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Ecological factors, host characteristics and / or interactions among microbes may all shape
the occurrence of microbes and the structure of microbial communities within organisms.
In the past, disentangling these factors and determining their relative importance in
shaping within-host microbiota communities has been hampered by analytical limitations
to account for (dis)similar environmental preferences (‘environmental filtering’). Here we
used a joint species distribution modelling (JSDM) approach to characterize the bacterial
microbiota of one of the most important disease vectors in Europe, the sheep tick Ixodes
ricinus, along ecological gradients in the Swiss Alps. Although our study captured
extensive environmental variation along elevational clines, the explanatory power of such
large-scale ecological factors was comparably weak, suggesting that tick-specific traits and
behaviours, microhabitat and -climate experienced by ticks, and interactions among
microbes play an important role in shaping tick microbial communities. Indeed, when
accounting for shared environmental preferences, evidence for significant patterns of
positive or negative co-occurrence among microbes was found, which is indicative of
competition or facilitation processes. Signals of facilitation were observed primarily among
human pathogens, leading to co-infection within ticks, whereas signals of competition were
observed between the tick endosymbiont Spiroplasma and human pathogens. These
findings highlight the important role of small-scale ecological variation and microbe-
microbe interactions in shaping tick microbial communities and the dynamics of tick-borne
disease.
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12 Abstract

13 Ecological factors, host characteristics and / or interactions among microbes may all shape the 

14 occurrence of microbes and the structure of microbial communities within organisms. In the past,  

15 disentangling these factors and determining their relative importance in shaping within-host 

16 microbiota communities has been hampered by analytical limitations to account for (dis)similar 

17 environmental preferences (‘environmental filtering’). Here we used a joint species distribution 

18 modelling (JSDM) approach to characterize the bacterial microbiota of one of the most important 

19 disease vectors in Europe, the sheep tick Ixodes ricinus, along ecological gradients in the Swiss 

20 Alps. Although our study captured extensive environmental variation along elevational clines, 

21 the explanatory power of such large-scale ecological factors was comparably weak, suggesting 

22 that tick-specific traits and behaviours, microhabitat and -climate experienced by ticks, and 

23 interactions among microbes play an important role in shaping tick microbial communities. 

24 Indeed, when accounting for shared environmental preferences, evidence for significant patterns 

25 of positive or negative co-occurrence among microbes was found, which is indicative of 

26 competition or facilitation processes. Signals of facilitation were observed primarily among 

27 human pathogens, leading to co-infection within ticks, whereas signals of competition were 

28 observed between the tick endosymbiont Spiroplasma and human pathogens. These findings 

29 highlight the important role of small-scale ecological variation and microbe-microbe interactions 

30 in shaping tick microbial communities and the dynamics of tick-borne disease.

31 Keywords: tick-borne pathogens, species distribution modelling, community composition, 

32 Borrelia burgdorferi, Lyme disease
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33 Introduction

34 Microbial communities within organisms consist of symbionts, commensals, mutualists and 

35 pathogens that co-occur simultaneously and potentially influence each other (Petney and 

36 Andrews 1998; Rigaud et al. 2010; Sofonea et al. 2015). These microbial communities may be 

37 shaped by a range of factors and processes, including the environment, host and microbe genetics 

38 and the occurrence and abundance of other microbial species (Adair and Douglas 2017). For 

39 example, certain microbial species might tolerate only specific abiotic conditions, which makes it 

40 more likely that species with similar requirements co-occur within a host (‘environmental 

41 filtering’, Dallas and Presley, (2014)). Similarly, the host’s immune system can influence 

42 colonization success of microbes (Hawley and Altizer 2011), with cross-immunity preventing the 

43 colonization of different microbes with similar antigenic properties (Durand et al. 2015). 

44 Furthermore, mutualistic interactions between hosts and microbes can influence the structure of 

45 bacterial communities within host individuals (Chu and Mazmanian 2013; Lee et al. 2013). 

46 Finally, direct interactions among microbes might affect colonization, or replication success after 

47 colonization, through competition or facilitation processes. Competition may occur when 

48 different microbes use the same, limited resources within a host (Lello et al. 2004), whereas 

49 facilitation may occur directly through the production of public goods (West and Buckling 2003) 

50 or indirectly through the modification of the host’s physiology (Abraham et al. 2017) or immune 

51 defense (Rodríguez et al. 1999).

52 Ixodes ricinus is the most common tick species in Europe and an important vector for a range of 

53 human, domestic animal and wildlife pathogens (Medlock et al. 2013). Its distribution and 

54 abundance are strongly influenced by environmental conditions, in particular temperature and 

55 humidity (Cortinas et al. 2002; Gatewood et al. 2009). Previous studies that characterized the 
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56 bacterial community composition of I. ricinus ticks have found mostly environmental and free-

57 living bacteria but also several endosymbionts and human, domestic animal or wildlife 

58 pathogens, including Borrelia (Mannelli et al. 2012), Rickettsia (Venclikova et al. 2014), 

59 Anaplasma (Jahfari et al. 2014) and Candidatus Neoehrlichia (Kawahara et al. 2004). 

60 Differences in the bacterial community structure and composition of ticks across habitats 

61 (Estrada-Peña et al. 2018), geographical sites (Carpi et al. 2011), and tick life stages and sexes 

62 (Carpi et al. 2011; Vayssier-Taussat et al. 2013) have been documented. Large-scale biotic or 

63 abiotic factors such as vegetation structure, elevation, temperature or rainfall may influence tick 

