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ABSTRACT
Background. Pelvic floor pressure distribution profiles, obtained by a novel instru-
mented non-deformable probe, were used as the input to a feature extraction, selection,
and classification approach to test their potential for an automatic diagnostic system
for objective female urinary incontinence assessment. We tested the performance of
different feature selection approaches and different classifiers, as well as sought to
establish the group of features that provides the greatest discrimination capability
between continent and incontinent women.
Methods. The available data for evaluation consisted of intravaginal spatiotemporal
pressure profiles acquired from 24 continent and 24 incontinent women while
performing four pelvic floormaneuvers: themaximum contractionmaneuver, Valsalva
maneuver, endurancemaneuver, and wavemaneuver. Feature extraction was guided by
previous studies on the characterization of pressure profiles in the vaginal canal, where
the extracted features were tested concerning their repeatability. Feature selection was
achieved through a combination of a ranking method and a complete non-exhaustive
subset search algorithm: branch and bound and recursive feature elimination. Three
classifiers were tested: k-nearest neighbors (k-NN), support vectormachine, and logistic
regression.
Results. Of the classifiers employed, there was not one that outperformed the others;
however, k-NN presented statistical inferiority in one of the maneuvers. The best result
was obtained through the application of recursive feature elimination on the features
extracted from all themaneuvers, resulting in 77.1% test accuracy, 74.1%precision, and
83.3 recall, using SVM. Moreover, the best feature subset, obtained by observing the
selection frequency of every single feature during the application of branch and bound,
was directly employed on the classification, thus reaching 95.8% accuracy. Although
not at the level required by an automatic system, the results show the potential use of
pelvic floor pressure distribution profiles data and provide insights into the pelvic floor
functioning aspects that contribute to urinary incontinence.
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Machine Learning
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INTRODUCTION
Machine learning (ML) methods have the ability to learn about a system’s behavior directly
from its observed data and donot require previous knowledge on themathematical relations
ruling it. In the biomedical engineering and clinical applications field, these methods have
been increasingly employed in the construction of computer-aided diagnosis (CAD)
systems. Such systems aim to reduce diagnostic dependence on professionals’ experience
and consequently the variability and subjectivity of the results (Mumtaz et al., 2017; Kao &
Wei, 2011).

The first stage is determining which features are to be used, followed by choosing
and applying the ML methods for CAD system construction. Since CAD systems’ target
responses are most commonly categorical, a group of ML methods named classifiers
perform the modeling task. Frequently chosen classifiers for clinical and biomedical
engineering contexts are artificial neural networks, support vector machines (SVMs),
decision trees, logistic regression (LR), and random forests (Shaikhina et al., 2017).

Using previous knowledge of the biological phenomenon and feature extraction
techniques, features are extracted from the raw data and fed to the classifier; these features
have as much of an effect on the CAD system’s performance as the classifier itself (Krishnan
& Athavale, 2018). To improve this performance, dimensionality reduction methods
are also usually applied between the extraction and classification stages. The reduction
may be accomplished through transformation, such as retaining the most relevant
components from a principle components analysis (PCA) as well as through feature
subset selection (Krishnan & Athavale, 2018; Webb, 2002). In addition to performance
improvement, feature set reduction may remove irrelevant features, hence decreasing the
final classifier’s complexity (Webb, 2002).

In this context, automatic diagnosis of female urinary incontinence (UI) is an example
of a CAD system in the clinical setting that is already approached through ML methods.
Categorical clinical variables have been used to evaluate different classifiers (genetic
algorithm, k-means, LR, and decision trees) for the task of automatically diagnosing three
different types of UI (Laurikkala et al., 1999).

The International Continence Society defines UI as the complaint of any involuntary
leakage of urine, which is further classified into three main subtypes: stress UI, urgency UI,
and mixed UI. Regardless of the type, UI negatively affects women’s quality of life. Stress
UI, for instance, may become an obstacle for regular physical activities and may negatively
affect sexual function, thus jeopardizing women’s general health and well-being (Caetano,
Tavares da & De Lopes, 2007; Nygaard et al., 2015; Lim et al., 2016).

It is well established that the continence mechanism depends on the integrity of
passive (conjunctive tissues) and active structures (muscles) within the pelvic floor. Due
to time (or trauma), part of these structures can be impaired, leading to the need of
rehabilitation approaches to restore the continence function and knowing where and how
this forces/pressures generation and maintenance are impaired guide the process of pelvic
floor interventions in physical therapy. The pelvic floor muscles (PFM) play an important
(twofold) role in maintaining urinary continence: first, by supporting pelvic organs and
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restricting bladder neck displacements (Bø, 2004); second, by compressing the urethra
distally, causing the urethral pressure to increase prior to and during effort tasks, thereby
preventing urine leakage (Miller et al., 2001; DeLancey, 1988). To date there is Level I
evidence, Grade A that PFM training is effective in the treatment of women with stress and
mixed UI, being recommended as first-line conservative management for UI in women
of all ages (Dumoulin, Cacciari & Hay-Smith, 2018; Dumoulin et al., 2017; Nambiar et al.,
2018).

