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ABSTRACT
Density surface models (DSMs) are an important tool in the conservation and
management of cetaceans.Most previous applications ofDSMs have adopted a two-step
approach to model fitting (hereafter referred to as the Two-Stage Method), whereby
detection probabilities are first estimated using distance sampling detection functions
and subsequently used as an offset when fitting a density-habitat model. Although
variance propagation techniques have recently become available for the Two-Stage
Method, most previous applications have not propagated detection probability uncer-
tainty into final density estimates. In this paper, we describe an alternative approach
for fitting DSMs based on Bayesian hierarchical inference (hereafter referred to as
the Bayesian Method), which is a natural framework for simultaneously propagating
multiple sources of uncertainty into final estimates. Our framework includes (1) a
mark-recapture distance sampling observation model that can accommodate two team
line transect data, (2) an informed prior for the probability a group of animals is at
the surface and available for detection (i.e. surface availability) (3) a density-habitat
model incorporating spatial smoothers and (4) a flexible compound Poisson-gamma
model for count data that incorporates overdispersion and zero-inflation. We evaluate
our method and compare its performance to the Two-Stage Method with simulations
and an application to line transect data of fin whales (Balaenoptera physalus) off the
east coast of the USA. Simulations showed that both methods had low bias (<1.5%)
and confidence interval coverage close to the nominal 95% rate when variance was
propagated from the first step. Results from the fin whale analysis showed that density
estimates and predicted distribution patterns were largely similar among methods;
however, the coefficient of variation of the final abundance estimatemore than doubled
(0.14 vs 0.31) when detection variance was correctly propagated into final estimates. An
analysis of the variance components demonstrated that overall detectability as well as
surface availability contributed substantial amounts of variance in the final abundance
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estimates whereas uncertainty in mean group size contributed a negligible amount.
Our method provides a Bayesian alternative to DSMs that incorporates much of the
flexibility available in the Two-StageMethod. In addition, these results demonstrate the
degree to which uncertainty can be underestimated if certain components of a DSM
are assumed fixed.

Subjects Conservation Biology, Ecology, Marine Biology, Natural Resource Management,
Population Biology
Keywords Bayesian model, Jagam, Generalized Additive Model (GAM), Tweedie distribution, Fin
whales, Density surface model

INTRODUCTION
Anthropogenic use of the world’s oceans is growing at a rapid pace increasing the potential
for conflicts with wildlife (Halpern et al., 2008; Bailey et al., 2013) including most species
of cetaceans (Stachowitsch, Rose & Parsons, 2019). Density surface models (DSMs) have
become valuable tools to help characterize the spatial distribution and abundance of many
cetacean species (Forney et al., 2012) and have provided critical information to help guide
management decisions in marine environments (Forney et al., 2012; Roberts et al., 2016).
The rapid development of techniques for fitting DSMs to data has provided multiple
options and the need to evaluate their advantages and limitations.

For cetaceans, DSMs are typically fitted to visual line transect data collected from
ships and planes (Redfern et al., 2006; Miller et al., 2013). Fitting DSMs to these data can
be challenging because relationships between habitat variables and animal density are
often nonlinear and subject to unexplained variance. Another challenge is the observation
error associated with the inability to detect all individuals within a surveyed area and
therefore the probability of detection needs to be estimated. Because of the diving behavior
of cetaceans, not all individuals are available to be seen at the surface at all times. For
this reason, the probability of detection of cetaceans involves two components which
include (1) the probability of detecting animals at the surface given that they are not
diving (i.e., surface detectability) and (2) the probability of animals being at the surface
and available for detection (i.e., surface availability). Surface detectability can be estimated
using conventional single team distance sampling techniques (Buckland et al., 2001), if the
probability of detecting a group on the track line is assumed to be one. If this is not the
case, then conventional two-team distance sampling (Laake & Borchers, 2004) can be used
or ancillary information is needed to estimate the probability of detecting a group on the
track line. Surface availability is not as easily estimated from line transect data alone and
usually requires additional information on diving behavior using methods such as those
described in Langrock, Borchers & Skaug (2013).

Most previous applications of DSMs have adopted a two-step approach to model fitting
(hereafter referred to as the Two-Stage Method), whereby detection probabilities are first
estimated using distance sampling detection functions and then subsequently used as
an offset when fitting a density-habitat model (Miller et al., 2013). Generalized additive
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models (GAMs) are commonly used to model spatial distributions due to their flexibility
to capture non-linear density-habitat relationships and flexible distributions such as the
negative binomial or Tweedie distribution can be adopted to model overdispersion. This
method has proven quite robust (Miller et al., 2013; Roberts et al., 2016; Becker et al., 2018)
and is currently being used to inform cetacean management in a number of ecosystems
(Forney et al., 2012; Roberts et al., 2016; Cañadas et al., 2018;Mannocci et al., 2015).