64 microbial communities directly, or indirectly through effects on tick physiology or activity 

65 patterns (van Treuren et al. 2015) or via influencing the distribution and abundance of tick hosts 

66 species (Randolph et al. 1999; MacDonald et al. 2017). Small-scale and/or tick-specific effects 

67 on microbial communities may be explained by microhabitat or microclimatic conditions 

68 experienced by individual ticks (Gern et al. 2008), individual tick behavior or genetics (Hawlena 

69 et al. 2013), direct biotic interactions among microbes (Moutailler et al. 2016) or parallel 

70 acquisition from a host during a bloodmeal (Andersson et al. 2014; Belli et al. 2017; Swei and 

71 Kwan 2017). 

72 Currently, the relative importance of these factors in shaping tick microbial communities is not 

73 well understood, which hampers progress in our understanding of the processes shaping 

74 microbial communities in nature and predicting the occurrence of specific microbes (e.g., human 

75 pathogens). Elevational gradients are excellently suited to quantify the importance of large-scale 

76 ecological variation in shaping tick bacterial microbiota because they cover a large range of 

77 environmental conditions within a small geographical area. Furthermore, including replicated 
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78 transects along gradients allow us to quantify the robustness of ecological associations within 

79 sites and along elevational clines on tick microbial communities.

80 Ixodes ticks are commonly found to be co-infected with several (human, domestic animal and/or 

81 wildlife) pathogens (Andersson et al. 2013; Michelet et al. 2014; Diuk-Wasser et al. 2016; 

82 Moutailler et al. 2016). Currently, it is unknown whether these co-infection patterns are caused 

83 by similar environmental preferences of pathogens, parallel acquisition from host communities 

84 or direct microbe-microbe interactions within ticks. Yet, previous studies suggest that the latter 

85 process, (i.e., facilitation and competition processes among microbes) may play a role in shaping 

86 microbial communities (Haine 2008; Bonnet et al. 2017). For example, it has been found that 

87 pathogenic Rickettsia species prevent co-infection with other Rickettsia species in Dermacentor 

88 variabilis ticks (Macaluso et al. 2002), whereas the presence of Francisella sp. endosymbionts 

89 increases the colonization success of pathogenic Francisella novicida in D. andersoni ticks (Gall 

90 et al. 2016).  Facilitation has also been suggested to promote co-infection with different Borrelia 

91 afzelii strains in Ixodes ricinus ticks (Andersson et al. 2013). Most strikingly, dysbiosis in I. 

92 scapularis ticks (i.e., ticks with low microbiotal diversity) leads to a defective peritrophic matrix 

93 which decreases the colonization success of B. burgdorferi s.s., suggesting that the pathogen 

94 requires the presence of an intact microbiota to be able to invade ticks (Narasimhan et al. 2014). 

95 Thus, the microbial community may have a crucial impact on vector competence of ticks and 

96 thereby on disease dynamics. 

97 Yet, as outlined above, co-occurrence of microbes can be due to environmental filtering or direct 

98 microbial interactions, and distinguishing between these processes is non-trivial. Indeed, 

99 previous studies that have documented pathogen co-occurrence in ticks have not accounted for 

100 potential confounding variables such as shared ecological requirements, and are thus limited in 
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101 their ability to differentiate between co-occurrences due to shared environmental niches, and co-

102 occurrence shaped by facilitation or competition among microbes. 

103 To address these gaps, we exploited the substantial environmental heterogeneity along replicated 

104 elevational gradients in the Swiss Alps to quantify the relative importance of environmental 

105 factors, tick characteristics and direct microbial interactions in influencing the structure of 

106 bacterial communities in I. ricinus ticks in general, and the (co-)occurrence of pathogens in 

107 particular, using a combination of 16S sequencing and joint species distribution modelling 

108 (JSDM) (Ovaskainen et al. 2015; Warton et al. 2015). By taking shared environmental 

109 preferences into account, JSDMs allows to identify residual co-occurrence patterns among 

110 microbes that can result from unaccounted environmental effects or direct microbial interactions. 

111 However, the correct spatial scale with regards to the focal biological processes is of importance, 

112 as well as the type of the hypothesized biotic interaction (Araújo and Rozenfeld 2014; Zurell et 

113 al. 2018) when interpreting JSDM patterns (Dormann et al. 2018).

114 Specifically, we ask (i) how do large-scale abiotic factors and small scale tick-level variables 

115 affect tick microbiota composition, (ii) which large-scale abiotic and small-scale tick-level 

116 variables predict pathogen occurrence, and (iii) are there patterns of non-random microbial co-

117 occurrence that cannot be explained by environmental responses and might be due to 

118 unmeasured variables, such as microbial interactions.

119

120 Materials and methods

121

122 Tick sampling
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123 Questing Ixodes ricinus ticks were collected at three locations in the Swiss Alps (Kanton 

124 Graubünden). At each location, one site at low (630 - 732 m above sea level, masl), one at 

125 medium (1 094 – 1 138 masl) and one at high (1 454 – 1 673 masl) elevation were identified 

126 (Fig. 1, Table 1, N = 9 sampling sites). At each site, questing ticks were sampled thrice, once in 

127 June, once in July, and once in August 2014 by dragging a white blanket (1 m x 1 m) over the 

128 ground vegetation as described previously (Lemoine et al. 2018). Ticks were collected from the 

129 blanket and stored in 95% ethanol. Tick species, sex and life stage were verified by 

130 morphological features following (Hillyard 1996) using a stereomicroscope.