Up till now, there is no definition of an optimal force/pressure generation necessary
to clamp the urethra and prevent urine leakage or a clear distinction between continent
and incontinent women regarding their PFM function, leading to the assumption that
being able to discriminate the source of the forces acting on the vaginal canal is as
important as its magnitude for the continence mechanism. Studies have already showed
lower rest intravaginal pressure or forces in women with UI compared to a continent
control group (Shishido et al., 2008; Morin et al., 2004). However, this is not a consensus
in the literature (Devreese et al., 2004; Verelst & Leivseth, 2007; Chamochumbi et al., 2012).
Therefore, techniques to discriminate women with and without PF dysfunctions seems to
be important to guide further studies and interventions. This was one of our aims within
this study and not to specifically and directly applied in the clinical scenario yet.

Overall, we were able to show the intravaginal pressure profile of continent and
incontinent women, which was region-dependent, with a pressure pattern that varied
between groups and across the length of the vaginal cavity. The lower pressure maintenance
precisely at the main PFM action point observed in the incontinent group reinforces the
lack of endurance capacity of the PFM this population.

Furthermore, expenditure estimates regarding UI treatment in several countries have
demonstrated the substantial economic burden that will continue to increase with an aging
population (Milsom et al., 2014). Therefore, any contribution that facilitates the diagnosis
of UI in women is of interest.

The present work aims to verify the potential for a CAD system to discriminate
between continent and incontinent women (female UI), in which the raw input consists
of multidimensional intravaginal pressure profiles acquired through a novel instrumented
non-deformable probe (Cacciari et al., 2017a). With feature extraction being guided by
previous knowledge on vaginal pressure profiles related to pelvic floor functionality as
well as branch and bound and recursive feature elimination algorithms performing feature
selection, we also seek to determine the feature set with greatest potential for discrimination
between continent and incontinent women.

MATERIALS & METHODS
Data acquisition
A fully instrumented non-deformable probe with capacitive transducers was used to
acquire the vaginal spatiotemporal pressure distribution. The probe consisted of an
Ertacetal cylinder (tensile modulus of elasticity = 2,800 MPa) covered by a 10×10 matrix
of individually calibrated capacitive sensors (MLA-P1, Pliance System; novel; Munich,
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Figure 1 The probe and the matrix of pressure sensors. (A) The dimension and disposition of the pres-
sure sensors on the probe. (B) The fully instrumented probe and its data conditioner positioned within the
vaginal canal. Image and photo credit: Isabel Sacco.

Full-size DOI: 10.7717/peerj.8207/fig-1

Germany). The cylinder was 23.2 mm in diameter and eight cm in length, and its sensing
area was 70.7×70.7 mm (10×10 sensing elements of 7.07×7.07 mm, with 1.79 mm gaps
between them) (Fig. 1). The capacitive sensors had a measurement range of 0.50–100.00
kPa and a resolution of 0.42 kPa. Reliability and testing capacities of the instrument were
described by (Cacciari et al., 2017a; Cacciari et al., 2017b).

We divided the sensor matrix into various sections. The first was five planes with 20
sensors each. Each plane (36◦ apart from each other) represented a sum vector of pressures
from two 10-sensor lines diametrically opposed along the cylinder. The second was 10
rings, with each one created by the 10-sensor perimeters surrounding the cylinder. The
third division had three lines, each with a 10-sensor perimeter surrounding the cylinder:
cranial (corresponding to the first three lines of sensors from the vaginal opening), medial
(four mid-lines of sensors), and caudal (three last lines of sensors). The final division was
left, posterior, right, and anterior sections. Figure 2 illustrates the instrument with the
sensor matrix disposition and a scheme of the sensor subsets.

Data acquisition was performed on 24 adult continent women 35.3 ± 10.0 years
23.4 ± 4.2 kg/m2) and 24 diagnosed with stress UI 48.2 ± 8.1 years 27.5 ± 3.6
kg/m2; incontinence impact 66.7/100; severity measures 41.7/100 on the King’s Health
Questionnaire). To be eligible, women had to be continent or urinary incontinent, not
virgins, with no history of pregnancy within the past year, in premenopausal status with
monthly menstrual cycles, with a body mass index (BMI) lower than 30 kg/m2, and with
no history of pelvic floor muscle (PFM) training or of any medical conditions that could
interfere with PFM function. During clinical evaluation, participants were excluded if they
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Figure 2 The matrix of capacitive sensors on the intravaginal pressure probe. The probe was carefully
introduced so that sensor columns 8 and 9 were anteriorly positioned.

