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ABSTRACT

Modern pathology diagnostics is being driven toward large scale digitization of
microscopic tissue sections. A prerequisite for its safe implementation is the
guarantee that all tissue present on a glass slide can also be found back in the digital
image. Whole-slide scanners perform a tissue segmentation in a low resolution
overview image to prevent inefficient high-resolution scanning of empty background
areas. However, currently applied algorithms can fail in detecting all tissue regions.
In this study, we developed convolutional neural networks to distinguish tissue
from background. We collected 100 whole-slide images of 10 tissue samples—
staining categories from five medical centers for development and testing.
Additionally, eight more images of eight unfamiliar categories were collected for testing
only. We compared our fully-convolutional neural networks to three traditional
methods on a range of resolution levels using Dice score and sensitivity.

We also tested whether a single neural network can perform equivalently to multiple
networks, each specialized in a single resolution. Overall, our solutions outperformed
the traditional methods on all the tested resolutions. The resolution-agnostic network
achieved average Dice scores between 0.97 and 0.98 across the tested resolution
levels, only 0.0069 less than the resolution-specific networks. Finally, its excellent
generalization performance was demonstrated by achieving averages of 0.98 Dice
score and 0.97 sensitivity on the eight unfamiliar images. A future study should test
this network prospectively.

Subjects Pathology, Histology, Data Mining and Machine Learning
Keywords Whole-slide images, Convolutional neural networks, Segmentation, Tissue,
Deep learning, Computational pathology

INTRODUCTION

Digital pathology is opening new avenues for pathologists. Straightforward archiving,
remote diagnostics, and application of image analysis to improve the efficiency of the
diagnostic process are among the most commonly mentioned advantages of digital
pathology (Snead et al., 2016).

After fixation (typically with formalin) and paraffin embedding, a couple of
micrometers thin slices are cut from the tissue specimens and placed on glass slides.
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Figure 1 Examples of failed tissue detections by a whole-slide scanner. The four glass slides (A-D) were first scanned in the Cannizzaro Hospital
(Catania, Italy) with a Leica Aperio AT2 whole-slide scanner, then re-scanned for this study at the Radboud UMC, in Nijmegen with a 3DHistech
P250 Flash II whole-slide scanner, forcing the scanner to fully scan the entire slide. Color overlays: tissue scanned by the Leica scanner is green,
missed tissue is red. The black rectangles outline the regions that were selected for scanning by the tissue detector algorithm of the Leica scanner.

Full-size k&) DOT: 10.7717/peerj.8242/fig-1

These slides are then stained to highlight the required features specific to the intended
application. Traditionally, the pathologist analyzes the slides through microscopic
assessment. Whole-slide scanners are increasingly used to digitize glass slides containing
tissue sections, producing so-called whole-slide images (WSI).

Having digital WSIs enables a digital workflow, replacing the physical glass slides. It also
opens the possibility of processing WSIs to aid the pathologist; future developments could
even lead to a completely automated assessment procedure.

However, the digital workflow comes with its own challenges. Whole-slide scanners aim
to detect all tissue on the glass slides to decide which areas to scan, and to determine the
optimal focus depth for those areas. It is well known that scanners sometimes fail in
detecting all tissue regions, for example, due to the tissue type (e.g., fatty tissue is difficult to
detect because of the relatively large transparent areas within the individual fat cells) or
weak staining (e.g., immunohistochemistry). Missed tissue regions cause large risks for
quality of diagnostics, for instance in detection of cancerous regions in lymph nodes.
Examples of failed tissue detections are shown in Fig. 1.

Unfortunately, there is no way to recover from errors made in tissue detection by
slide scanners in later steps of the digital pathology workflow in an automated setting.
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The easiest solution—to scan the entire slide—is not feasible in clinical practice as it would
increase the scan time and file size beyond reasonable limits. Another option is to manually
check each and every scanned WSI. This, however, quickly becomes an expensive and
time-consuming solution in laboratories with fully digital pathology workflow where
hundreds of slides are scanned daily.

The identification of tissue areas is also relevant for already-obtained WSIs.

By highlighting the tissue, one can prevent unnecessary processing of large parts of the
WSI by subsequent algorithms. In the CAMELYONI17 challenge dataset (Bdindi et al,
2018), for example, only 22% of the total area of the WSIs is tissue.

Prior work has already been done on this topic. The most straightforward method to
identify tissue on the white background is to threshold the grayscale version of the image
(Hart et al., 2018), the individual color channels (Yu et al., 2016), or the optical density
of the RGB channels (Xia et al., 2018) of the image at a predefined value. In other cases
the WSIs were divided into a uniform image patch grid and the grayscale image was first
thresholded then the resulting binary tissue map was use to discard image patches that
does not contain enough tissue (Liu et al., 2019; Gertych et al., 2019; Coudray et al., 2018;
Liu et al., 2017).

In the CAMELYON17 challenge (Bdndi et al., 2018), most of the participants used
Otsu’s adaptive thresholding (Ofsu, 1979) method to identify the tissue areas on the WSIs
for effective training of their algorithms and the algorithm has been used for the same
purpose in other studies too (Campanella et al., 2019; Nirschl et al., 2018; Xu, Park ¢
Hwang, 2019). Others complemented the method with region growing from the edge of the
binary images generated by Otsu’s threshold (Vanderbeck et al., 2014).

Furthermore, some groups have already tried to design methods to improve the tissue
detection in scanners. Bug, Feuerhake ¢» Merhof (2015) used a method called foreground
extraction from structure information (FESI) based on global thresholding at the mean
value of the Gaussian-blurred Laplacian of the grayscale image; the result is subsequently
refined via flood filling from identified background points. Hiary, Alomari ¢ Chaudhary
(2013) built a different algorithm based on k-means clustering using pixel intensity,
color, and texture features.

Thresholding at a predefined value and Otsu’s method are very straightforward but
difficult to adapt to more complex stains or tissues. FESI is composed of traditional image
processing steps with many predetermined constants fine-tuned on a dataset with limited
variation. As such, both do not generalize well to the variation of WSIs encountered in
clinical practice. We propose a solution based on convolutional neural networks (CNNs)
(Krizhevsky, Sutskever ¢ Hinton, 2012). CNNs have already been shown to excel in image
segmentation tasks (Ehteshami Bejnordi et al., 2017; Setio et al., 2017; Bandi et al.,
2018). To ensure that our solution performs well on a broad spectrum of images, we
collected 100 WSIs of 10 different tissue-staining categories from a wide range of sources
for development and testing—allocated to categories based on unique tissue and
staining combinations. Moreover, eight categorically-unique WSIs were collected for
additional testing.
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In this paper, we compared our proposed fully-convolutional deep learning approach to
thresholding at a predefined value, Otsu’s adaptive thresholding, and the FESI method
from Bug et al. with respect to tissue segmentation accuracy. Additionally, we show that a
single fully convolutional neural network (FCNN) that is developed for a range of image
resolutions can perform comparably to multiple resolution-specific FCNNS. Finally, we
test how well our method generalizes on tissue types and stainings that were not part of the
development set.