131

132 Environmental variables

133 For each sampling site, we compiled information on large-scale, site-level ecological variables 

134 by obtaining data on elevation, slope and aspect using DHM25, land use data from swissTLM3D 

135 (both from Federal Office of Topography swisstopo) and data on temperature and precipitation 

136 from Landscape Dynamics (Swiss Federal Research Institute for Water, Snow and Landscape 

137 Research WSL and Federal Office of Meteorology and Climatology MeteoSwiss, (Thornton et 

138 al. 1997)). Data on I. ricinus abundance and the abundance of a key tick host, the bank vole 

139 (Myodes glareolus), as well as the ratio of bank vole to other rodents at our sampling sites were 

140 obtained from Cornetti et al. (2018). Details on the different variables and a justification why 

141 they were included to characterise large-scale ecological conditions is provided in the 

142 Supplementary Material.

143

144 Tick DNA isolation and quantification of neutral genetic diversity
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145 The number of analysed ticks per site is presented in Table 1. Although we aimed to include 

146 similar numbers of I. ricinus ticks from each sampling site and month, variation in the number of 

147 ticks per site (Table 1) was unavoidable because of variation in tick abundance across sites 

148 (Lemoine et al. 2018). To avoid contamination, we performed DNA isolation and amplifications 

149 in a laminar flow cabinet. Each tick was washed thrice with sterile water before sterilizing it with 

150 3% hydrogen peroxide. Ticks were then cut in half with a sterilized blade to facilitate DNA 

151 isolation. DNA was extracted using DNeasy Blood & Tissue kit (Qiagen; Hilden, Germany).

152 Host genetics may affect pathogen and endosymbiont colonisation and replication success 

153 (Archie and Ezenwa 2011). In order to quantify individual and population-level genetic diversity, 

154 we genotyped ticks at 11 microsatellite markers in two multiplexed amplifications (see 

155 Supplementary Material for details). Not all markers were successfully amplified in all samples, 

156 but none of the samples contained more than two failed markers. We used package poppr 

157 (Kamvar et al. 2014) in R 3.4.1 (Team 2013) to test for linkage disequilibrium and deviation 

158 from Hardy-Weinberg equilibrium. Individual observed heterozygosity was determined for each 

159 tick as a proportion of heterozygous markers to all successfully amplified markers. Expected 

160 population level heterozygosity was determined with poppr. The former was used as a tick-level 

161 explanatory variable (together with tick sex and life stage), the latter was used as a site-level 

162 explanatory variable.

163

164 Tick microbiota sequencing

165 We characterized tick bacterial community composition by sequencing the hypervariable V4 

166 region of the 16S rRNA (16S) gene. Negative controls (extraction reagent blank, N=2 and PCR 
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167 controls, N=3) were processed alongside the tick samples. Sequencing libraries were prepared 

168 following the Earth Microbiome 16S Illumina Amplicon protocol, using the primers 515FB and 

169 806RB (Carey et al. 2013) (see Supplementary Material for details). Samples and negative 

170 controls were randomized across two plates. The libraries were sequenced on Illumina MiSeq at 

171 the Functional Genomic Center Zurich with a target length of 250 bp following the 

172 manufacturer’s protocol. The obtained sequence data were analyzed following the mothur 

173 pipeline with MiSeq standard operation procedures (Kozich et al. 2013). Sequences have been 

174 deposited to the Sequence Read Archive under BioProject PRJNA506875. The complete 

175 metadata of the samples and their matching sequence accession numbers have been submitted to 

176 FigShare (doi: 10.6084/m9.figshare.7380767).

177 As we are not able to assess whether individual OTUs are resident or not, and we do not know 

178 their transmission routes, a special focus of our analysis was on tick endosymbionts and tick-

179 borne human, domestic animal or wildlife pathogens (Table 2), which are obligate residents. This 

180 approach does not mean that the other OTUs would not have a substantial effects on ticks and 

181 other tick symbionts. Identification of endosymbionts and pathogens is described in the 

182 Supplementary Material.

183

184 Joint species distribution modelling of microbiota composition

185 Only samples with > 500 reads and OTUs which were present in at least two samples were 

186 included in the analyses (Table 1). As the most common OTU, the intra-mitochondrial 

187 endosymbiont Candidatus Midichloria (Lo et al. 2006), was present in all samples, it was not 
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188 included in the modelling. For the occurrence matrix, an OTU was determined to be present in a 

189 tick if >5 reads were identified in a sample (following Aivelo and Norberg 2017).

190 We used a JSDM framework called Hierarchical Modelling of Species Communities (HMSC, 

191 Ovaskainen et al. 2017a) to examine how environmental variables correlate with pathogen and 

192 tick endosymbiont occurrence in ticks, and whether there are non-random residual associations 

193 among different OTUs and/or oligotypes, implying direct facilitation or competition effects 

194 among microbes. This approach combines information on environmental covariates, bacterial 

195 species traits, spatiotemporal context and sampling design to explain the presence or absence of 

196 OTUs (Fig. S2). The associations among OTUs are captured with the latent part of the 

197 framework, modelling the residual variance after accounting for the effects of the environment 

198 with latent variables. The estimates for these latent variables can be then translated into residual 

199 correlations among response variables, i.e. OTUs and/or oligotypes. These correlations thus 

200 reflect (dis)associations which cannot be explained by shared responses to the environment.