Full-size DOI: 10.7717/peerj.8207/fig-2

presented above Stage II on the Pelvic Organ Prolapse Quantification (POPQ) scale (Haylen
et al., 2016) and if they were not able to voluntarily contract their PFM. The King’s Health
Questionnaire was used to classify the participants into the continent or incontinent
group (Tamanini et al., 2003). Women reporting no symptoms of any type of UI were
included in the control group. This study was approved by the Ethics Committee of the
School of Medicine of the University of São Paulo (protocol n.023/14), and all participants
provided written informed consent prior to participation.

The probe was always inserted with the same orientation and at a depth of seven cm from
the hymenal caruncle according to references marks. After a 1-minute accommodation
period, the participants were asked to accomplish four maneuvers (in the same order)
with a 1-minute rest between them: (1) the maximum contraction maneuver, in which the
participants had to lift and squeeze their pelvic floor as hard as possible for 3 s (Cacciari et al.,
2017a); (2) the Valsalva maneuver, which consists of executing maximum intra-abdominal
pressure effort leading to a downward movement of the pelvic floor for 5 s (Cacciari et
al., 2017a); (3) the endurance maneuver, in which participants had to sustain pelvic floor
contraction for 10 s while breathing normally (Cacciari et al., 2017b); and (4) the wave
maneuver, in which women were instructed to contract their PFMs in a caudal-cranial
direction for 2 s and then relax them in a cranial-caudal direction for 2 s (Cacciari et
al., 2017b). All participants received standardized verbal support to encourage them to
perform maximal PFM contractions throughout the maximal and endurance maneuvers.
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The start of the data acquisition was manually synchronized a few seconds before the
verbal command. The sampling frequency during pressure data acquisition was set at 50
Hz (Cacciari et al., 2017a).

Feature extraction
Feature extraction was based in previous studies (Cacciari et al., 2017a; Cacciari et al.,
2017b) where the extracted features were capable of distinguishing vaginal sub-regions,
planes, rings and maneuvers, important aspects in pelvic floor assessment, and presented
excellent inter- and intra-rater reliability and intra-trial repeatability.

Prior to any feature extraction, each sensor time series was filtered by a zero-lag, 8th
order, low-pass, Butterworth filter with a cut-off frequency of 8 Hz. Then, the variable
extraction process was performed over sensor sets, whichwere defined either by amaximum
or by a sum operator, leading to two different time series: a peak pressure (Eq. 2.1) and a
sum pressure time series (Eq. 2.2):

Y S
peak [t ]=max

s′
S[t ] (2.1)

Y S
sum[t ]=

∑
s′∈S[t ]

S[t ] (2.2)

where S[t] is the pressure reading at time instant t of a sensor set S, and s′ is an element
of this set.

For the maximum contraction and Valsalva maneuvers, the extracted variables were
the maximum pressure (Eq. 2.3), maximum sum (Eq. 2.4), instant of maximum pressure
(Eq. 2.5), instant of maximum sum (Eq. 2.6), and instant of activation (Eq. 2.7):

maxp=maxY S
peak [t ] (2.3)

maxs=maxY S
sum[t ] (2.4)

tmaxp = argmax
t

Y S
peak [t ] (2.5)

tmaxs = argmax
t

Y S
sum[t ] (2.6)

tactiv = t |Y S
peak [t ]> δ (2.7)

where δ is a threshold corresponding to twice the standard deviation of the peak pressure
time series base value (Cacciari et al., 2017b).

All variables were computed over six distinct supersets of sensor groupings: Slong, Slat,
plane, ring, Slong ∩ Slat, and whole matrix. The first superset, Slong, includes the posterior,
anterior, right, and left groupings (Guaderrama et al., 2005), exactly as depicted in Fig. 2.
Slat includes the cranial, medial, and caudal groupings (Guaderrama et al., 2005); hence,
Slong ∩ Slat is the superset containing the results of the intersection between S long and
S lat. The remaining two supersets include planes (Eq. 2.8) and rings (Eq. 2.9) of the
sensors (Cacciari et al., 2017a):
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Planei=Ci∪Ci+5 (2.8)

Ringj =Rj (2.9)

where Ci is the group of sensors corresponding to the i-th column and i ε [1, 5] interval.
Rj is the group of sensors corresponding to the j-th row and j ε [1, 10] interval.