As an alternative to the Two-Stage Method, hierarchical analysis of distance sampling
data has also been developed in the literature (Royle, Dawson & Bates, 2004; Royle &
Dorazio, 2008). A number of studies have employed Bayesian techniques to estimate
parameters (Eguchi & Gerrodette, 2009; Moore & Barlow, 2011; Conn, Laake & Johnson,
2012). The Bayesian framework is appealing because of its flexibility and ability to take
advantage of prior information to inform model output (Clark, 2005). Although examples
of applying a Bayesian hierarchical approach to distance sampling arewell represented in the
literature, model development still lags behind the Two-Stage Method limiting the options
available for modelling both the detection function and spatial distribution. For example,
applications to line transect data of cetaceans have generally used single team data where
detectability on the trackline cannot be estimated directly (Moore & Barlow, 2011; Pardo et
al., 2015;Pavanato et al., 2017). There have been fewer attempts to develop a framework that
can accommodate two team survey data (but seeConn, Laake & Johnson, 2012). In addition,
recent examples of estimating DSMs in a Bayesian framework have used a generalized linear
modelling (GLM) framework to parameterize the density-habitat function (Conn, Laake &
Johnson, 2012; Pardo et al., 2015; Goyert et al., 2016). This framework is considerably less
flexible than the GAM-based models often used in the Two-Stage Method since the latter
are based on the use of semi-parametric smoothing functions and better accommodate
non-linear species responses to environmental predictors (Guisan, Edwards Jr & Hastie,
2002).

The growth of techniques for predicting the spatial distribution and abundance
of animals has led to a number of comparative studies often with a focus on
evaluating prediction accuracy among methods (Elith & Graham, 2009; Oppel et al.,
2012). Uncertainty estimation, however, is less commonly addressed when evaluating
model performance. In fact, in a recent review of studies focused on the distribution and
abundance of marine fauna, Robinson et al. (2017) found that uncertainty is rarely assessed
or reported. Becausemodels that do not properly account for uncertainty can lead to failure
to act or poor management decisions (Taylor et al., 2000) attempts to model distribution
and abundance should carefully consider the ability of the chosen method to quantify
uncertainty.

In a hierarchical analysis of a DSM, parameters of the density and detection models are
estimated jointly such that variance associated with the detection function is propagated
throughout the model and represented in the precision of the final estimates (Johnson,
Laake & Ver Hoef, 2010). In the Two-Stage Method, variance propagation has historically
been somewhat problematic, ranging from no attempt to propagate variance to ad
hoc techniques. For example, in some cases a delta method approach has been used
(Cañadas et al., 2018) but this relies on a potentially violated assumption of independence
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among the detection function and density-habitat model (Bravington, Miller & Hedley,
2018). Bootstrap techniques can also be used (Hedley & Buckland, 2004) but lack strong
theoretical support (Miller et al., 2013; Bravington, Miller & Hedley, 2018). Williams et al.
(2011) introduced an alternative approach where the parameters of the detection function
are treated as random effects creating a structure more analogous to the hierarchical
approach. Recently, Bravington, Miller & Hedley (2018) modified this method to increase
its generality. Although this approach holds promise, there are currently few examples of
it being applied in the literature.

Because of the difficulty in propagating uncertainty from the first stage to the second stage
when using the Two-Stage Method, it is sometimes not conducted such that final estimates
only reflect the uncertainty from the spatial model (Roberts et al., 2016; Palka et al., 2017;
Chavez-Rosales et al., 2019). Although it is well understood that this will underestimate
uncertainty (Roberts et al., 2016), we are not aware of any studies that have attempted
to quantify the degree to which uncertainty is underestimated if variance propagation is
ignored. Such information could be of use to managers and other end users of DSMs when
trying to incorporate these estimates into the decision making process.

Our study has two main objectives. The first objective is to develop a Bayesian
framework, hereafter referred to as the Bayesian Method, for the estimation of DSMs
that incorporates the multiple components that influence detection, a flexible distribution
that can accommodate overdispersion and a high number of zero observations, and
flexibility in the density-habitat function similar to two-stage models. The second objective
is to quantify the contribution of each component of a DSM to uncertainty and investigate
the degree to which precision is overestimated if the variance of these separate components
is omitted. To accomplish these objectives, we use simulations and line transect survey data
of fin whales (Balaenoptera physalus). We demonstrate the performance of our Bayesian
Method in comparison to the Two-Stage Method and compare differences in estimates of
precision when variance propagation is not conducted. The results of this study should
provide practitioners with an additional tool to conduct DSM analyses and end users with
quantifiable information about uncertainty when using the output from currently available
DSMs to make management and conservation decisions.