201 We compiled occurrence matrices for OTUs for each individual tick as a response variable. For 

202 each sampling unit, i.e. a row in our response variable matrix, we included information on the 

203 identity of the sampling unit (tick ID), its location, sampling site (for which we included also the 

204 spatial structure as coordinates) and month, describing the study design. To reach a better 

205 resolution within specific OTUs, we analyzed known human, domestic animal or wildlife 

206 pathogens, tick endosymbionts and their close relatives within the 100 most common OTUs with 

207 oligotyping pipeline (Eren et al. 2014). Oligotyping uses all the sequences, which form an OTU, 

208 and performs Shannon Entropy Analysis to regroup sequences based on within-OTU variation. 

209 This results in higher-resolution grouping than OTUs as the different oligotypes might differ 

210 only by a single nucleotide (Eren et al. 2014). We used the standard operation procedures of the 
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211 oligotyping pipeline software (http://oligotyping.org; Eren et al. 2013). We labelled the resulting 

212 oligotypes through BLAST search (Camacho et al. 2009). For some species, such as Rickettsia 

213 spp., the V4 region of 16S might not have enough resolution (Greay et al. 2018), and thus, the 

214 labels should not be considered as definite identifications. 

215 Including a large number of explanatory variables in statistical models is inherently challenging. 

216 To reduce the number of variables, while maintaining their information value, we used two 

217 variable sets in the model: a) a set of full-effect explanatory variables, and b) explanatory 

218 variables under variable selection (Ovaskainen et al. 2017b). The full-effect variable set included 

219 an intercept, two tick-level variables (tick sex or life stage and individual heterozygosity) and 

220 two site-level variables (tick abundance and elevation of the sampling site). Additionally, we 

221 included information whether a specific OTU is an endosymbiont and/or a human, domestic 

222 animal or wildlife pathogen (Abrego et al. 2016). This allowed us to test if endosymbionts and/or 

223 pathogens respond differentially to environmental conditions than other OTUs. The set of 

224 explanatory variables under variable selection included additional information on the 

225 environmental conditions of the sites (namely the number of days above 7 °C during the year, 

226 monthly precipitation, mean monthly temperature, forest coverage, slope, aspect, bank vole 

227 abundance, the proportion of voles to other rodents and expected tick heterozygosity) (Table S1). 

228 We considered all parameter estimates, including associations among bacterial OTUs, having 

229 strong statistical support and thus being ’significant‘ if the 90% central credible interval of the 

230 parameter did not overlap with zero (see Supplementary Material for additional model details). 

231 The model was run in Matlab R2017 (The MathWorks; Natick, MA, USA).

232

233 Results
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234

235 Ixodes ricinus microbiota composition

236 We 16S sequenced the bacterial community of 92 Ixodes ricinus ticks which resulted in 13 214 

237 477 reads. No amplification was observed in the five negative controls (i.e., their sequencing did 

238 not result in any reads) and one tick was sequenced twice. After contig assembly and quality 

239 control 1 656 287 reads were retained. Most of the discarded reads were either shorter than 250 

240 bp or chimeras. There was a median of 1 562 quality-controlled reads per sample, with an 

241 interquartile range of 6 319. 82 samples with more than 500 reads per sample, a plateauing 

242 accumulation curve and a Good’s coverage estimator ≥0.95 were included in the subsequent 

243 analyses (Fig. S1). In total, 5 181 bacterial OTUs were identified. The median number of OTUs 

244 when rarified to 500 reads per sample was 89 OTUs, with a 95% confidence interval of 78.3 - 

245 98.5 OTUs. 

246 Six OTUs were present in at least 90% of the samples: Ca. Midichloria (Otu0001), 

247 Sphingomonas (Otu0002, 0006 and 0007), Pseudomonas (Otu0011) and Delftia (Otu0012). 

248 Together, they represented 50.2 % of all reads. We used oligotyping to further divide OTU0031 

249 ‘Rickettsia’ into two oligotypes labelled as ‘R. helvetica’ and ‘R. monacensis’, and OTU0086 

250 ‘Borrelia’ into four oligotypes labelled as ‘B. afzelii’, ‘B. valaisiana’ and ‘B. garinii’ and ‘B. 

251 miyamotoi’. 635 OTUs and oligotypes were used in subsequent analyses, including 14 

252 endosymbionts and / or human, domestic animal or wildlife pathogens (Table 2).

253

254 Tick microbiota variance partitioning
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255 Variance partitioning revealed that most of the variation in tick microbiota composition 

256 explained by our model related to tick ID: for the hundred most common OTUs, tick ID 

257 accounted for 64.1% of the variation explained by the model. Fixed effects (e.g., tick life stage, 

258 elevation; see Table S1) accounted for 12.5% (tick-level: 7.3%, site-level: 5.2%) and spatial and 

259 temporal random effects (i.e., location, site and month) explained 23.3% (Fig. 2). This suggests 

260 that there is extensive tick-level variation which cannot be accounted for by tick-specific 

261 characteristics included in our model (i.e., sex, life stage, genetic diversity) or site-level 

262 environmental factors. The pattern differed slightly for endosymbionts and human, domestic 

263 animal or wildlife pathogens: while tick ID was still the most important variable explaining 

264 49.9%, fixed effects explained 31.8% (tick-level: 17.5%, site-level: 14.3%) and spatial and 

265 temporal random effects explained 18.3% of the total variation explained by the model, when 

266 averaged over all pathogens and endosymbionts (Fig. 2). Thus, tick- and site-level fixed effects 

267 explained a larger proportion of the variation in the occurrence of obligate resident pathogens 

268 and endosymbionts than the occurrence of other (potentially non-resident) OTUs. 