Aside from the features extracted on the maximum contraction and Valsalva maneuvers,
three other variables were extracted for the endurance maneuver. The integral of pressure
(Eq. 2.10) and integral of sum (Eq. 2.11) were computed over the Plane and Ring
supersets, while the plateau duration (Eq. 2.12) was computed only for the whole matrix
of sensors (Cacciari et al., 2017b):

intp=
∑
t

Y S
peak [t ] (2.10)

ints=
∑
t

Y S
sum[t ] (2.11)

1plateau=max
(
1t |Y S

peak [t ]≥ 0.9 ·maxp,∀t ∈1t
)

(2.12)

where 1t is any time interval within the maneuver execution.
In the wave maneuver, the feature’s maximum pressure, instant of maximum pressure,

integral of pressure, integral of sum, and instant of activation were extracted from all
six aforementioned supersets. Moreover, the rate of contraction (Eq. 2.13) and rate of
relaxation (Eq. 2.14) were computed only for the whole matrix (Cacciari et al., 2017b):

CR=
maxY S

peak

[
t
′
]
−Y S

peak [0]

argmax
t ′

Y S
peak

[
t ′
] (2.13)

RR=
maxY S

peak [1]−maxY S
peak

[
t
′
]

1−argmax
t

Y S
peak

[
t ′
] (2.14)

where t ′ is the normalized time of the interval [0, 1].
Finally, sample covariances were computed from the sensor groupings pertaining to the

Slong ∩ Slat superset for the Valsalva, maximum contraction, and endurance maneuvers.
The elements of the main and inferior diagonals of the sample covariance matrix were used
as features.

Feature selection
The applied process of feature selection was composed of a ranking stage followed by a
complete feature subset search (FSS), both independent of the classification process. Two
FSS algorithms were tested: extended branch and bound algorithm (BB) and recursive
feature elimination algorithm (RFE).
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The extended BB FSS algorithm (Duc & Andrianasolo, 1998), with the exception of
the functionality of determining variables to be disregarded in the search process, was
implemented in the Python programming language using the Mahalanobis distance as
the subset evaluation metric. This algorithm, despite performing a complete FSS without
exhausting every feature combination, may imply a high computational cost since both the
number of evaluated subsets and dimension of the covariance matrix to be inverted during
the Mahalanobis distance calculation grow exponentially as a function of the number of
features (Webb, 2002).

Given this computational burden, prior to the application of the BB algorithm, the N
most relevant features (ranked according to the Pearson and RELIEF criteria) were kept
for FSS. Incremental values of N were evaluated using the execution time as a stopping
criterion, thus resulting in the value N = 25. Finally, in a similar procedure but with the
mean accuracy as the stopping criteria, the range of dimensions of the subsets selected by
the BB method was determined to be (Kao &Wei, 2011; Bø, 2004).

The Recursive Feature Elimination (RFE) algorithm iteratively fits a model, computes
the model dependent ranking criterion and discards the last M features ranked by the
criterion. This model dependency implies that the top ranked features are not necessarily
the ones that are individually most important, thus working as a feature subset ranking
method. The base model used to compute the criterion was the Random Forest, with the
feature importance being its criterion. The model commonly used for this FSS method,
the SVM, was not used since it is already part of the evaluated models, and it could create
bias in its favor. Finally, the RFE parameters, as well as random forest parameters, both
provided by the python library scikit-learn, were selected using an unreplicated regression
analysis, with the target being the test accuracy, having rfe_step (M features to remove at a
time), n_estimators, min_samples_split and max_features as 2 levels factors. The activeness
of which factor was evaluated used Lenth method (Lenth, 2008), from which none was
deemed active. This way, the sign of the coefficients was used to determine the values of
each factor: rfe_step at 5, n_estimators at 10, min_samples_split at 2 and max_features at
0.5.

Classifiers configuration, selection, and evaluation
The Python package scikit-learn was used to implement the classifiers k-nearest neighbors
(k-NN), LR, and SVM, which were evaluated on the classification of the intravaginal
pressure data. The higher the numbers of hyperparameters to be explored, the higher
the chances of overfitting due to configuration selection process, compromising the
classification performance over independent samples (Cawley & Talbot, 2010). Thus, the
number of hyperparameters with scanning range was fixed to 1 for each model.

For the k-NN classifier, the hyperparameter corresponding to the number of neighbors
(exploring range) was set to the interval (Mumtaz et al., 2017; Bø, 2004). LR and SVM both
have a hyperparameter that corresponds to the inverse of the regularization strength (C
parameter), the scanning ranges of which were set to [0.0001, 0.001, 0.005, 0.01, 0.05,
0.1] and [0.0001, 0.001, 0.005, 0.01, 0.05], respectively. Then, with exception of the SVM
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Figure 3 Steps for evaluation and selection of the best configuration for each classifier.
Full-size DOI: 10.7717/peerj.8207/fig-3

configuration, which had its kernel type fixed to linear, no other default settings of the
scikit-learn models were overridden.