MATERIALS

Whole-slide images

The slides were collected from five medical centers in the Netherlands and Germany:

58 from Radboud University Medical Center in Nijmegen, the Netherlands (RUMC),

10 from Canisius-Wilhelmina Hospital in Nijmegen, the Netherlands (CWZ), 20 from
Laboratory of Pathology East-Netherlands in Hengelo, the Netherlands (LPON),

10 from Heidelberg University Hospital in Heidelberg, Germany (HUH), and 20 from
Hannover Medical School in Hannover, Germany (HMS). The collection of the data was
approved by the local ethics committee (Commissie Mensgebonden Onderzoek regio
Arnhem—Nijmegen) under 2019-5161; the need for informed consent was waived.

The glass slides were digitized with whole-slide scanners, resulting in WSIs. The WSIs
contained multiple resolution levels, with approximately 1 x 10° by 2 x 10° pixels at the
highest resolution level. Each consecutive resolution level doubled the pixel size in both
directions and halved the pixel count in each dimension. The typical file size of a WSI was
three GB, but it varied greatly depending on the scanner, the scanning settings including
the pixel spacing, and tissue content of the image. The vendor-specific image formats
were anonymized and converted to standard multi-resolution TIFF image files. For a
description of the file format, see http://openslide.org/formats/generic-tiff.

We assembled two datasets. We refer to them as the development dataset and the
dissimilar dataset. The development dataset was composed of 100 WSIs in total and was
split into training, validation, and testing subsets. The training set was used to optimize
network weights, and the validation set to optimize hyperparameters. The test set was
untouched during algorithm development and only used for the final evaluation.

The dissimilar dataset was composed of eight images and was used for testing only.
The two datasets are described in the following sections.

Development dataset
A wide variety of glass slides were collected for training and testing in order to ensure that
the trained network generalizes well over different tissue types and stains. We also
accounted for the differences between staining protocols and scanners by including
glass slides from five different medical centers, and scanned by five different scanners.
Six different tissue types were included in the dataset: breast, lymph node, kidney,
tongue, rectum, and lung tissue. The slides were stained with six different stains:
hematoxylin and eosin (H&E), Sirius Red, Periodic Acid-Schiff (PAS), cytokeratin
AE1/AE3 (AE1AE3), Ki-67, and a cocktail of cytokeratin 8 and cytokeratin 18 (CK8-18).
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Table 1 The 10 different tissue-staining categories of the development dataset and the highest
resolution pixel sizes are displayed. The dataset was randomly divided into training, validation,
and testing sets with a 5, 2, 3 distribution, respectively. See the text for center and staining abbreviations.

Tissue Staining Center Pixel size (um) Count Average size (GB)
Breast H&E RUMC 0.2431 10 3.6161
Lymph node CK8-18 LPON 0.2500 10 0.6626
Lymph node H&E CWzZ 0.2431 10 2.0881
Kidney PAS HMS 0.5034 10 0.2405
Kidney Sirius Red HMS 0.2525 10 2.3294
Lung H&E HUH 0.2278 10 3.2345
Rectum H&E LPON 0.2275 10 4.4282
Tongue AE1AE3 RUMC 0.2431 10 4.6374
Tongue H&E RUMC 0.2431 10 4.3225
Tongue Ki-67 RUMC 0.2431 10 4.5081

Hematoxylin and eosin is the most commonly used histochemical staining in pathology.
Haematoxylin stains basophilic structures, and eosine stains the acidophilic structures.
In practice, this results in an image of several shades of pink, with dark blue nuclei.
PAS staining is usually used for kidney tissue as it provides a red-purple reaction product
with glycolgroups in, for example, basal membranes in the tissue. Sirius Red is a
histochemical staining for muscle fibers and collagen I and III. It stains collagen red,
and cytoplasm and muscle fibers yellow. The immunohistochemical stainings (AE1/AE2,
Ki-67, and CK8-18) make use of the principle of specific antigen-antibody binding.

We used 3,3-Diaminobenzidine to stain, which results in a brown color at the targeted
antigens. Haematoxylin was used as counter staining for the immunohistochemical
stainings, resulting in blue nuclei.

The slides from RUMC and CWZ were scanned in the RUMC with a 3DHistech P250
Flash II whole-slide scanner with a pixel size of 0.2431 pm; LPON used a Philips IntelliSite
Ultra Fast Scanner with 0.25 pm pixel size and a Hamamatsu NanoZoomer C9600-13
scanner with 0.2275 pum pixel size; HUH used a Hamamatsu NanoZoomer C9600-12
scanner with 0.2278 um pixel size; and HMS used a Leica Aperio AT2 whole-slide scanner
at 0.5034 and 0.2525 um pixel sizes.

The unique combinations of tissue type and staining yielded 10 different categories.
Having included 10 WSIs from each category, our dataset contained a total of 100 WSIs.
The complete list of WSIs is shown in Table 1. Each class of WSIs in this dataset was
divided randomly into training, validation, and testing sets with a 5, 2, 3 distribution,
respectively, yielding evenly distributed categories in all subsets. Examples of all 10
categories are shown on Fig. 2.

Dissimilar dataset

In order to test how well our proposed method performs on tissue types and stainings
that it had not been trained on, we collected eight more images from RUMC. The images
were scanned with a 3DHistech P250 Flash II whole-slide scanner with a pixel size

of 0.2431 pm.
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Figure 2 Examples of all 10 tissue—staining categories in the development dataset. (A) Breast—H&E,
(B) lymph node—CK8-18, (C) lymph node—H&E, (D) kidney—PAS, (E) kidney—Sirius Red, (F) lung—
H&E, (G): rectum—H&E, (H) tongue—AE1AE3, (I) tongue—H&E, (J) tongue—Ki-67. The field of view
is 840 x 840 pum. Full-size K&l DOT: 10.7717/peerj.8242/fig-2

Table 2 The eight images of the dissimilar dataset that was used only for testing. None of the
tissue-staining categories had been included in the development dataset.

Tissue Staining Center Pixel size (um) Count Size (GB)
Aorta Alcian Blue RUMC 0.2431 1 3.9859
Brain Alcian Blue RUMC 0.2431 1 5.4795
Cornea Grocott RUMC 0.2431 1 2.8011
Kidney CAB RUMC 0.2431 1 1.9790
Lung Perls RUMC 0.2431 1 5.1517
Skin Perls RUMC 0.2431 1 4.5908
Skin Von Kossa RUMC 0.2431 1 2.8210
Uterus Von Kossa RUMC 0.2431 1 3.0766

This dataset contained lung, cornea, aorta, brain, skin, uterus, and kidney tissue
samples. The tissues were stained with Grocott, Alcian Blue, Von Kossa, Perls, and
Chromotrope Aniline Blue (CAB) stains. Only lung and kidney tissues were present in
both of the datasets, while the stains are non-overlapping.