269

270 Tick-specific and environmental factors related to OTU occurrence

271 The occurrence of tick endosymbionts and pathogens was strongly associated with specific 

272 explanatory variables, yet associations were typically microbe-specific rather than universal 

273 (Table 3). The two most important variables explaining the presence or absence of tick 

274 endosymbionts and human, domestic animal or wildlife pathogens were tick sex and elevation of 

275 the sampling site: adult female ticks were less likely to harbour the endosymbionts Spiroplasma, 

276 Rickettsiella, Lariskella and Rickettsia spp. (Table 3), and ticks at higher elevations had higher 

277 probability to harbour R. helvetica and R. monacensis, but were less probable to harbour B. 
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278 garinii (Table 3). Slope and aspect were also significant predictors of tick endosymbionts and 

279 pathogen occurrence, with ticks from sites facing northwards having a higher probability of 

280 harbouring Spiroplasma and B. afzelii, and ticks from sites on steeper slopes having a higher 

281 probability of harbouring Rickettsia sp. (Table 3). Furthermore, a higher tick abundance was 

282 associated with a higher probability of Rickettsiella and Ca. Neoehrlichia occurrence (Table 3). 

283 Relationships between tick life stage, mean temperature, the number of days > 7 °C or forest 

284 cover and the occurrence of specific OTUs were not strongly statistically supported. 

285 The effect sizes of strongly statistically supported associations varied substantially (Fig. S4a-i). 

286 For example, threefold increase in vole abundance corresponded to less than one percentage 

287 point decrease of R. monacensis prevalence (Fig. S4b), whereas a threefold increase in tick 

288 abundance corresponded to a threefold increase in Neoehrlichia prevalence from 8% to 27% 

289 (Fig. S4e).

290

291 Patterns of microbial association within ticks

292 Numerous bacterial OTUs were either significantly more or less likely to co-occur within a tick 

293 than expected by chance after accounting for shared environmental preferences (Fig. 3a; Table 

294 S2). At the level of the individual tick, the occurrence of the tick endosymbiont Spiroplasma was 

295 negatively associated with the occurrence of the endosymbiont Lariskella and several tick-borne 

296 pathogens, namely Rickettsia sp., Ca. Neoehrlichia and B. miyamotoi (Fig. 3a). Associations 

297 among pathogens, if they occurred, were all positive (Fig. 3a), suggesting that ticks are more 

298 likely to be co-infected with several human, domestic animal or wildlife pathogens 

299 simultaneously than expected by chance or based on shared environmental preferences. Borrelia 
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300 oligotypes showed positive co-occurrence patterns among each other, except for B. miyamotoi, 

301 which was not associated with other Borrelia sp., but negatively with Spiroplasma and positively 

302 with Lariskella. At the level of the sampling site, significant associations were sparser. 

303 Spiroplasma was more likely to co-occur with Lariskella and Rickettsiella across sites, whereas 

304 the latter two were less likely to co-occur across sites than expected by chance after accounting 

305 for shared environmental preferences (Fig. 3b). At the level of month or location, there were no 

306 significant associations.

307

308 Discussion

309 We used a JSDM framework to quantify the relative importance of large scale, site-level 

310 environmental variables, tick-level characteristics and interactions among microbes in shaping 

311 tick microbiota composition along elevational gradients in the Swiss Alps. We show that 

312 although our study captured extensive environmental variation, with sampling sites spanning 

313 across an elevational gradient from 630 – 1 580 masl, and a large number of ecological variables 

314 was considered in our models, the explanatory power of such large-scale ecological factors was 

315 comparably weak. In contrast, individual tick ID explained over 60% of the variation in 

316 microbiota composition. This substantial microbiota variation across individual ticks may be 

317 partly explained by some of the bacteria present in ticks being non-resident (i.e., bacteria that 

318 were by chance obtained from the environment through the mouth, the anal pore or spiracles or 

319 during blood-feeding; Horner-Devine and Bohannan 2006; Engel and Moran 2013; Zolnik et al. 

320 2016, 2018; Ross et al. 2018). Indeed, there has been a debate whether ticks have a stable 

321 microbiota (Ross et al. 2018), mirroring the wider debate on how common resident microbiota is 

322 in arthropod hosts (Hammer et al. 2017). 
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323 However, also for endosymbionts and human, domestic animal or wildlife pathogens, which are 

324 obligate resident, tick ID accounted for half of the variation in occurrence, suggesting that 

325 microhabitat or -climatic conditions experienced by individual ticks, tick-specific traits and 

326 behaviors not included in our models, as well as microbial interactions within ticks such as 

327 facilitation and competition (Abraham et al. 2017; Gurfield et al. 2017), play a crucial role in 

328 shaping microbiota composition and the occurrence of endosymbionts and human or wildlife 

329 pathogens in I. ricinus. Focusing on such small-scale variables, rather than large-scale climatic or 

330 environmental factors as is usually done when modelling tick-borne pathogen prevalence 

331 (Norman et al. 2016; Rosà et al. 2018), is thus likely a more fruitful approach to advance our 

332 understanding of microbiota composition of natural populations as well as (tick-borne) disease 

333 dynamics. 