Different SVM kernels were initially tested, without a conclusive result of which would
be better. Thus, the kernel type of SVM was fixed to linear to reduce the computational
cost in searching the better kernel during the hyperparameters selection, besides being less
prone to overfitting the data.

Both the evaluation and selection of the configuration were based on leave-one-out
(LOO) cross-validation (Längkvist, Karlsson & Loutfi, 2014; Shao, Meng & Wang, 2016).
This procedure consisted of two nested LOO stages (Fig. 3), with the inner one used for
ordering the models in terms of validation accuracy, whereas the outer one tracked the
performance of the best of all three classifiers as well as their individual best configurations.

The whole procedure was repeated for each of the four data acquisition maneuvers, with
and without the subset search (Fig. 3, Step 2). Moreover, a combined search scheme using
all data acquisition maneuvers was performed; prior to Step 2, each activity underwent
the ranking and branch and bound methods, with the output subset dimension fixed at
6. Then, the subsets of each maneuver were concatenated, thus constituting a 24-features
subset, which was then fed to the remaining selection procedure.

Accuracy ((True positive + True negative)/all subjects), precision (True positive/(True
positive + False positive)), and recall (True positive/(True positive + False negative)) for
each model are presented. In this study, accuracy and recall should be carefully checked
because there is a high cost associated with patients set as False Negative.

The non-parametric McNemar’s test (Stapor, 2017) was used to check for statistically
significant differences (p≤ 0.05) between the test accuracies of the three classifiers (Häfner
et al., 2009) with FSS application. Additionally, the Shapiro–Wilk (for normal distribution
testing) and Mann–Whitney U tests were applied to the distributions of the features that
presented the highest selection frequencies, as selected by the combined search scheme.
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Finally, a PCA was applied on the combined selection scheme with the aim of visualizing
the separability between the two classes’ (continent and incontinent) for two situations,
using all features of the four maneuvers and using only the features that presented the
highest selection frequencies.

RESULTS
Individual maneuvers search
For the endurance maneuver features the highest accuracy was 68.8%, which was obtained
by both the best configurations out of the three classifiers and the best configuration of
the LR. The highest precision was 70.6%, which was obtained by the best configuration of
the k-NN without FSS, and the highest recall was 83.3%, which was obtained by the best
configuration out of the three classifiers with FSS (Table 1). LR reached the highest selection
frequency for this maneuver, being selected 42 times out of 48 according to the validation
accuracy estimated by the inner LOO (Fig. 3), regardless of the FSS application. In addition,
with the exception of the k-NN classifier, the FSS application increased the accuracy, the
precision, and the recall achieved by the best configuration of each classifier. On the other
hand, with the exception of the SVM classifier, the RFE application decreased the accuracy,
the precision, and the recall achieved by the best configuration of each classifier (Table 1).

For the Valsalva maneuver features, the highest accuracy achieved was 58.3%, which
was obtained by both the best configuration out of the three classifiers without FSS and
the best configuration of the LR. The highest precision was 77.8%, which was obtained by
the best configuration of the LR with RFE, and the highest recall was 58.3%, which was
obtained by the best configuration out of the three classifiers without FSS, LR without
FSS, and LR with RFE (Table 1). LR also reached the highest selection frequency for this
maneuver, being selected 43 times out of 48 without FSS, although k-NN was selected 40
times out of 48 with RFE. In addition, the application of FSS contributed to an overall
accuracy, precision, and recall decrease, except for the k-NN classifier, which had a slight
increase. On the other hand, with the exception of the best configuration out of the three
classifiers, the RFE application produced an overall accuracy, precision, and recall increase
(Table 1).

The highest accuracy achieved for the maximum contraction maneuver features was
60.4%, which was only reached without FSS. This value corresponds to the performance
obtained by the best configurations of SVM and LR, with the latter being selected by the
inner LOO 48 times out of 48. The highest precision was 60.0%, which was obtained by the
best configuration of the SVM without FSS, and the highest recall was 66.7%, which was
obtained by the best configuration out of the three classifiers without FSS, LR without FSS,
and LR with RFE (Table 1). When the FSS and RFE procedures were employed, however,
k-NN reached the highest selection frequency for this maneuver, being selected 40 times
out of 48 and 38 times out of 48, respectively. However, both FSS and RFE also contributed
to an accuracy, precision, and recall decrease for all classifiers (Table 1).

The highest accuracy achieved for the wave maneuver features was 79.2%, which was
obtained only by the best configurations of the k-NN classifier with RFE application.
This classifier, presented the highest selection frequency, being selected 43 times out of
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Table 1 Selection frequency and test accuracy, precision and recall of best model out of the three classifiers and best model of each classifier,
obtained with and without FSS application over the individual features of each activity.