For the complete list of WSIs, we refer to Table 2. All eight images in this dataset were
used for testing only. Samples of all eight images are shown on Fig. 3.

Tissue annotations

In all of the included WSIs, the tissue areas were carefully outlined by medical students on
the highest resolution, following the outer edge of the tissue regions as closely as possible.
If the tissue fell apart to multiple disjunct pieces, for example, due to preparation or staining,
the students were to annotate them with one enclosing polygon. Tissue areas further apart
than 50 um were annotated as separate regions. Subsequently, annotations were checked
by a pathology resident (M.B.) to verify that no clinically relevant areas were missed.

Bandi et al. (2019), PeerdJ, DOI 10.7717/peer|.8242 | 6/22



http://dx.doi.org/10.7717/peerj.8242/fig-2
http://dx.doi.org/10.7717/peerj.8242
https://peerj.com/

Peer

Figure 3 Examples of all eight tissue-staining categories in the dissimilar dataset. (A) Aorta—Alcian
Blue, (B) brain—Alcian Blue, (C) cornea—Grocott, (D) kidney—CAB, (E) lung—Perls, (F) skin—Perls,
(G) skin—Von Kossa, (H) uterus—Von Kossa. The field of view is 840 x 840 um.

Full-size K&l DOT: 10.7717/peerj.8242/fig-3

Holes in the tissue, larger than 250 um in diameter—possibly tearing as a result of
the processing—or anatomical structures (e.g., ducts and vessels) were annotated as
background.

Some slides also contained non-tissue artifacts like air bubbles, edges of the cover slip,
stain residue, markings on the glass slide, and tissue debris. While these regions should
be classified as background, they have very different characteristics from the homogeneous
white background areas and were proven to be difficult to identify accurately as such.

In order to be able to sample specifically from these background areas during the training
of the CNNs, we also annotated the aforementioned artifacts. Cover slip edge, air
bubbles at the edge, and glass slide markers were annotated as edge artifacts, and every
other artifact including stain residue, tissue debris, and inner air bubbles were annotated as
inner artifacts.

All together, there were four annotation groups: tissue, background, edge artifacts, and
inner artifacts. An example WSI annotation is shown on Fig. 4.

Finally, to reduce variability between annotators, we removed every annotated hole less
than 250 um in diameter, every tissue region that was less than 250 pm in diameter,
and merged annotated tissue areas that were within 50 pm.

We used ASAP software for annotating the images. ASAP is an open source software
that is available at https://github.com/computationalpathologygroup/ASAP.

Sampling masks

To train the proposed CNNs, we needed to sample patches from the annotated areas.
To facilitate this, the annotations were converted to mask images that had a single class
label for every pixel. For training and validation purposes, all four annotation groups
(i.e., tissue, background, edge artifacts, and inner artifacts) were given distinct labels.
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Figure 4 An example WSI annotation with enlarged sample areas. Colors: tissue annotation is green,
background annotation is red, edge artifacts annotation is orange, inner artifacts annotation is blue.
Full-size K&l DOI: 10.7717/peer;j.8242/fig-4

All non-annotated pixels were given the background label value. This allowed us to
specifically direct patch sampling to the more difficult classes, such as artifacts.

In addition, pixels close to the edge of the tissue are a natural source of segmentation
ambiguity. As such, we decided to also give edge pixels distinct class labels. The pixels
labeled as background and within 125 pixels to any tissue area were assigned the
external-margin label, while pixels labeled as tissue and closer than 125 pixels to any
background area were assigned the internal-margin label. This yielded masks with six labels
for training and validation.

For training the CNNs, we sampled patches from specific resolution levels of the WSIs.
The margins of 125 pixels was 62.5, 250.0, and 1,000.0 pm at resolution levels with 0.5, 2.0,
and 8.0 pm pixel spacing, respectively.

As we trained the CNNs to produce binary predictions (tissue or background), the six
labels were only used to control the sampling ratio and subsequently converted to a
“tissue” or “non-tissue” label for network training. For a complete listing of labels and the
mapping of the labels to “tissue” or “non-tissue” flags, we refer to Table 3.

METHODS

Thresholding at a predefined value

First, the WSIs were converted to grayscale by averaging the RGB channels. The resulting
images were thresholded at the fixed i = 217 value. Subsequently, as Gertych et al. (2019)
we refined the tissue mask by hole filling and morphological closing. The i threshold
was determined by calculating the tissue masks of the validation subset of the
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Table 3 Labels of the six class masks that were generated from the manual annotations of the WSIs.
The masks were used to select the positions of image patches in the WSIs to sample for training of

the CNNs.
Name Tissue Description
Edge No Artifacts on the edge of the glass slide
Artifacts No Artifacts inside the glass slide
Background No Background area without artifacts
External-margin No Background area close to the tissue border
Internal-margin Yes Tissue area close to the tissue border
Tissue Yes Tissue area

development set and selecting the threshold value that achieved the highest average Dice
score (Dice, 1945).

Otsu’s adaptive threshold

Otsu’s method (Ofsu, 1979) is a clustering-based image thresholding algorithm.

The algorithm assumes that the image contains two classes of pixels following bi-modal
histogram (tissue pixels and background pixels). It calculates the optimum threshold
separating the two classes so that their combined intra-class variance is minimal. It has
been widely used in image analysis applications and digital histopathology (Bdndi et al.,
2018; Azevedo Tosta, Neves & do Nascimento, 2017; Campanella et al., 2019; Nirschl et al.,
2018; Xu, Park & Hwang, 2019; Vanderbeck et al., 2014). For applying Otsu’s method
the WSIs were first converted to grayscale by averaging the red, green, and blue channels.

Foreground extraction from structure information
Foreground extraction from structure information (Bug, Feuerhake ¢ Merhof, 2015) uses
an edge detector to get an initial separation of the structured tissue and homogeneous
background areas. After further refinement of the initial selection by median blurring
and morphological opening, a flood filling is started from the point furthest away from
any tissue area to select the background, thus filling the holes in the tissue areas.
Finally, the small tissue regions were removed by calculating a distance transformation
on the current tissue mask and iterating through the maxima. In each step, the point with
the maximal distance value is taken as a seed point. If its value is larger than 100 or is
within 100 pixels from any previously accepted seed point, it is accepted and its containing
region is marked as tissue; otherwise, it is discarded. The steps of the algorithm are shown
in Fig. 5.

Convolutional neural networks

In this section, we discuss the architecture of our CNNs and the training process.