MATERIALS & METHODS
Data collection
Line transect data were collected as part of the Atlantic Marine Assessment Program
for Protected Species (AMAPPS) conducted by the Northeast Fisheries Science Center
(NEFSC) and the Southeast Fisheries Science Center (SEFSC). The study area ranges from
Halifax, Nova Scotia, Canada to the southern tip of Florida, USA and from the coastline
to slightly beyond the US exclusive economic zone covering approximately 1,193,320 km2

(Fig. 1). A total of 16 shipboard and aerial surveys combined were conducted from July
2010 to August 2013 covering approximately 104,000 km of line transect survey effort
(Table 1). Shipboard surveys were primarily conducted during summer months in offshore
waters and aerial surveys were conducted throughout the year primarily in coastal waters.
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Figure 1 AMAPPS study area.Map of the AMAPPS study area including shipboard survey effort and
aerial survey effort for surveys conducted from 2010-2013.

Full-size DOI: 10.7717/peerj.8226/fig-1

Table 1 Summary of effort by season and survey.

Survey Effort (KM)

Spring Summer Fall Winter

Shipboard 0 8,146 0 0
Aerial 7,502 10,468 11,038 3,573

Each survey included two independent observer teams. For the purpose of this study, we
only analyzed data collected from the NEFSC surveys and limited the southern extent of
the survey area to Cape Hatteras, NC, USA.

We divided the study site into 10× 10 kmgrid cells and into 8-day temporal time periods.
For each spatial–temporal cell we calculated the amount of on-effort trackline, number of
sightings and obtained the corresponding values of a suite of static physiographic variables
and dynamic environmental variables (Table S1). Palka et al. (2017) provides more details
on the methods to collect and process the line transect and environmental data.

Model overview
A general form of a DSM for a given unit of a study area can be written as
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E (ni)= p̂iAiexp(B0+
∑
j

fj
(
Xij
)
), (1)

where E (ni) is the expected number of sightings in unit i, p̂i represents the probability of
detection within the search area of unit i, Ai is the amount of area (e.g., km2) searched in
each unit i, E (ni) can represent either the expected number of individuals sighted in unit
i (Miller et al., 2013) or the expected number of groups sighted in unit i (Moore & Barlow,
2011; Pardo et al., 2015), B0 represents an intercept term and fj are smooth terms for the
environmental covariates Xij .

To fit this model to line transect data using the Two-Stage Method distance sampling
(Buckland et al., 2001) is used to estimate p̂i which is then multiplied by Ai and the product
is used as an offset in a GAM typically using the software mgcv (Wood, 2011). Because p̂i
only includes probability of detection at the surface, it is common practice to further adjust
this estimate of detection probability with an estimate of availability at the surface if one
exists (Cañadas et al., 2018). If the model is formulated such that the GAM predicts the
density of groups then the density of individuals can be calculated by multiplying by an
estimate of average group size where group size is simply the number of individuals in a
group (Pardo et al., 2015). However, if group size varies spatially a separate spatial model
for group size may need to be considered (Redfern et al., 2008).

We take a hierarchical approach to modeling the spatial density of animals where we
simultaneously estimate the components of Eq. 1 using MCMC methods (Gelman et al.,
2004). We use number of groups sighted in each grid cell as the response variable. To
model detection probability we include a detection function model based on distance
sampling and an estimate of surface availability. For the density-habitat component we
use a Bayesian GAM approach to fitting smooth functions (Wood, 2016). Finally, we also
include a submodel for group size to estimate average group size. Below we outline the
development of each subcomponent and its implementation in a Bayesian framework. We
provide a list of all parameters and definitions in Table S2.

Detection function
To estimate surface detectability we used information from the double platform survey
method. Information collected from this survey design allowed us to apply mark-recapture
distance sampling (MRDS) methods (Laake & Borchers, 2004). To model the sightings data
from the dual observers we adopt the formulation for point independence outlined by Laake
& Borchers (2004). This estimator combines a mark-recapture analysis with conventional
distance sampling to estimate detection probability such that detection on the trackline
(i.e., g(0)) can be estimated directly, and therefore, is not assumed to be 1. The estimator is

θ̂i= ĝ (0,zi)

∫W
0 g (y,zi)dy

W
, (2)

where ĝ (0,zi) represents the estimate of detection probability on the trackline and is
estimated from the double observer data; g

(
y,zi

)
represents the detection function at
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distance y and is estimated from the distance data; W is the truncation distance and z
is an g × k matrix of detection covariates that influence surface detectability where g is
the total number of grid cells and k is the total number of detection covariates such as
Beaufort sea state, glare, etc. To model g

(
y,zi

)
, we considered half-normal and hazard

rate detection functions. To model g (0,zi), we adopted the approach outlined by Laake &
Borchers (2004). Specifically, wemodeled the binary outcome of whether or not an observer
successfully detected an animal group that was present at distance y as the outcome of
a Bernoulli trial. Further details of analyzing the double platform line transect data are
provided in Appendix S1.