Selected Selected
k-NN

Selected
LR

Selected
SVM

Accuracy 0.563 0.646 0.667 0.542
Precision 0.579 0.706 0.667 0.533
Recall 0.458 0.500 0.667 0.667

Without
FSS

Sel. Frequency – 6/48 42/48 0/48
Accuracy 0.688 0.458 0.688 0.646
Precision 0.645 0.458 0.655 0.629
Recall 0.833 0.458 0.792 0.708

With
BB

Sel. Frequency – 5/48 42/48 1/48
Accuracy 0.542 0.563 0.583 0.583
Precision 0.550 0.579 0.571 0.571
Recall 0.458 0.458 0.667 0.667

Endurance
task

With
RFE

Sel. Frequency – 36/48 6/48 6/48
Accuracy 0.583 0.417 0.583 0.542
Precision 0.583 0.389 0.583 0.545
Recall 0.583 0.292 0.583 0.500

Without
FSS

Sel. Frequency – 0/48 43/48 5/48
Accuracy 0.500 0.438 0.583 0.521
Precision 0.500 0.421 0.611 0.533
Recall 0.333 0.333 0.458 0.333

With
BB

Sel. Frequency – 8/48 28/48 12/48
Accuracy 0.563 0.563 0.708 0.604
Precision 0.579 0.579 0.778 0.647
Recall 0.458 0.458 0.583 0.458

Valsava
Maneuver

With
RFE

Sel. Frequency – 40/48 5/48 3/48
Accuracy 0.604 0.542 0.604 0.604
Precision 0.593 0.542 0.593 0.600
Recall 0.667 0.542 0.667 0.625

Without
FSS

Sel. Frequency – 0/48 48/48 0/48
Accuracy 0.500 0.500 0.562 0.562
Precision 0.500 0.500 0.560 0.556
Recall 0.500 0.500 0.583 0.625

With
BB

Sel. Frequency – 40/48 6/48 2/48
Accuracy 0.563 0.521 0.604 0.563
Precision 0.565 0.522 0.593 0.556
Recall 0.542 0.500 0.667 0.625

Maximum
Contraction

With
RFE

Sel. Frequency – 38/48 10/48 0
(continued on next page)
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Table 1 (continued)

Selected Selected
k-NN

Selected
LR

Selected
SVM

Accuracy 0.625 0.521 0.667 0.562
Precision 0.625 0.533 0.667 0.565
Recall 0.625 0.333 0.667 0.542

Without
FSS

Sel. Frequency – 0/48 41/48 7/48
Accuracy 0.708 0.667 0.688 0.729
Precision 0.708 0.700 0.680 0.762
Recall 0.708 0.583 0.708 0.667

With
BB

Sel. Frequency – 6/48 37/48 5/48
Accuracy 0.771 0.792 0.729 0.667
Precision 0.842 0.889 0.704 0.654
Recall 0.667 0.667 0.792 0.704

Wave
Task

With
RFE

Sel. Frequency – 43/48 4/48 1/48

Notes.
k-NN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; FSS, feature subset search; BB, branch and bound; RFE, recursive feature elimination.

48 with RFE, although LR was selected 41 times out of 48 without FSS and 37 times out
of 48 with FSS (Table 1). The highest precision was 88.9%, which was obtained by the
best configuration of the k-NN with RFE, and the highest recall was 79.2%, which was
obtained by the best configuration of the LR with RFE (Table 1). In addition, the FSS
and RFE application increased the accuracy, precision, and recall achieved by the best
configurations of all classifiers (Table 1).

Regarding classifier performance with BB application, for the endurance maneuver,
there was significant difference between LR and k-NN performance as well as between
SVM and k-NN performance (Table 2). No significant differences were observed for the
other maneuvers. TheMcNemar test results suggest statistical inferiority of the k-NN when
applied to the endurance maneuver features. Regarding classifier performance with RFE
application, for the Valsava maneuver, there was significant difference between SVM and
LR performance as well as between k-NN and LR performance (Table 2). No significant
differences were observed for the other maneuvers. The McNemar test results suggest
statistical inferiority of the LR when applied to the Valsava maneuver features.

Combined maneuvers search
With the combined maneuvers search scheme, the highest achieved accuracy was 77.1%,
which was obtained by the best configurations out of the three classifiers with FSS, the
best configurations of the LR with FSS, the best configuration of the LR with RFE, and
the best configuration of SVM with RFE (Table 3). The highest precision was 81.8%,
which was obtained by the best configuration of the k-NN without FSS, and the highest
recall was 83.3%, which was obtained by the best configuration of the LR with RFE, and
the best configuration of SVM with RFE (Table 3). K-NN attained the highest selection
frequency amongst the classifiers, being selected 41 times out of 48 with RFE. Overall, the
FSS and RFE application increased the accuracy, precision, and recall achieved by the best
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Table 2 McNemar’s p-values for the comparison of performance obtained by the three classifiers, on
each activity, as well as combined strategies, without FSS, with BB and with RFE application.