Architecture

It has been shown that FCNN’s can achieve excellent performance in WSI processing tasks
(Ehteshami Bejnordi et al., 2017, 2018; Bandi et al., 2018; Nagpal et al., 2019; Liu et al.,
2019), and that FCNNs can reach similar Dice score compared to U-Net architectures
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Figure 5 Flowchart of the FESI algorithm. The filled boxes represent images, while the non filled boxes
are algorithmic steps. Full-size K&l DOT: 10.7717/peerj.8242/fig-5

Table 4 Network architecture (all our CNNs had the same architecture).

Layer Type Filter size Stride Filter count Activation
0 CONV 5x5 1 16 ReLU

1 POOL 2x2 2

2 CONV 5x5 1 32 ReLU

3 POOL 2x2 2

4 CONV 3x3 1 64 ReLU

5 POOL 2x2 2

6 CONV 3x3 1 64 ReLU

7 CONV 3x3 1 1,024 ReLU

8 CONV 1x1 1 512 ReLU

9 CONV 1x1 1 2 softmax

(Ronneberger, Fischer ¢ Brox, 2015) in tissue segmentation (Bdndi et al., 2017). We used
FCNN architecture in this study because of its similar performance in tissue segmentation
at a significantly lower computational cost.

Our fully convolutional neural network (FCNN) (Shelhamer, Long ¢ Darrell, 2017)
consisted of seven convolutional layers with ReLU (Maas, Hannun ¢» Ng, 2013) activation
function in the first six convolutional layers and softmax in the last one. Max pooling was
inserted after each of the first three convolutional layers to reduce the memory
requirements of the network. Table 4 describes the complete network architecture.

Training

The networks were initialized with the He (He et al., 2015) method and the weights were
updated using the Adam optimizer (Kingma ¢ Ba, 2014). We used categorical cross
entropy as the loss function and added 12 regularization with a weight of \ = 107",

The [ = 10™* initial learning rate was divided by 2 after each four consecutive epochs
without improvement, and the training procedures were stopped after 16 consecutive
epochs without improvement.
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The networks were trained with RGB image patches of 128 x 128 pixels that were
randomly sampled from the WSIs during training. Each epoch consisted of 25,600 training
and 6,400 validation iterations. In each iteration, we extracted 32 image patches to form a
mini-batch. The measured epoch accuracy of the networks was the average accuracy across
validation iterations.

Sampling

The RGB image patches were sampled with uniform distribution over the WSI classes for
both training and validation purposes, with a 1, 1, 1, 1, 5, 1 distribution for edge, artifacts,
background, external-margin, internal-margin, and tissue areas, respectively.

Resolution

We trained two types of networks: FCNNs A, B, and C were single-level networks trained
with image patches extracted from a single level of the multi-resolution WSIs; FCNN D
was a multi-level network trained with image patches extracted from a range of levels.
FCNN A, B, and C were trained with image patches from the levels closest to 0.5, 2.0, and
8.0 um pixel spacing, respectively.

For the training of the FCNN D, the source level was randomly chosen for each loaded
image patch, from the levels closest to 0.5, 1.0, 2.0, 4.0, or 8.0 um pixel spacing. For the
sake of simplicity, we refer to the levels with 0.5, 2.0, and 8.0 um approximate pixel spacing
as level 1, level 3, and level 5, respectively.

Augmentations

We used data augmentation during training to make our networks more robust to data
variations encountered in practice. Specifically, we aim to simulate the differences between
scanners, stains, and staining protocols. The loaded image patches were subjected to a
series of augmentation steps with randomized parameters from pre-defined ranges with
uniform distribution for each individual patch.

Our augmentation methods greatly overlap with the published HSV-Strong method
(Tellez et al., 2019). However, we did not use elastic transformation, the individual
augmentation methods are executed in different order in our pipeline, and the ranges of
the parameters were extended for greater variability. The augmentation pipeline consisted
of horizontal mirroring, 90° rotations, scaling, color adjustment in hue-saturation-
brightness color space, contrast adjustment, additive Gaussian noise, and Gaussian blur.
Table 5 lists the augmentation steps and their parameter ranges.

By using Hue augmentation from the HSV-Strong method we made every color possible
on the image patches while keeping the distances between the colors unchanged. This way,
the trained networks were forced to be independent of the absolute hue value, thus be
able to recognize tissue with with unseen stains. Examples of the hue augmentation are
shown in Fig. 6.

Inference
For WSI segmentation, the networks were applied in a fully convolutional fashion to the
image (Shelhamer, Long & Darrell, 2017). The output of the networks were pixel-wise
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Table 5 Augmentation configuration: each loaded image patch was subjected to a series of
augmentation steps in the order listed, with parameters randomly picked from the ranges shown.

Order Augmentation Parameter Range

1 Mirroring f Horizontal, none
2 Rotation a 0°, 90°, 180°, 270°
3 Scaling z (0.75, 1.25)

4 Hue adjustment h (-1.0, 1.0)

5 Saturation adjustment s (-0.25, 0.25)

6 Brightness adjustment b (-0.25, 0.25)

7 Contrast adjustment c (-0.25, 0.25)

8 Additive Gaussian noise 0, (0.0, 0.05)

9 Gaussian blur O (0.0, 1.0)

LA 7 SR T B <A p S g ST T B Z ST s Z SUB A T

Figure 6 Examples of hue augmentation. Form (A-F) adjustments with 0°, 60°, 120°, 180°, 240°, and 300°.
Full-size K&l DOI: 10.7717/peer;j.8242/fig-6

probabilities (range 0.0-1.0) of belonging to tissue. This output was thresholded at ¢ = 0.8,
resulting in a binary tissue-background mask. The confidence threshold was selected
by measuring the average Dice score on the development validation set.

Post-processing

For fair comparison, we used the same post-processing method on the binary
tissue-background masks for all the measurements, including the traditional methods. Since
the annotated tissue regions smaller than 250 pm in diameter were removed and the
holes smaller than 250 pm were filled in the reference, we removed every disjunctive region
from the binary output masks of the algorithms that was smaller than 250 um in diameter.
We then filled every hole in the output tissue regions that was smaller than 250 pm.

Measurements

We quantitatively compared the algorithms using the Dice score (Dice, 1945), comparing
the output of the algorithms against the binary reference masks of the 30 images in the
testing part of the development dataset.

In addition, we calculated the sensitivity and number of false positives for each slide.
We considered a reference tissue area a true positive if at least 80% of its area was detected
by the algorithm as tissue; otherwise, the region was counted as a false negative. A region
of the algorithm output was counted as a false positive detection if it had no overlap
with any of the reference tissue regions.
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To test if our FCNN was significantly different from Otsu’s method and the FESI
algorithm, we applied pairwise ¢-tests with Bonferroni correction using the Dice scores of
the algorithms on development test set. Differences with p < 0.05 were considered
statistically significant.

RESULTS

Comparison with traditional methods

First, we compared our FCNN method against the traditional thresholding, Otsu’s, and the
FESI method. We executed the algorithms on levels 1, 3, and 5. However, we could not
execute the FESI method on level 1 due to memory limitations (it required more than
200 GB at this level).