334 Co-occurrence of human, domestic animal or wildlife pathogens in ticks has been documented 

335 previously, both in I. ricinus (Lommano et al. 2012; Michelet et al. 2014) and other tick species 

336 (Gurfield et al. 2017; Laaksonen et al. 2018). Yet, previous studies did not control for 

337 environmental filtering, which limited their ability to disentangle shared responses to the 

338 environment from direct microbe-microbe interactions. Our study revealed that when accounting 

339 for shared environmental preferences, associations among human or wildlife pathogens were 

340 often pronounced and mostly positive. These positive associations may result from direct 

341 facilitation among microbes or parallel colonization from co-infected tick hosts. Because our 

342 sampling unit was the whole tick, whereas bacteria inhabiting a tick can be situated in different 

343 organs, co-occurrence at the tick-level does not necessarily mean that there is direct interaction 

344 between co-occurring OTUs, although indirect interactions, via, e.g., host immune system, can 

345 still occur.
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346

347 Within ticks, the significant positive associations among the Lyme disease-causing Borrelia 

348 genospecies (B. afzelii, B. garinii and B. valaisiana) were particularly striking. This positive co-

349 occurrence is surprising because B. garinii and B. valaisiana are bird specialists (Hanincova et 

350 al. 2003b; Comstedt et al. 2011), whereas B. afzelii is a rodent specialist (Hanincova et al. 

351 2003a). Thus, the parallel colonization from co-infected tick hosts cannot explain this pattern. 

352 Rather the positive co-occurrence is indicative of facilitation processes among Borrelia 

353 genospecies, as has been suggested previously (Andersson et al. 2013). Such facilitation, and the 

354 resulting co-infection of ticks with several Borrelia genospecies has implications for the severity, 

355 diagnosis, treatment and control of Lyme disease. Finally, the co-occurrence of these different 

356 Borrelia genospecies suggests that I. ricinus feeds on multiple, phylogenetically diverse host 

357 species during its life cycle and does not show pathogen-mediated host specialization as has been 

358 suggested previously (McCoy et al. 2005, 2013). 

359 Although associations among microbes were mostly positive, there were negative associations 

360 between the tick endosymbiont Spiroplasma and several human or wildlife pathogens, which 

361 may be explained by competition. The most common infection route for Spiroplasma is maternal 

362 (i.e., vertical) transmission (Herren and Lemaitre 2011), indicating that horizontal or 

363 environmental transfer plays a minor role in its transmission. Protective effects of Spiroplasma 

364 have been previously described in Drosophila spp., where Spiroplasma is associated with a 

365 decreased probability of nematode and parasitoids infections (Xie et al. 2010; Jaenike et al. 

366 2013). Although the exact mechanisms mediating Spiroplasma-induced competition effects are 

367 currently unknown, this finding may stimulate further research into the potential of tick 

368 endosymbionts to manage tick-borne pathogens. 
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369 In contrast to the numerous positive or negative associations among microbes at the tick-level, 

370 little statistical support for positive or negative microbial co-occurrence was found at the site-

371 level, with the exception of the associations among three endosymbionts. Interestingly, the 

372 pattern of co-occurrence of Spiroplasma and Lariskella at the site-level was opposite from what 

373 was observed at the tick-level. It suggests that Spiroplasma and Lariskella are more likely to co-

374 occur at the same sites but not within the same tick. Co-occurrence at the site-level can be due to 

375 an environmental variable not included in our model, for which the three OTUs had similar 

376 responses. It has also been suggested that negative associations generate checkerboard patterns 

377 of co-occurrence that can be captured at finer spatial scales but that are lost with increasing 

378 scales, but positive associations can be captured across scales (Araújo & Rozenfeld 2013).

379 Despite the large among-tick variation in microbiota composition, we identified a range of 

380 environmental variables that significantly predicted the occurrence of specific tick 

381 endosymbionts and human, domestic animal or wildlife pathogens. However, the predictor 

382 variables as well as their effect were typically OTU-specific rather than universal. For example, 

383 B. garinii was less likely to occur at higher elevations, whereas R. helvetica and R. monascensis 

384 were more likely to occur at higher elevations. Generally, the environmental factors shaping 

385 Rickettsia spp. distribution are poorly understood, as is their range of host species (Halos et al. 

386 2010; Eremeeva and Dasch 2015). Yet, it has previously been found that spotted fever incidence 

387 in humans, caused by R. ricketsii, is highest in areas or regions, where ticks are less common 

388 (Atkinson et al. 2013). This is in line with our findings and suggests that Rickettsia spp. are more 

389 likely to colonize ticks living under suboptimal conditions (e.g. at range edges). 

390 The finding that B. garinii is less likely to occur at higher elevations is in line with previous 

391 observations (Jouda et al. 2004b; Cornetti et al. 2018) and may be explained by changes in 
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392 vegetation structure and associated changes in host communities (Halos et al. 2010), in particular 

393 changes in the diversity and/or abundance of birds, the natural hosts of B. garinii (Comstedt et al. 

394 2011). In contrast, the occurrence of the mammal specialist B. afzelii was not related to 

395 elevation, potentially because elevational clines in mammal diversity and/or abundance are less 

396 pronounced (McCain 2005). Indeed, we did not observe an association between elevation and 

397 bank vole abundance across our study sites (ANOVA: F1,8=0.357, p = 0.57, R2 = 0.05).  