SVM vs k-NN SVM vs LR k-NN vs LR

Endurance
Task

0.197 0.014* 0.782

Valsava
Maneuver

0.083 0.479 0.046

Maximum
Contraction

0.467 1.0 0.467

Wave
Task

0.617 0.025* 0.089
Without
FSS

Combined 0.637 0.414 1.0
Endurance
Task

0.029* 0.157 0.007*

Valsava
Maneuver

0.248 0.257 0.089

Maximum
Contraction

0.317 1.0 0.083

Wave
Task

0.365 0.414 0.739
With
BB

Combined 0.285 0.096 0.077
Endurance
Task

0.763 1.0 0.781

Valsava
Maneuver

0.414 0.025* 0.019*

Maximum
Contraction

0.317 1.0 0.083

Wave
Task

0.527 0.157 0.206
With
RFE

Combined 0.655 1.0 0.739

Notes.
* indicates significant differences.
k-NN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; FSS, feature subset search; BB, branch
and bound; RFE, recursive feature elimination.

configurations of all classifiers, with the greatest increase for the LR (Table 3). Moreover,
no statistical differences were observed between the classifiers’ performances (Table 4).

From the six extracted features that presented the highest selection frequencies, i.e., the
most frequently selected features, significant differences between the classes (continent vs.
incontinentwomen)were observed (Mann–WhitneyU test, p< 0.05), except for the instant
of activation of the sensor grouping Ring2 extracted from the Valsalva maneuver (Fig. 4).
With these six features, the class separability gain, observed through the two-principal
component plot, is quite visible if compared to the one attained with all features of the
four activities (Figs. 5 and 6).

When applying the configuration selection procedure (Fig. 3) only on these six more
frequently selected features with no further FSS, it was possible to achieve accuracy as high
as 97.9% for the best configurations of the LR and SVM classifiers as well as 95.8% for the
best configuration out of the three classifiers.
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Table 3 Selection frequency and test accuracy, precision, and recall of best model out of the three clas-
sifiers and best model of each classifier, obtained without FSS, with BB, and with RFE application over
the combined activities search scheme.

Selected Selected
k-NN

Selected
Logistic R.

Selected
SVM

Accuracy 0.667 0.646 0.646 0.688
Precision 0.667 0.818 0.652 0.680
Recall 0.667 0.375 0.625 0.708

Without
FSS

Sel.
frequency

– 1/48 27/48 20/48

Accuracy 0.771 0.750 0.771 0.667
Precision 0.809 0.773 0.783 0.682
Recall 0.708 0.708 0.750 0.625

With
BB

Sel.
frequency

– 0/48 31/48 17/48

Accuracy 0.750 0.750 0.771 0.771
Precision 0.773 0.773 0.741 0.741
Recall 0.708 0.708 0.833 0.833

With
RFE

Sel.
frequency

– 41/48 6/48 1/48

Notes.
k-NN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; FSS, feature subset search; BB, branch
and bound; RFE, recursive feature elimination.

Table 4 McNemar’s p-values for the comparison of performance obtained by the three classifiers on
the combined search scheme.

Comparison SVM vs k-NN SVM vs LR k-NN vs LR

p-value 0.285 0.096 0.782

Notes.
k-NN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine.

Finally, the test accuracies of the best models out of the three classifiers are presented in
Table 5.

DISCUSSION
The present study aimed to evaluate the potential of an automatic diagnostic system for
discrimination between women with and without UI through data collected by a novel
intravaginal pressure probe (Cacciari et al., 2017a). Although the k-NN with RFE and wave
task data produced the best accuracy (79.2%) and precision (88.9%), it reached a poor
recall (66.7%) (Table 1) that is imperative in this study. Thus, the results indicated that,
overall, the best performance was achieved by combining the features of all four acquired
maneuvers (SVM with RFE: 77.1% accuracy, 74.1% precision, and 83.3% recall—Table 3)
meaning that UI is a combination of failures in pelvic floor functioning. Moreover,
despite not reaching levels of performance required by an automatic diagnosis, the results
provided insights into themajor aspects of PFM functioning thatmay help in discriminating
continent from incontinent women.
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Figure 4 Box plot of the six extracted features that presented the highest selection frequencies com-
paring the two classes, continent vs incontinent women. (A) pressure for wave-posterior medial-max_p
and valsava-left caudal-max_s; (B) normalized time for valsava-right caudal-tmax_p and endurance-ring
1-tmax_p; (C) normalized time for valsava-anterior cranial-tact and valsava-ring 2-tact. ∗∗∗p < 0.001;
∗∗p = 0.01; ∗p = 0.028. Only Valsalva Ring2 did not present a significant difference (Mann–Whitney U
test, p> 0.05).