By selecting these resolutions, we are able to provide results which cover a wide range of
use-cases—from coarse initial segmentation at low resolution, to detailed segmentation at
high resolution. When selecting the level in a WSI with a given approximate pixel spacing,
we selected the one with the pixel spacing closest to the target. For example, for 0.5 um
approximate pixel spacing in H&E stained breast WSIs, the closest level had 0.4861 um
pixel spacing; in H&E stained rectum WSIs, the closet level had 0.4549 pm; in PAS
stained kidney WSIs, it had 0.5034 um pixel spacing.

The average Dice scores of the thresholding method were between 0.8616 and 0.8778
and the sensitivities in the range from 0.5617 to 0.6745. It produced the highest false
positive region count across all the tested levels, ranging from 20.83 to 38.33 average false
positive regions per image.

The average Dice score of Otsu’s method ranged from 0.5647 to 0.7865. It worked best
on level 5. The average sensitivity was in the range of 0.2810 to 0.4450. The algorithm
produced lower false positive counts than the thresholding method at the expense of
significantly lower average Dice scores and Sensitivities.

The FESI algorithm achieved Dice scores between 0.8284 and 0.8419 and sensitivities
between 0.5758 and 0.6495, outperforming Otsu’s method in both metrics. The region
selection method of the algorithm helped it achieve the lowest false positive region
count across all tested levels: 12 and 9 false positives per image on levels 3 and 5,
respectively.

The FCNN networks had the best average Dice score on all levels, ranging from 0.9775
to 0.9891, with the highest minimum and maximum and the lowest standard deviation
across all levels compared to the baseline algorithms. For the complete list of metric values,
we refer to Table 6.

In terms of slide area covered by false positive detections, false positives of FCNN A, B,
and C accounted for 0.0207%, 0.0193%, and 0.0344% of the average slide area across levels
1, 3 and 5, respectively. The false positives of the thresholding method covered, 0.8594%,
0.8309%, and, 0.8057% on levels 1, 3 and 5, respectively. Otsu’s method had 0.7268%,
0.5213%, and 0.5588%, while the FESI produced 0.0681%, and 0.0871% on the last two
levels, respectively. Examples of segmentations are shown on Fig. 7.
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Table 6 Comparison of traditional methods and FCNNs. The methods with the highest Dice score at each level are shown in bold.

Method Level Pixel spacing Dice score Sensitivity False positive count

(1) Mean Stdev  Min Max Mean Stdev  Min Max Mean Stdev Min Max
Thresholding 1 0.5 0.8616 0.1346 0.4577 0.9898 0.5617 0.3586 0.0000 1.0000 3833 7337 0 387
Otsu’s 1 0.5 0.5647 0.3680 0.0000 0.9769 0.2810 0.3783 0.0000 1.0000 28.57 3730 O 176
FCNN A 1 0.5 0.9880 0.0089 0.9680 0.9970 0.9747 0.0637 0.7143 1.0000 6.93 946 0 34
FCNN B 1 0.5 0.9305 0.0740 0.7043 0.9942 0.6587 0.3396 0.0000 1.0000 4.03 469 0 18
FCNN D 1 0.5 0.9841 0.0132 0.9496 0.9958 09554 0.0820 0.7143 1.0000 6.77 10.06 0 44
Thresholding 3 2.0 0.8627 0.1361 0.4131 0.9905 0.5763 0.3631 0.0000 1.0000 34.50 76.49 0 412
Otsu’s 3 2.0 0.7373  0.1596 0.2689 0.9523 0.2890 0.3665 0.0000 1.0000 12.63 12.09 0 54
FESI 3 2.0 0.8284 0.3288 0.0000 0.9951 0.6495 0.3690 0.0000 1.0000 137 263 0 12
FCNN B 3 2.0 0.9891 0.0085 0.9706 0.9968 0.9387 0.1111 0.6667 1.0000 4.00 5.93 0 25
FCNN D 3 2.0 09822 0.0195 09185 09961 0.8953 0.1302 0.5833 1.0000 5.37 8.25 0 31
Thresholding 5 8.0 0.8778 0.1293 0.4915 0.9924 0.6745 03631 0.0000 1.0000 20.83 29.65 1 167
Otsu’s 5 8.0 0.7865 0.1623  0.3835 0.9690 0.4450 0.3903 0.0000 1.0000 12.17 1090 0 48
FESI 5 8.0 0.8419 0.3105 0.0000 0.9912 0.5758 0.3619 0.0000 1.0000 0.57 1.69 0 9
FCNN C 5 8.0 0.9775 0.0186 0.9328 0.9945 0.6735 0.2762 0.2000 1.0000 1.77 2.75 0 11
FCNN B 5 8.0 0.9657 0.0284 0.8963 09946 0.7389 0.2248 0.3333 1.0000 1.10 218 O 11
FCNN D 5 8.0 09726  0.0253 0.9036 0.9951 0.7157 0.2383 0.2857 1.0000 1.70 2.04 0 7

Figure 7 Examples of segmentations by FCNN B from the development test set. (A) and (F) Breast—
H&E; (B) and (G) lymph node—CK8-18; (C) and (H) kidney—Sirius Red; (D) and (I) rectum—H&E;
(E) and (J) tongue—H&E. Color overlays: correctly identified tissue is green, correctly identified back-
ground is gray, missed tissue is red, oversegmentation of tissue is yellow, false positive detections are blue.
The zoomed areas of (F-J) are marked by black rectangles on the WSIs in (A)-(E). The field of view of the
zoomed areas is 750 X 750 pm. Full-size K&l DOT: 10.7717/peerj.8242/fig-7
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Resolution-agnostic network

Next, we examined how the performance of an FCNN changes if we apply it on different
resolution levels. We trained FCNN D with image patches extracted randomly from all the
levels between 1 and 5. We compared it against the networks that were trained with a
single pixel spacing on their native levels, and tested how a network trained on a single
level performs at other levels.

The Dice score and sensitivity of the FCNN B trained on level 3 remained relatively high
when tested on the two other levels: The 0.9891 average Dice score on its native pixel
spacing only dropped to 0.9305 and 0.9657 on levels 1 and 5, respectively, while the
average sensitivity dropped from 0.9968 to 0.9942 and 0.9946, respectively.

The FCNN D that was trained with image patches from levels 1, 3, and 5 achieved
comparable average Dice scores and sensitivities to the FCNNs A, B, and C on all the tested
levels; in average Dice score metrics, it outperformed FCNN B on its non-native levels:

1 and 5. FCNN D had a significantly higher average sensitivity on level 1 than on levels 3
and 5, and both FCNN B and FCNN D achieved better average sensitivities than FCNN C
on level 5 (which FCNN C was exclusively trained on).