For the aerial surveys, the secondary team was positioned toward the back of the
plane but had an obstructed view of the trackline complicating a direct implementation
of the MRDS approach. Therefore, we estimated an average g(0) for the aerial surveys
independently where we treated the front team as a single platform and estimated g(0)
using a trial configuration (i.e., using detections by the rear observers as ‘‘trials’’ for the
front observers). The resulting estimate and coefficients of variation (CVs) for g(0) was
0.67 (CV = 0.16). We used this estimate to develop an informative prior in the Bayesian
Method. Information on estimating g(0) and applying it to the aerial data is provided in
Appendix S2.

For each survey, we determined the best detection function through a stand-alone
MRDS analysis using the mrds package in R. A hazard rate likelihood provided the best
fit to both the aerial survey data and the shipboard data. Because sample sizes were low
for sightings that were positively identified as fin whales, we pooled these sighting with
ambiguous sightings that were either a sei whale (Balaenoptera borealis) or a fin whale (see
Table S3). We compared models using AIC and the top model structure for each survey
was used in the Bayesian Method (see Table S3).

Surface availability
Because most marine animals spend some amount of time below the surface there is a
need to also correct for surface availability (a) (Laake et al., 1997; Forcada et al., 2004).
We developed an informative prior distribution for this parameter using the estimate and
corresponding standard error of surface availability for fin whales reported in Palka et al.
(2017). Their method for estimating a was based on the probability of an animal being at
the surface and available for detection during a survey, and took into consideration the
species diving and aggregation behaviors, in addition to the amount of time the observer
had to analyze any spot of water from each of the survey platforms. This correction tended
to be larger for aerial surveys than for shipboard surveys as the window of observation is
considerably smaller for aerial surveys. The estimate for fin whales for aerial surveys was
0.37 (CV = 0.34) and assumed to be 1 for shipboard surveys (see Appendix S2 for more
details).

Our final survey-specific correction for detection probability in each grid cell i is:

pSi =2
S
i (3)
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for the shipboard surveys (S) and

pAi =2
A
i a (4)

for the aerial surveys (A). To investigate possible correlations between the density-habitat
model and detection probability model, we also performed a stand-alone analysis of the
distance data with the Bayesian Method by omitting the density-habitat model in a manner
analogous to the stand-alone MRDS analysis.

Density-habitat function
We take a GAM approach to parameterize the density-habitat function. The general basis
expansion for a single smooth term can be written as

f (x)=
K∑
k=1

βkbk(x), (5)

where bk(x) are basis functions and βk are parameters to be estimated. The basis size K is
usually chosen by the user to be large enough to allow an appropriate amount of flexibility
in f (x). To avoid overfitting quadratic penalty terms are included which take the form

∑
k

γkβ
TSkβ,

where Sk are penalty matrices and γk are smoothing parameters to be estimated.
A multivariate normal distribution can be constructed for the GAM parameters as

β ∼MVN (0,
∑
k

γkSk)

where
∑

kγkSk represents a precision matrix (instead of the more common variance–
covariance matrix) and the penalty terms are given a vague, gamma prior such as

γk ∼Gamma(0.05,0.005),

The terms can be estimated efficiently using Gibbs sampling with conjugate priors.
To calculate the precision matrices we used the jagam function in the R package mgcv

(Wood, 2016). This function allows the user to specify a number of different smooths (cubic
splines, tensor products, etc.) and provides the basic code and input of a JAGS model. In
addition, it centers the smooths to facilitate faster convergence.

Likelihood
We developed a likelihood by assuming count data followed a Tweedie distribution which
has been shown to provide a good fit to cetacean data (Miller et al., 2013; Roberts et al.,
2016). The Tweedie distribution is a three parameter family of distributions that can take
the form of more commonly used distributions such as the normal, Poisson and gamma.
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If the power parameter (ρ) is in the range 1<ρ<2 than the distribution can also be referred
to as the compound Poisson-gamma (CPG). Because the Tweedie random variables are a
sum of G gamma variables (M ) where G is Poisson distributed (Jorgensen, 1987), it can be
expressed in terms of a Poisson and a gamma distribution such that

Gi∼ Poisson(λp)

Mij ∼Gamma(α,β)

where

λg =
α

β
(6)

and

Yi=


Gi∑
i=1

Mij Gi> 0

0 Gi= 0

(7)

where Yi represents the response variable and the expectation of Yi is then E(Y) = λp
λg. Lauderdale (2012) shows that under a specific parameterization, the coefficients of the
regression model can be estimated by estimating both the Poisson and gamma components
separately. Specifically, this parameterization can be written as

λP = e
X (β−φ)

2 (8)

λg = e
X (β+φ)

2 (9)

where X is a design matrix, β is a vector of regression coefficients and φ is a vector of
coefficients that control the extent to which the regression coefficients vary between the
Poisson component and gamma component of the compound distribution (Lauderdale,
2012).