398 Interestingly, temperature and precipitation, which vary strongly across elevational gradients 

399 (average temperature and precipitation: high elevation sites: 11.8 °C and 17.8 mm per month; in 

400 low sites: 16.5 °C and 12.1 mm per month), were not significant predictors of the occurrence of 

401 endosymbionts or human or wildlife pathogens, with the exception of precipitation correlating 

402 positively with the probability of Rickettsiella occurrence. This may be partly explained by the 

403 temperature and precipitation measures included in our models not fully capturing the 

404 microclimatic variation across sites and along elevational clines. Indeed, slope and aspect, which 

405 are important determinants of the topography, and thus microclimate (Bennie et al. 2008), were 

406 significant predictors of pathogen and endosymbiont occurrence. The probability of Rickettsia 

407 sp. occurrence was higher on steeper slopes. Furthermore, the probability of occurrence was 

408 higher on north-facing slopes for B. afzelii and Spiroplasma and higher on south-facing slopes 

409 for Rickettsiella (see also (Stuen et al. 2013)). Microclimatic conditions may affect microbial 

410 occurrence directly, or indirectly via affecting tick behavior or host community composition 

411 (Swei et al. 2011; Lawson et al. 2014). Furthermore, topography can affect population 

412 connectivity and dispersal in metapopulation networks (Swei and Kwan 2017).

413 Previous work has found that tick abundance is a strong predictor of Borrelia spp. prevalence, 

414 potentially because larger tick populations facilitate co-feeding transmission (Jouda et al. 2004a). 
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415 No relationship between Borrelia spp. occurrence and tick abundance was observed in our study. 

416 However, both Ca. Neoehrlichia and Rickettsiella were more common at sites where ticks were 

417 more abundant, suggesting that co-feeding transmission may also play a role in the life cycle of 

418 these microbes.

419 Finally, differences in host competence can lead to dilution effects and thus affect the prevalence 

420 of tick-borne pathogens (Keesing et al. 2006). Whereas for some tick-borne pathogens the 

421 vertebrate hosts are known or suspected (e.g. small mammals for B. afzelii (Hanincova et al. 

422 2003a) and Ca. Neoehrlichia (Jahfari et al. 2012), birds for B. garinii and B. valaisiana 

423 (Hanincova et al. 2003b), both for Anaplasma (Keesing et al. 2012) and R. helvetica (Sprong et 

424 al. 2009)), for others the host species range is less well understood (e.g. B. miyamotoi 

425 ;Wagemakers et al. 2015). The bank vole is a common tick host at our study sites and their 

426 abundance was a significant negative predictor of R. monacensis and R. helvetica occurrence. 

427 Interestingly, bank voles are not known hosts for either (Burri et al. 2014). Most likely, the 

428 relation is thus indirect, explained by an unmeasured biotic or abiotic variable that correlates 

429 with bank vole abundance.  No evidence was found that the proportion of bank voles to other 

430 rodents affects the prevalence of tick-borne pathogens.

431 A limitation of our sampling design is the uneven sample distribution across sites. We collected 

432 ticks up to the upper elevational limit of tick distribution, which leads to a large variation in 

433 environmental variables included in our models, but at the same times means that we have a 

434 limited number of samples from the high elevation sites. Yet, adequate model fit suggests that 

435 this uneven sample distribution did not compromise model performance. Furthermore, although 

436 JSDM is a powerful approach to model community structure, it has a number of limitations. 

437 First, it assumes that interactions among microbes are similar across environments (but see 
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438 Tikhonov et al. 2017). This is not necessarily the case as both environmental factors and tick host 

439 community may shape microbial interactions (Elliot et al. 2002). Second, the model assumes that 

440 the explanatory variables affect the microbial community composition (or rather, the presence or 

441 absence of individual OTUs), but not vice versa. However, this is a valid assumption for most 

442 environmental (e.g. elevation and temperature) and tick-related variables (e.g. tick sex, life stage) 

443 included in our models. Thirdly, covariation among explanatory variables poses a problem to any 

444 correlative modelling approach. Our model is built on two distinct variable sets to aid in handling 

445 such covariation: the full variable set includes elevation, whereas the variables with the strongest 

446 covariation (i.e., temperature and precipitation) are included in the variable selection set. 

447 Fourthly, the inferred residual associations between focal taxa are assumed to be symmetrical. If 

448 there are asymmetric interactions (e.g., predator-prey-relationships), the sum outcome can be 

449 seen as either positive or negative correlation (Zurell et al. 2018). However, in our study, the 

450 expectation was facilitation or competition, which are symmetric positive or negative 

451 interactions, respectively. Thus, given sufficient signal, we expect that the focal interactions can 

452 be captured by our modelling approach.

453

454 Conclusions

455 Our study demonstrates that a JSDM framework can contribute to a better understanding of the 

456 factors shaping bacterial communities in natural populations as well as patterns of co-occurrence 

457 among microbes. Overall, our study highlights the role of small-scale, tick-level characteristics 

458 rather than large-scale ecological variation in shaping microbial communities of I. ricinus. We 

459 identified a number of ecological variables that predict the occurrence of specific tick 

460 endosymbionts and human, domestic animal or wildlife pathogens with strong statistical support, 
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461 but these effects were typically microbe-specific rather than universal. This highlights that 

462 environmental change can have different, even opposite effects on different human pathogens, 

463 and thus disease risk. Furthermore, by accounting for shared environmental preferences, our 

464 approach identified patterns of microbial co-occurrence that are consistent with microbe-microbe 

465 interactions, which result in pathogen co-infections within ticks, as well as competition between 

466 Spiroplasma and a number of human, domestic animal or wildlife pathogens. The latter opens up 

467 new and exciting avenues for the control and management of tick-borne diseases in regions with 

468 high human disease incidence. 
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Table 1(on next page)

Tick sampling sites in the Swiss Alps.
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1 Table 1: Tick sampling sites in the Swiss Alps.