The resolution-agnostic FCNN D achieved similar false positive region counts to
networks that were trained with a single pixel spacing across all the tested levels. The area
covered by the false positive detections of FCNN D was 0.0299%, 0.0374%, and 0.0500%
on levels 1, 3, and 5, respectively. Surprisingly, the FCNN B detects less false positive
regions on levels 1 and 5 than the networks that were trained on that given level. For the
complete list of achieved metrics, we refer to Table 6.

Furthermore, the paired t-tests calculated at level 5 revealed that the Dice score
differences between FCNN D and the thresholding method, between FCNN D and Otsu’s
method, and between FCNN D and the FESI method were statistically significant
(p = 0.0007, p < 0.0001, and p = 0.0481 respectively).

Results on the dissimilar dataset
In order to test how well FCNN D performs on unfamiliar data, we tested it on the
dissimilar dataset on level 3. Neither the eight images nor their tissue-staining categories
were used for training or validation of the CNNs. While the development dataset did
contain kidney and lung tissue WSIs, those were stained with PAS and Sirius Red and
H&E, respectively.

FCNN D achieved an excellent average Dice score of 0.9828 and 0.9737 average
sensitivity; only eight false positive regions were identified across all slides. Examples of
segmentations are shown on Fig. 8. Full results are presented in Table 7.

DISCUSSION

In this paper, we set out to build an algorithm to segment diagnostically-relevant tissue
areas from WSIs across differing conditions, such as stains and scanners. The proposed
CNNs outperformed the existing traditional methods across different resolution levels.
FCNNs A, B, and C achieved significantly higher Dice scores and sensitivities than the
simple thresholding method, Otsu’s adaptive thresholding, and the FESI methods, with
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Figure 8 Examples of segmentation by FCNN D from the dissimilar set. (A) and (F) Aorta—Alcian
Blue; (B) and (G) cornea—Grocott; (C and H) kidney—CAB; (D) and (I) lung—Perls; (E) and (J) skin—
Von Kossa. Color overlays: correctly identified tissue is green, correctly identified background is gray,
missed tissue is red, oversegmentation of tissue is yellow, false positive detections are blue. The zoomed
areas of (F-J) are marked by black rectangles on the WSIs in (A)-(E). The field of view of the zoomed

areas is 750 x 750 pm.

Full-size K&l DOT: 10.7717/peerj.8242/fig-8

Table 7 Results of FCNN D on the dissimilar dataset. Since the dissimilar dataset had no tissue-
staining category overlap with the development dataset, the results are good indicators of the

generalization potential of the FCNNGs.

Tissue Staining Dice score Sensitivity False positive count
Aorta Alcian Blue 0.9817 0.8333 1
Brain Alcian Blue 0.9826 1 3
Cornea Grocott 0.9449 0.9565 2
Kidney CAB 0.9897 1 0
Lung Perls 0.9920 1 0
Skin Perls 0.9836 1 2
Skin Von Kossa 0.9911 1 0
Uterus Von Kossa 0.9980 1 0

only one exception on level 5. On level 5 the simple thresholding method achieved slightly
higher sensitivity than FCNN C at the expense of lower Dice score and substantially higher
false positive count. In addition, it was possible to train a resolution-agnostic network

that performs equivalently to the networks that were trained on a single resolution level.
FCNN D achieved Dice scores within 0.0069 of FCNs A, B, and C on their corresponding
level. Finally, FCNN D showed excellent generalization potential, achieving 0.9828

average Dice score and 0.9737 average sensitivity at an average of one false positive per
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image on the dissimilar dataset, demonstrating that it can perform well on unfamiliar
tissue and staining types.

We did not include the published tissue segmentation method by Hiary, Alomari ¢
Chaudhary (2013) in this study: They reported their results as a localization error in which
a pathologist partly determined which errors were relevant (and thus counted), making the
approach irreproducible for us. Re-implementing this method was not feasible due to
missing algorithmic details.

FCNN B also worked well on its non-native levels, but the network did make several
crucial errors. Most notably, it had problems recognizing fatty tissue on levels 1 and, to
some extent, 5; these errors did not reduce the average Dice score significantly, but resulted
in a substantially lower sensitivity. FCNN B achieved zero sensitivity on three of the
test images and less than 0.5 on eight of the 30 test images on level 1. It also had difficulties
with slightly out of focus-regions on both non-native levels. These problems were largely
alleviated by the multi-level training of FCNN D. The mistakes of the two FCNNs were
similar on levels 1 and 5, but the classification errors made by FCNN D were much smaller.
Notably, FCNN D achieved better performances on finely-structured regions (e.g., lung
tissue) on level 5 than FCNN C.

A drop in sensitivity from highest to lowest resolution levels was present across all
methods, with an especially sharp drop from resolution level 3 to level 5 (see Table 6). This
was mainly due to small annotated regions being missed. All networks had a 128 x
128 pixels training patch size, which means an increasing physical field of view from 64
and 256 pm to 1,024 um from levels 1 to 5, respectively. The small tissue region with
diameters slightly greater than 250 pm filled only a fraction of the training patch of the
networks trained on level 5, while only 25% fit in the training patch of the networks trained
on level 1. This made it easier for the network to neglect such regions on higher levels.

On the dissimilar dataset, FCNN D only missed two reference regions by falling below
the 80% detection ratio minimum. It performed worse on the cornea tissue, with a
Dice coefficient of 0.94. We hypothesize that this was caused by the texture of the lightly
colored cornea tissue with the darkly stained fungi deposits; the appearance was very
different from other tissues in the development dataset.

The proposed method can be a useful pre-processing step of any WSI processing
algorithm. By accurately identifying the tissue areas it can effectively reduce the
computational cost of subsequent processing steps. Integrating the proposed method into
the software of whole-slide scanners is beyond the scope of this paper, but given the
resolution-agnostic nature of FCNN D, one possible way would be to use the macro-scan of
the complete glass slides (low resolution, results roughly similar to level 5 in Table 6), and let
the algorithm find the relevant tissue regions with high sensitivity. Then the scanner
could utilize the resulting tissue map, and scan the glass slide at the target resolution only
where tissue was found. The algorithm can then during scanning be used at high-resolution
to exclude artifacts and other non-tissue areas at high specificity, level 1 in Table 6.

This study has some limitations. While we collected images from a wide range of
sources, our dataset is much too small to account for all variation encountered in the real
world. Therefore, there are likely other tissue and staining types which the networks would
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fail to identify. However, the results on the dissimilar dataset do indicate that a total
segmentation failure is unlikely.