Group size
To model group size we use a zero truncated Poisson such that the group size of each
sighting is modeled as

(st −1)∼ Poisson(λs),

where st is the th observation of group size and λs+ 1 represents the average group size. This
approach assumes that group size is unrelated to detection probability. This assumption
is supported by our analysis of fin whale sightings data which did not indicate a strong
influence of group size on detection probability. Moore & Barlow (2011) used a similar
approach to model group size in their analysis of fin whale data where they also concluded
that group size was unrelated to detection probability.
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Density and abundance estimation
The density of individuals within a grid cell is the product of group size, the density of
groups in grid cell i and the area of grid cell i such that

Ni= (λs+1)DiAG
i (10)

where Di represents the density of groups in grid cell i from the GAM, λs+1 represents
the average group size (s), AG

i is the total area of grid cell i and Ni is the predicted number
of individuals in grid cell i. The total abundance of individuals within the study area is the
sum Ni over all grid cells within the study area.

Model fitting
We fitted the Bayesian Method outlined above using MCMC sampling implemented with
the JAGS software (Plummer, 2003). We used vague prior distributions for all parameters
with the exception of g(0) for the aerial surveys and â where we used estimates and
associated CVs to develop informative beta prior distributions. We included a burnin
of 20,000 samples and two chains of 50,000 with a thinning rate of 50. We assessed
convergence by examining trace plots and calculating Gelman–Rubin diagnostics (see
Table S4 for results).

Simulation study
To evaluate the Bayesian Method and compare its performance to the Two-Stage Method
we used a simulation study. We simulated spatial variation in abundance among 1,000
hypothetical grid cells. We next simulated line transect sampling in a subset of the grid cells.
We fitted both the Bayesian Method and the Two-Stage Method to each of 500 simulated
datasets to estimate abundance and compare results to the true abundance used in the
simulation. We use these results to quantify bias and precision of each method and evaluate
statistical interval coverage. We provide a more detailed summary of the simulation study
in Appendix S3.

Application to fin whales
To further evaluate our modeling approach and investigate sources of uncertainty we
analyzed a four year dataset of fin whales sightings collected during the AMAPPS surveys
with both the Bayesian Method and the Two-Stage Method. For the Two-Stage Method
we used the formulation of Miller et al. (2013) where we used estimates from the stand-
alone MRDS analysis as an offset for p̂i and Ai is the same as described above for the
Bayesian Method. For the density-habitat model, we fitted GAMs in R using the mgcv
package version 1.8-28 (Wood, 2014). We used thin plate regression splines and restricted
maximum likelihood (REML) to estimate parameters. We set the basis size (K ) to 5 for
all smoothing functions which was large enough to allow enough flexibility in fitting the
smooth terms. To account for overdispersion, a Tweedie distribution was assumed. We
used a combination of Akaike’s Information Criterion (AIC) and deviance explained to
determine the best set of covariates and the best structure of the smooth terms. Because
our interest was in keeping as many components of the model structure consistent across
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methods for the purpose of comparison, we did not perform model selection with the
Bayesian Method and instead opted to use the same model formulation for both the
detection function and the density-habitat model in the Bayesian Method that we used in
the Two-Stage Method.

To compare the Bayesian Method to a scenario where there is no variance propagation,
we intentionally did not propagate uncertainty from the first step when applying the
Two-Stage Method such that the precision of final estimates only reflected the density-
habitat model uncertainty. To further investigate how much each component of a DSM
contributes to uncertainty of the final estimate of abundance we ran several parallel analyses
with the Bayesian Method where in each analysis we fixed one component from the first
step to its point estimate such that the uncertainty in that component was not propagated.
For the detection function components, we used point estimates from the stand alone
MRDS analysis. Analogous to the Two-Stage Method, we also ran a model in the Bayesian
framework where we fixed all components to their point estimates such that only the
density-habitat model uncertainty was represented. For each analysis, we calculated an
abundance estimate and CV and compared changes in CV to the full Bayesian model.