Locatio

n

Site Coordinates Elevation Succesfully sequenced Ixodes 

ricinus ticks

North East  (masl) nymphs males females

1 Sagogn 46.783 9.233 693 0 9 15

Flims 46.827 9.280 1138 3 5 3

Ruschein 46.795 9.169 1454 0 1 1

2 Rodels 46.760 9.425 630 2 5 4

Tomils 46.772 9.453 1144 3 6 4

Feldis 46.789 9.453 1673 1 1 0

3 Passug 46.840 9.538 732 0 5 6

Castiel 46.826 9.569 1094 0 3 3

Praden 46.817 9.589 1582 1 0 1

2
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Table 2(on next page)

Common tick endosymbionts and/or putative human pathogens observed in I. ricinus
ticks.

See Supplementary Materials for information on OTU assignment.
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1 Table 2: Common tick endosymbionts and/or putative human pathogens observed in I. ricinus ticks. See 

2 Supplementary Materials for information on OTU assignment.

OTU Label Human pathogen / 

tick endosymbiont

Occurrence (% of 

analyzed ticks)

Otu0001 Midichloria endosymbiont 100

Otu0003 Spiroplasma endosymbiont 41

Otu0005 Rickettsiella endosymbiont 63

Otu0021 Lariskella endosymbiont 49

Otu0031 Rickettsia helvetica both 16

R. monacensis both 6

Otu0067 Rickettsia sp. both 25

Otu0076 Anaplasma both 33

Otu0086 Candidatus 

Neoehrlichia

both 22

Otu0088 Borrelia afzelii pathogen 9

B. miyamotoi pathogen 10

B. garinii pathogen 6

B. valaisiana pathogen 2

3

4
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Table 3(on next page)

Associations between tick-specific and environmental variables and the occurrence of
endosymbionts and human pathogens in I. ricinus ticks.

A positive sign indicates that higher variable values are associated with a higher probability
of OTU occurrence. A higher aspect value means that a site is facing northwards. Only
associations with strong statistical support (based on the 90% central credible interval) are
presented.
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1 Table 3. Associations between tick-specific and environmental variables and the occurrence of 

2 endosymbionts and human pathogens in I. ricinus ticks. A positive sign indicates that higher variable 

3 values are associated with a higher probability of OTU occurrence. A higher aspect value means that a 

4 site is facing northwards. Only associations with strong statistical support (based on the 90% central 

5 credible interval) are presented.

Full variable set Variable selection set

T
ic

k
 s

e
x 

(F
e

m
a

le
)

T
ic

k
 l

if
e

 s
ta

g
e

 (
N

y
m

p
h

)

T
ic

k
 a

b
u

n
d

a
n

ce

T
ic

k
 h

e
te

ro
zy

g
o

si
ty

E
le

v
a

ti
o

n

T
ic

k
 p

o
p

u
la

ti
o

n
 e

xp
e

ct
e

d
 

h
e

te
ro

zy
g

o
si

ty

N
u

m
b

e
r 

o
f 

d
a

y
s 

>
 7

C
°

P
re

ci
p

it
a

ti
o

n

M
e

a
n

 t
e

m
p

e
ra

tu
re

F
o

re
st

 c
o

v
e

r

S
lo

p
e

A
sp

e
ct

V
o

le
 a

b
u

n
d

a
n

ce

V
o

le
/ 

o
th

e
r 

ro
d

e
n

ts
 r

a
ti

o

Otu0003 Spiroplasma − + −

Otu0005 Rickettsiella − + − − + −

Otu0022 Lariskella − −

Otu0031 Rickettsia helvetica + −

R. monacensis + − −

Otu0067 Rickettsia sp. − +

Otu0076 Anaplasma

Otu0086 Ca. Neoehrlichia +

Otu0088 Borrelia afzelii +

B. miyamotoi

B. garinii −
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B. valaisiana
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Figure 1
Location of tick sampling sites in the Swiss Alps.

Different shapes (i.e., circle, square and triangle) represent the different locations and
different colours represent elevation (white: low, grey: middle, black: high). Rivers and
motorway are shown in black. Map data © 2019 Google, GeoBasis-DE/BKG.
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Figure 2
Tick microbial community variance partitioning for different fixed and random effects.

The first three columns represent tick endosymbionts, the next three columns are OTUs
which are both tick endosymbionts and human pathogens and the subsequent six columns
represent human pathogens. The other columns represent the 88 most common OTUs found
in I. ricinus, ordered by read frequency. Month, sampling site, location and tick ID were
included in the model as random effects, whereas fixed effects were divided into
environmental (elevation, temperature, precipitation, forest coverage, slope, aspect, vole
abundance and vole-to-other-rodents ratio) and tick-specific variables (life stage or sex,
individual heterozygosity, abundance, expected population heterozygosity). See raw data in
Figshare for information on OTU labels.

PeerJ reviewing PDF | (2019:09:41295:1:1:NEW 3 Nov 2019)

Manuscript to be reviewed



PeerJ reviewing PDF | (2019:09:41295:1:1:NEW 3 Nov 2019)

Manuscript to be reviewed



Figure 3
Residual association patterns among endosymbionts and human pathogens within ticks
on a) individual tick-level and b) on site-level after accounting for shared environmental
preference.

Red lines represent positive associations and blue lines negative associations. Only
associations with strong statistical support (i.e., based on the 90% central credible interval)
are presented. Darker colors indicate stronger associations.
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