Furthermore, all of the slides in this study except the kidney CAB from the dissimilar
dataset had four pm tissue thickness. We think that the wide variety of data in our study
in terms of differing stains and tissue types already covers the variation one would
encounter through different tissue thicknesses. Thinner tissue cuts produce lighter colored,
less saturated images, while thicker cuts yields darker, more saturated images. These types
of differences are also present in data from different centers with diverse scanners, or
different stains and tissue types. Our augmentation pipeline included saturation and
brightness adjustment steps with widened parameter range to accommodate this kind of
variability. We hypothesize that the tissue thickness from the range of three to five um
should have no effect on the performance of the proposed method. This is further
evidenced by the three um thick tissue which shows similar results to the rest of the dataset.

CONCLUSIONS

We would like to extend the study in the future by running it in a prospective setting at
several centers. This would automatically expose it to more tissue types, stainings, tissue
thicknesses, and scanners. By monitoring segmentation performance, we can identify
potential failure modes and address them in a subsequent study. In this study, we did not
compare our algorithms to the scanners’ tissue-detection algorithms; this is another
avenue for future research.

In conclusion, the FCNN solutions were proven to be superior compared to traditional
methods. The resolution-agnostic FCNN variant was able produce excellent
tissue-background segmentation across resolution levels, which allowed us to use a single
algorithm for both coarse and fine segmentations. Lastly, we showed that this algorithm
performed well on completely unfamiliar data.

ACKNOWLEDGEMENTS

We thank for Dr. Filippo Fraggetta, Head of Pathology Department, Cannizzaro Hospital
(Catania, Italy) for providing the example images of missed tissue regions shown in Fig. 1.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was funded by the Automation in Medical Imaging project. Funding sources
were Radboud University Medical Center and Fraunhofer-Gesellschaft. The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Automation in Medical Imaging project.

Radboud University Medical Center and Fraunhofer-Gesellschaft.

Bandi et al. (2019), Peerd, DOI 10.7717/peerj.8242 18/22


http://dx.doi.org/10.7717/peerj.8242
https://peerj.com/

Peer/

Competing Interests

Jeroen van der Laak is a member of the scientific advisory boards of Philips, the
Netherlands and ContextVision, Sweden and receives research funding from Philips, the
Netherlands and Sectra, Sweden. Geert Litjens received research funding from Philips
Digital Pathology Solutions (Best, the Netherlands) and has a consultancy role for Novartis
(Basel, Switzerland).

Author Contributions

e Péter Bandi conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

e Maschenka Balkenhol analyzed the data, authored or reviewed drafts of the paper,
approved the final draft.

e Bram van Ginneken authored or reviewed drafts of the paper, approved the final draft.

e Jeroen van der Laak conceived and designed the experiments, authored or reviewed
drafts of the paper, approved the final draft.

e Geert Litjens conceived and designed the experiments, analyzed the data, contributed

reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the
final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Institutional Review Board of the Radboud University Medical Center approved the
study (2019-5161).

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo: Bandi, Péter. (2019). Representative Sample Dataset for
Resolution-Agnostic Tissue Segmentation in Whole-Slide Histopathology Images
(Version 1.0.0) (Data set). Zenodo. DOI 10.5281/zenodo.3375528.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8242#supplemental-information.

REFERENCES

Azevedo Tosta TA, Neves LA, do Nascimento MZ. 2017. Segmentation methods of H&E-stained
histological images of lymphoma: a review. Informatics in Medicine Unlocked 9:35-43
DOI 10.1016/j.imu.2017.05.009.

Bandi P, Geessink O, Manson Q, Van Dijk M, Balkenhol M, Hermsen M,
Ehteshami Bejnordi B, Lee B, Paeng K, Zhong A, Li Q, Ghazvinian Zanjani F, Zinger S,
Fukuta K, Komura D, Ovtcharov V, Cheng S, Zeng S, Thagaard J, Dahl JB, Lin H, Chen H,
Jacobsson L, Hedlund M, Cetin M, Halc E, Jackson H, Chen R, Both F, Franke J,
Kiisters-Vandevelde H, Vreuls W, Bult P, Van Ginneken B, Van der Laak J, Litjens G. 2018.

Bandi et al. (2019), Peerd, DOI 10.7717/peerj.8242 19/22


http://doi.org/10.5281/zenodo.3375528
http://dx.doi.org/10.7717/peerj.8242#supplemental-information
http://dx.doi.org/10.7717/peerj.8242#supplemental-information
http://dx.doi.org/10.1016/j.imu.2017.05.009
http://dx.doi.org/10.7717/peerj.8242
https://peerj.com/

Peer/

From detection of individual metastases to classification of lymph node status at the patient
level: the camelyon17 challenge. IEEE Transactions on Medical Imaging 38(2):550-560
DOI 10.1109/TM1.2018.2867350.

Bandi P, Van de Loo R, Intezar M, Geijs D, Ciompi F, Ginneken B, Van der Laak J, Litjens G.
2017. Comparison of different methods for tissue segmentation in histopathological whole-slide
images. In: IEEE International Symposium on Biomedical Imaging, Melbourne, Australia.
591-595.

Bug D, Feuerhake F, Merhof D. 2015. Foreground extraction for histopathological whole-slide
imaging. In: Bildverarbeitung fiir die Medizin 2015, Liibeck, Germany. 419-424.

Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam K]J,
Brogi E, Reuter VE, Klimstra DS, Fuchs TJ. 2019. Clinical-grade computational pathology
using weakly supervised deep learning on whole slide images. Nature Medicine 25(8):1301-1309
DOI 10.1038/541591-019-0508-1.

Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyé D, Moreira AL,
Razavian N, Tsirigos A. 2018. Classification and mutation prediction from non-small cell lung
cancer histopathology images using deep learning. Nature Medicine 24(10):1559-1567
DOI 10.1038/s41591-018-0177-5.

Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology
26(3):297-302 DOI 10.2307/1932409.

Ehteshami Bejnordi B, Mullooly M, Pfeiffer RM, Fan S, Vacek PM, Weaver DL, Herschorn S,
Brinton LA, Van Ginneken B, Karssemeijer N, Beck AH, Gierach GL, Van der Laak JAWM,
Sherman ME. 2018. Using deep convolutional neural networks to identify and classify
tumor-associated stroma in diagnostic breast biopsies. Modern Pathology 31(10):1502-1512
DOI 10.1038/541379-018-0073-z.

Ehteshami Bejnordi B, Veta M, van Diest PJ, van Ginneken B, Karssemeijer N, Litjens G,
van der Laak JAWM, The CAMELYON16 Consortium. 2017. Diagnostic assessment
of deep learning algorithms for detection of lymph node metastases in women with breast
cancer. Journal of the American Medical Association 318(22):2199-2210
DOI 10.1001/jama.2017.14585.

Gertych A, Swiderska-Chadaj Z, Ma Z, Ing N, Markiewicz T, Cierniak S, Salemi H, Guzman S,
Walts AE. 2019. Convolutional neural networks can accurately distinguish four histologic
growth patterns of lung adenocarcinoma in digital slides. Scientific Reports 9(1):1483
DOI 10.1038/541598-018-37638-9.

