei L, Fei W. 2017b. Quantitative estimation of organic matter
content in arid soil using Vis-NIR spectroscopy preprocessed by fractional derivative. Journal of
Spectroscopy 2017:1–9.

Wang H, Zhang Z, Arnon K, Chen J, Han W. 2018b. Hyperspectral estimation of desert soil
organic matter content based on gray correlation-ridge regression model. Transactions of the
Chinese Society of Agricultural Engineering 34:124–131 [in Chinese].

Wang Y, Zhao Z. 2000. Comparison of two methods and applications for determination of indoor
visible - near infrared reflectance spectra of water. Remote Sensing Information 1:2–5
[in Chinese].

Williams P. 2001. Implementation of near-infrared technology. In: Williams PC, Norris K, eds.
Near-Infrared Technology in the Agricultural and Food Industries. Second Edition. St. Paul:
American Association of Cereal Chemists, 145–169.

Wold H. 1966. Estimation of principal components and related models by iterative least squares.
Multivariate Analysis 1:391–420.

Wu Y, Du S, Yan Z. 2011. Ultraviolet spectral analysis method for the concentration detection of
organic pollutants in water bodies. Spectroscopy and Spectral Analysis 31:233–237 [in Chinese].

Xiao Z, Yi L, Hao F. 2016. Modeling soil cation concentration and sodium adsorption ratio using
observed diffuse reflectance spectra. Canadian Journal of Soil Science 96(4):372–385
DOI 10.1139/cjss-2016-0002.

Yang YL, Yan GY, Lin Q. 2004. Determination of heavy metal ions in Chinese herbal medicine by
microwave digestion and RP-HPLC with UV-Vis detection.Microchimica Acta 144(4):297–302
DOI 10.1007/s00604-003-0020-6.

Zhang Y, Giardino C, Li L. 2017. Water optics and water colour remote sensing. Remote Sensing
9(8):818 DOI 10.3390/rs9080818.

Zhang M, Maoguo G, Yongqiang C. 2018. Hyperspectral band selection based on multi-objective
optimization with high information and low redundancy. Applied Soft Computing 70:604–621
DOI 10.1016/j.asoc.2018.06.009.

Zhang R, Wang Y, Wang K, Zhao H, Xu S, Mu L, Zhou G. 2019. An evaluating model for smart
growth plan based on BP neural network and set pair analysis. Journal of Cleaner Production
226:928–939 DOI 10.1016/j.jclepro.2019.03.053.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 24/25

http://dx.doi.org/10.1002/2014GL060641
http://dx.doi.org/10.7717/peerj.6310
http://dx.doi.org/10.1007/s10064-016-0918-y
http://dx.doi.org/10.1016/j.talanta.2015.09.018
http://dx.doi.org/10.3390/s18082656
http://dx.doi.org/10.1139/cjss-2016-0002
http://dx.doi.org/10.1007/s00604-003-0020-6
http://dx.doi.org/10.3390/rs9080818
http://dx.doi.org/10.1016/j.asoc.2018.06.009
http://dx.doi.org/10.1016/j.jclepro.2019.03.053
http://dx.doi.org/10.7717/peerj.8255
https://peerj.com/


Zhao K, Xuan A. 1996. Set pair theory-a new theory method of non-define and its applications.
Systems Engineering 14:18–23 [in Chinese].

Zhou P, Yang W, Li M, Zheng L, Chen Y. 2017. Prediction of soil total nitrogen based on gray
correlation and extreme learning machine. Transactions of the Chinese Society for Agricultural
Machinery 48:271–276 [in Chinese].

Zhu TT, Wu L, Wang XL, Zhu H, Zhu XC, Zhou QG, Liu X, Cai BC. 2017. Investigation on
relationships between chemical spectrum and bioeffect of prepared rhubarb decoction in rats by
UPLC-ESI-Q-TOF-MS method coupled with gray correlation analysis. Journal of Functional
Foods 31:104–112 DOI 10.1016/j.jff.2017.01.028.

Xing et al. (2019), PeerJ, DOI 10.7717/peerj.8255 25/25

http://dx.doi.org/10.1016/j.jff.2017.01.028
https://peerj.com/
http://dx.doi.org/10.7717/peerj.8255

	Quantitative estimation of wastewater quality parameters by hyperspectral band screening using GC, VIP and SPA
	Introduction
	Materials and Methods
	Result and analysis
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