RESULTS
Simulation study
Results from the simulation study showed that the Bayesian Method was able to achieve
close to the nominal 95%rate of coveragewith lowbias. In addition, resultswere comparable
to the Two-Stage Method. Estimated coverage for both methods was 94.9%. The average
CV of abundance estimates was 0.16 for the Bayesian Method which was similar to the
average CV of 0.14 for the Two-Stage Method although the distribution of CVs were
more positively skewed for the Bayesian Method (Fig. S1). Bias was low (<1.5%) for both
methods although marginally more negative in the Bayesian Method (Fig. S1).

Application to fin whales
A comparison of the resulting detection functions between the stand-alone MRDS and the
Bayesian Method showed overall detection probabilities were similar although higher in
the Bayesian Method (Table 2). For the shipboard surveys, estimates of detectability from
the distance sampling component was approximately 13% higher than the estimates from
the stand-alone MRDS whereas estimates of g(0) were the same. For the aerial surveys
estimate of detectability from the distance sampling component was approximately 17%
higher than the stand-alone MRDS analysis. Estimates of detection probabilities from the
stand-alone Bayesian analysis were closer to the stand-alone MRDS analysis then estimates
from the full Bayesian Method for the aerial survey whereas estimates for the shipboard
survey were unchanged (Table 2).

The posterior estimate of mean group size was 1.4 (CV = 0.14). Most observed group
sizes were fewer than 2 animals with approximately 4% greater than 3 animals (Fig. S2).

The top model for the density-habitat function included distance to shore, depth, sea
surface temperature and distance to 125 m isobath as covariates. Results from fitting the
BayesianMethod to the observed sightings data showed good agreement between predicted
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Table 2 Comparison of posterior estimates for detection functions. Estimates of detection probabilities
from the analysis of the fin whales data using the full Bayesian Method with the habitat model included
(BM_Full), a stand-alone analysis of the distance data with the Bayesian Method that excludes the habi-
tat model (BM_SA) and a stand-alone analysis of the distance data using the software package mrds in R
(MRDS). Results are shown for each survey along with the truncation distance (W) used in eachanaly-
sis. Estimates of detection from the distance sampling component (PD) and g(0) from the mark-recapture
component are shown with coefficients of variation in parentheses.

Model Survey W (km) PD g(0)

BM_Full Shipboard 6 0.36 (0.14) 0.66 (0.11)
BM_SA Shipboard 6 0.35 (0.14) 0.66 (0.11)
MRDS Shipboard 6 0.30 (0.16) 0.66 (0.13)
BM_Full Aerial 0.9 0.47 (0.10) 0.67 (0.16)*

BM_SA Aerial 0.9 0.44 (0.14) 0.67 (0.16)*

MRDS Aerial 0.9 0.40 (0.20) 0.67 (0.16)*

Notes.
*Estimates of g(0) for aerial surveys were taken from Palka et al. (2017).

and observed number of groups per grid cell although there was some tendency of the
model to under predict as the number of sightings increased (Fig. S3). In comparison to
the Two-Stage Method, density estimates for the grid cells during summer were similar
between the two methods (Fig. 2). This similarity in model performance resulted in
predicted density distribution patterns that were largely similar among methods (Figs. 3A
and 3B). The pattern in uncertainty was also similar for the twomethods while the Bayesian
Method produced noticeably higher CVs overall (Figs. 3C and 3D).

The analysis of the variance components suggested that variance associated with
detectability had a significant influence on the precision of the final abundance estimate
whereas variance in mean group size made a negligible contribution (Table 3). The
CV for the abundance estimate decreased by 46.9% and 40.6% when we fixed detection
probabilities for the aerial survey and shipboard survey to their point estimates, respectively
(Table 3). The effect of fixing only surface availability to its point estimates also reduced
the CV substantially (Table 3). The CV for the abundance estimate from the full Bayesian
Method was greater than 2x the CV from the Two-Stage Method. The abundance estimate
and CV for the Bayesian Method were similar to the Two-Stage Method when all
components were fixed in the Bayesian Method (Table 3). Abundance estimates of fin
whales in the study area ranged from 4012 to 4551 depending on which components were
fixed to their point estimates and which method was used (Table 3).

DISCUSSION
We developed and tested a Bayesian formulation of a DSM and compared it with the
more commonly used Two-Stage Method. Simulation testing suggested that our model
formulation performed well and provided similar results as the Two-Stage Method when
applied to field data. Furthermore, we have utilized this hierarchical framework to explore
the contribution of different components of detection probability to uncertainty in
final abundance estimates. Our analysis demonstrated that changes in precision can be
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Figure 2 Comparison of density estimates of fin whales (Balaenoptera physalus) from a Density Sur-
face Model (DSM) using the BayesianMethod vs density estimates from a DSM using the Two-Stage
Method in the Atlantic Marine Assessment Program of Protected Species (AMAPPS) study area in sum-
mer.