Hart SN, Flotte W, Norgan AP, Shah KK, Buchan ZR, Mounajjed T, Flotte TJ. 2018.
Classification of melanocytic lesions in selected and whole-slide images via convolutional
neural networks. Journal of Pathology Informatics 10:5 DOI 10.4103/jpi.jpi_32_18.

He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: surpassing human-level
performance on imagenet classification. In: International Conference on Computer Vision,
Santiago, Chile. 1026-1034.

Hiary H, Alomari RS, Chaudhary V. 2013. Segmentation and localisation of whole slide images
using unsupervised learning. Image Processing, IET 7(5):464-471
DOI 10.1049/iet-ipr.2013.0008.

Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. Available at http://arxiv.
org/abs/1412.6980.

Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional
neural networks. Neural Information Processing Systems 25:1097-1105.

Bandi et al. (2019), PeerdJ, DOI 10.7717/peerj.8242 20/22


http://dx.doi.org/10.1109/TMI.2018.2867350
http://dx.doi.org/10.1038/s41591-019-0508-1
http://dx.doi.org/10.1038/s41591-018-0177-5
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1038/s41379-018-0073-z
http://dx.doi.org/10.1001/jama.2017.14585
http://dx.doi.org/10.1038/s41598-018-37638-9
http://dx.doi.org/10.4103/jpi.jpi_32_18
http://dx.doi.org/10.1049/iet-ipr.2013.0008
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.7717/peerj.8242
https://peerj.com/

Peer/

Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, Venugopalan S, Timofeev A,
Nelson PQ, Corrado GS, Hipp JD, Peng L, Stumpe MC. 2017. Detecting cancer metastases on
gigapixel pathology images. arXiv e-prints. Available at https://arxiv.org/abs/1703.02442.

Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, Olson N, Peng LH,
Hipp JD, Stumpe MC. 2019. Artificial intelligence-based breast cancer nodal metastasis
detection: Insights into the black box for pathologists. Archives of Pathology & Laboratory
Medicine 143(7):859-868 DOI 10.5858/arpa.2018-0147-OA.

Maas AL, Hannun AY, Ng AY. 2013. Rectifier nonlinearities improve neural network acoustic
models. ICML Workshop on Deep Learning for Audio, Speech and Language Processing 30(1):3.

Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, Olson N, Smith JL, Mohtashamian A,
Wren JH, Corrado GS, MacDonald R, Peng LH, Amin MB, Evans AJ, Sangoi AR,
Mermel CH, Hipp JD, Stumpe MC. 2019. Development and validation of a deep learning
algorithm for improving gleason scoring of prostate cancer. NPJ Digital Medicine 2:48
DOI 10.1038/s41746-019-0112-2.

Nirschl JJ, Janowczyk A, Peyster EG, Frank R, Margulies KB, Feldman MD, Madabhushi A.
2018. A deep-learning classifier identifies patients with clinical heart failure
using whole-slide images of H&E tissue. PLOS ONE 13(4):e0192726
DOI 10.1371/journal.pone.0192726.

Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics 9(1):62-66 DOI 10.1109/TSMC.1979.4310076.

Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomedical image
segmentation. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI
2015, Munich, Germany. 234-241.

Setio AAA, Traverso A, De Bel T, Berens MSN, Van den Bogaard C, Cerello P, Chen H, Dou Q,
Fantacci ME, Geurts B, Van der Gugten R, Heng PA, Jansen B, De Kaste MM]J, Kotov V,
Lin JY-H, Manders JTMC, Soiiora-Mengana A, Garcia-Naranjo JC, Papavasileiou E,
Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ET, Scholten L, Snoeren MM,
Torres EL, Vandemeulebroucke J, Walasek N, Zuidhof GCA, Van Ginneken B, Jacobs C.
2017. Validation, comparison, and combination of algorithms for automatic detection of
pulmonary nodules in computed tomography images: the LUNA16 challenge. Medical Image
Analysis 42:1-13 DOI 10.1016/j.media.2017.06.015.

Shelhamer E, Long J, Darrell T. 2017. Fully convolutional networks for semantic segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 39(4):640-651
DOI 10.1109/TPAMI.2016.2572683.

Snead DR]J, Tsang Y-W, Meskiri A, Kimani PK, Crossman R, Rajpoot NM, Blessing E,
Chen K, Gopalakrishnan K, Matthews P, Momtahan N, Read-Jones S, Sah S, Simmons E,
Sinha B, Suortamo S, Yeo Y, El Daly H, Cree IA. 2016. Validation of digital pathology
imaging for primary histopathological diagnosis. Histopathology 68(7):1063-1072
DOI 10.1111/his.12879.

Tellez D, Litjens G, Bandi P, Bulten W, Bokhorst J, Ciompi F, Van der Laak J. 2019.
Quantifying the effects of data augmentation and stain color normalization in convolutional
neural networks for computational pathology. Medical Image Analysis 58:101544
DOI 10.1016/j.media.2019.

Vanderbeck S, Bockhorst J, Komorowski R, Kleiner DE, Gawrieh S. 2014. Automatic
classification of white regions in liver biopsies by supervised machine learning. Human
Pathology 45(4):785-792 DOI 10.1016/j.humpath.2013.11.011.

Bandi et al. (2019), PeerdJ, DOI 10.7717/peerj.8242 21/22


https://arxiv.org/abs/1703.02442
http://dx.doi.org/10.5858/arpa.2018-0147-OA
http://dx.doi.org/10.1038/s41746-019-0112-2
http://dx.doi.org/10.1371/journal.pone.0192726
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/j.media.2017.06.015
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://dx.doi.org/10.1111/his.12879
http://dx.doi.org/10.1016/j.media.2019
http://dx.doi.org/10.1016/j.humpath.2013.11.011
http://dx.doi.org/10.7717/peerj.8242
https://peerj.com/

Peer/

Xia T, Kumar A, Feng D, Kim J. 2018. Patch-level tumor classification in digital histopathology
images with domain adapted deep learning. In: Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Honolulu, Hawaii. 644-647.

Xu H, Park S, Hwang TH. 2019. Computerized classification of prostate cancer gleason scores
from whole slide images. IEEE/ACM Transactions on Computational Biology and Bioinformatics
DOI 10.1109/TCBB.2019.2941195.

Yu K-H, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, Snyder M. 2016. Predicting non-small
cell lung cancer prognosis by fully automated microscopic pathology image features.
Nature Communications 7:12474 DOI 10.1038/ncomms12474.

Bandi et al. (2019), PeerdJ, DOI 10.7717/peerj.8242 22/22


http://dx.doi.org/10.1109/TCBB.2019.2941195
http://dx.doi.org/10.1038/ncomms12474
http://dx.doi.org/10.7717/peerj.8242
https://peerj.com/

	Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
	Introduction
	Materials
	Methods
	Results
	Discussion
	Conclusions
	flink7
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