Full-size DOI: 10.7717/peerj.8226/fig-2

Table 3 Maps of fin whale density with CVs. Comparison of abundance estimates (N̂ ) and
corresponding coefficients of variation (CV N̂ ) from Density Surface Models (DSMs) fitted to fin whales
(Balaenoptera physalus) with specific components of the DSM fixed to their point estimates where λ̂s, â,
p̂S and p̂A represent the point estimates for average group size, surface availability, detection probability of
the ship and detection probability of the plane, respectively. Estimates from the Two-Stage Method and
the Bayesian Method with all components fixed (i.e., only the habitat model variance is represented) are
also included along with the percent change in CV N̂ when compared to the full Bayesian Method and the
prior coefficients of variations of the fixed components (CV P).

Method Fixed Component CV P N̂ CV N̂ % change in CV N̂

Bayesian None – 4012 0.32 –
Bayesian λ̂s 0.14 4013 0.31 −3.1
Bayesian â 0.34 4345 0.21 −34.4
Bayesian p̂S 0.20 4105 0.19 −40.6
Bayesian p̂A 0.43 4203 0.17 −46.9
Bayesian All (except habitat model) – 4399 0.13 −59.4
Two-Stage All (except habitat model) – 4551 0.12 −65.6

considerable when variance from different detection components is not fully propagated
to the final estimates.

Sigourney et al. (2020), PeerJ, DOI 10.7717/peerj.8226 13/22

https://peerj.com
https://doi.org/10.7717/peerj.8226/fig-2
http://dx.doi.org/10.7717/peerj.8226


Figure 3 Maps of fin whale density with CVs. Predicted densities of fin whales (Balaenoptera physalus)
in summer from a density surface model using (A) the Bayesian Method and (B) the Two-Stage Method.
Coefficients of variation for the density estimates from (C) the Bayesian Method and d) Two-Stage
Method are also provided.

Full-size DOI: 10.7717/peerj.8226/fig-3

Two-step approaches to DSMs have the advantage of being able to use all the built-in
options available in different software packages such as Distance (Thomas et al., 2010) to
model detection and mgcv to model density-habitat relationships (Miller et al., 2013). In
contrast, Bayesian approaches have been more limited in these options (but see Niemi &
Fernández, 2010 for a detailed example). We have taken steps to expand upon previously
published Bayesian approaches to DSMs increasing its flexibility. For example, we adopted
the MRDS approach available in Distance to model two team data while also including
a hazard rate option. Previous Bayesian applications to line transect data of cetaceans
have generally been applied to single shipboard team data using a half-normal detection

Sigourney et al. (2020), PeerJ, DOI 10.7717/peerj.8226 14/22

https://peerj.com
https://doi.org/10.7717/peerj.8226/fig-3
http://dx.doi.org/10.7717/peerj.8226


function (Moore & Barlow, 2011; Pavanato et al., 2017). We also included semi-parametric
smooths that allow for flexible, data-driven relationships between habitat and density.
Other Bayesian implementations of DSMs have included quadratic terms in a GLM
framework (Pardo et al., 2015; Goyert et al., 2016) to capture nonlinear relationships, but
this approach is still parametric in form and limited in flexibility. Finally, we implemented a
Tweedie distribution as a flexible model for count data that allows for both a large number
of zeros and overdispersion, two features ubiquitous in animal population surveys. Because
the Tweedie is not a built-in distribution in most Bayesian software packages, we adopted
the CPG approach of Lecomte et al. (2013). Together these features provide more options
for users when fitting Bayesian models to line transect data.

The Bayesian Method performed well in simulation testing and results were comparable
to the Two-Stage Method. To compare variance propagation among methods we
intentionally restricted our simulations to relatively simple scenarios so we could
confidently apply the deltamethod to the Two-StageMethodwithout violating assumptions
of independence. Bias was low and statistical coverage was close to the nominal 95% rate for
both methods suggesting that an appropriate amount of uncertainty was being propagated
without being overly conservative. In addition to simulations, the application to fin whale
data demonstrated that both methods can achieve similar results in terms of predicted
spatial distributions when applied to actual field data. Both models predict high densities
around the Gulf of Maine and around the shelf break with lower densities towards the
southern boundary of the study area. Furthermore, the resulting abundance estimates and
predicted spatial distribution of fin whales off the east coast of the United Sates compare
favorably with a recently published two-stage study by Roberts et al. (2016) for the same
general area providing further confidence in model performance.

Although overall performance was similar among methods it is important to note that
the estimate of fin whale abundance was approximately 11% lower for the BayesianMethod
even though we aimed to keep the model structure as similar as possible. This difference
may partly be influenced by differences in the detection function. In comparison to the
stand-alone MRDS analysis, the Bayesian Method produced higher estimate of detection
probability which partly explains why estimates of abundance were lower. Estimates of
detection probability parameters from the Bayesian Method also appeared to be correlated
with parameters of the density-habitat function, which is certainly possible when detection
and density-habitat functions are fitted simultaneously and covariates influencing the two
functions are themselves correlated (Bravington, Miller & Hedley, 2018). By contrast, when
we fitted a Bayesian model to detection data alone (i.e., did not estimate density), estimates
of detectability were much closer to the MRDS analysis (although still somewhat higher).
This correlation was most apparent for the aerial surveys which had substantially lower
samples size than the shipboard surveys. Because estimating detection probability within the
Bayesian Method essentially acts like an informed prior for detection probability, reducing
correlation with the density-habitat function will partly be a function of how much data
(i.e., sightings) are available to estimate parameters. Although there are methods to prevent
feedback in Bayesian graphical models (Plummer, 2015), we did not pursue those options
here. Nevertheless, the correlation between detection covariates and habitat covariates is
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important issue to consider when interpreting the results from a DSM (Bravington, Miller
& Hedley, 2018).

Our investigation of variance with the fin whale data demonstrated that changes in the
CV of abundance estimates can be substantial if variance is not propagated from specific
components of aDSM. In addition to abundance, CVmaps of density predictions illustrated
considerably higher uncertainty in spatial distribution of fin whales from the Bayesian
Method with full variance propagation when compared to the Two-Stage Method which
did not include variance propagation. Although this qualitative result is unsurprising, our
study establishes the extent to which uncertainty can be underestimated when uncertainty
associated with individual components of detection is not propagated into final estimates.
Furthermore, by highlighting sources of uncertainty our analysis provides some guidance
for which components to target to reduce uncertainty in abundance estimates. For example,
recent advances in sampling technology such as passive acoustic technology (Marques et
al., 2013) and aerial drones (Brack, Kindel & Oliveira, 2018) may be greatly beneficial in
estimating both more accurate and more precise measurements of surface availability and
in turn could greatly reduce uncertainty in abundance and density estimates.

There were a number of other factors that could influence uncertainty that we did not
investigate. For example, we did not include any model averaging and model selection was
only performed using the Two-Stage Method. Model selection could also be performed
using the BayesianMethod with a number of different approaches (Hooten & Hobbs, 2015).
We chose not to perform Bayesian model selection or model averaging here because our
focus was on trying to keep the structure as similar as possible between the two frameworks
for the purpose of comparison. In addition to model uncertainty, another factor that could
influence uncertainty is spatial autocorrelation. Both methods assumed independence
among grid cells and we did not attempt to model the spatial autocorrelation. However,
it is possible to directly model the spatial autocorrelation (see Johnson, Laake & Ver Hoef,
2010 and Bachl et al., 2019 for examples). The extent to which these factors can contribute
to uncertainty in estimates of density and abundance is an important issue to consider.

Proper consideration of uncertainty is crucial to effective management of natural
resources (Ludwig, Hilborn & Walters, 1993). A number of studies have shown how failure
to consider uncertainty can result in poor management decisions (Regan et al., 2005;
Artelle et al., 2013). For example, in population viability analysis, ignoring error in initial
population size may result in misleading estimates of population persistence (Mcloughlin
& Messier, 2004). In the management of cetacean populations, overly precise estimates
of abundance can have direct consequences on the determination of potential biological
removal and may result in a lack of management action when action should be taken
(Taylor et al., 2000). Using a Bayesian estimation approach, Gerrodette & Eguchi (2011)
demonstrated how a more complete consideration of uncertainty of spatial distribution
can result in a more cautionary approach to the design of a marine reserve that may
ultimately be more effective for conservation. Taken together, these studies suggest that
modeling tools used to inform management decisions must prioritize a full assessment of
uncertainty to avoid undesirable outcomes.
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CONCLUSIONS
Rigorously quantifying uncertainty in population estimates is a challenging but important
goal. Most applications of two-stage DSMs published to date have not propagated
uncertainty from all detection components into final abundance estimates, resulting
in overly precise estimates. By contrast, incorporation of detection errors in Bayesian
approaches such as those implemented here are straightforward. Recently, Bravington,
Miller & Hedley (2018) developed alternative methods for propagating multiple sources of
detection uncertainty in two-stage line transect DSMs. Their approach appears promising,
and we expect it will likely become common practice for those conducting two-stage
DSM modeling with line transect data. Nevertheless, one stage hierarchical models may be
the only way to resolve certain detection processes—for instance, in cases where species
misclassification occurs (e.g., Conn et al., 2013). Thus, we expect to see continued, parallel
development of hierarchical models for line transect data together with two-stage DSMs.
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