Full-size DOI: 10.7717/peerj.8207/fig-4

In a previous study, the k-means, discriminant analysis, LR, decision tree, and two
genetic algorithmswere comparedwhen diagnosing three types of incontinence (Laurikkala
et al., 1999), including stress UI. The data were categorical and obtained through clinical
questionnaires and exams. The number of samples per class was 323 incontinent and 207
continent women. Despite the differences in sample size and data properties compared to
the present study, the only statistically significant difference observed also pointed to the
inferiority of the neighborhood voting classifiers (see Table 2). The advantage of analyzing
the spatiotemporal pressure profile of the pelvic floor is that it can reveal the mechanistic
characterization of the UI compared to only clinical features extracted from questionnaires.

Despite the absence of consistent statistical differences among the three classifiers, the
selection frequency was higher for LR without FSS and with BB, with the exception of the
maximum contraction maneuver, in which k-NN held the majority of selections when
using BB. The reason for this LR predominance is not completely evident, but it is likely due
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Figure 5 Two-principal components plot applied to the features with the highest selection frequency
(A) using Branch and Bound and with all extracted features (B).Observe that the separation between the
classes is more visible when using the features with the highest selection frequencies (A).

Full-size DOI: 10.7717/peerj.8207/fig-5

to the low complexity of its decision rules composition process or even due to a beneficial
bias introduced by either the ranking criteria or the BB process. However, with RFE, k-NN
reached the highest selection frequency, although lower than LR without FSS and with BB.

Overall, the application of FSS increased the accuracy of the best-selected configurations
for all maneuvers. The cases in which its application occasioned a decrease in performance,
this corresponded to the two maneuvers with the lowest test accuracies (Table 5). The
results obtained with the Valsalva maneuver and maximum contraction maneuver were
not able to surpass the accuracy achievable by a fair coin toss, for example. Despite the low
performance, Valsalva maneuver features played a major role (see Fig. 4) in the accuracy
increase observed with the FSS application on the combined features search scheme
(Table 5, last column). Regarding the non-discriminating capacity of the endurance
maneuver in identifying incontinent women, which is a common test performed in clinical
practice, , our results show that the endurance maneuver might not be the best test to
identify failures in the pelvic floor of women with UI. This is in agreement with the most
recent guidelines for UI (Dumoulin, Cacciari & Hay-Smith, 2018; Bø& Sherburn, 2005), in
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Figure 6 Two-principal components plot applied to the features with the highest selection frequency
(A) using Recursive Feature Elimination and with all extracted features (B).Observe that the separation
between the classes is more visible when using the features with the highest selection frequencies (A).

Full-size DOI: 10.7717/peerj.8207/fig-6

Table 5 Test accuracies of the best models out of the three classifiers, without FSS, with BB, and with
RFE application.

Endurance
Task

Valsava
Maneuver

Maximum
Contraction

Wave
Task

Combined
Search

Without FSS 0.563 0.583 0.604 0.625 0.667
With BB 0.688 0.500 0.500 0.708 0.771
With RFE 0.542 0.563 0.563 0.771 0.750

Notes.
FSS, feature subset search; BB, branch and bound; RFE, recursive feature elimination.

which coordination and asymmetry may play a major role in pelvic floor dysfunctions, and
support the good results with wave maneuver (except for recall value).

Three of the Valsalva maneuver features are among the group of six variables with the
highest selection frequency (Fig. 4). Besides increasing inter-class separability (Fig. 5), this
also represents two important aspects of the analysis of PFM functioning, namely strength
generation (peak values of pressure) and coordination (time instants) (Bø& Sherburn,
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2005). The instant of maximum pressure, for example, of the incontinent group during the
Valsalva maneuver was significantly higher than the one observed in the continent group
(Fig. 4), which may suggest lack of coordination in the counter-response to the intra-
abdominal pressure increase, hence leading to an involuntary urine leakage (Wyndaele &
Abrams, 2018).

This study has some limitations. The major concern is the relatively small data sample
used for automatic classification of UI, which would not be sufficient to provide reliable
results. However, it was not our intention to provide a final and finished automatic
classification system, but to show the potential use of pelvic floor pressure distribution
profiles in its construction as an objective assessment of UI, and to test some feature
selection algorithm and some classifiers. In addition, the equipment for pelvic floor
pressure distribution data collection is novel, relatively expensive, and can only be found in
research laboratories. Thus, with a larger data sample, other feature selection algorithms,
other classifiers, and even automatic feature extraction should be tested.

On the other hand, the novel equipment, although not essential for UI assessment in
a clinical context, not substituting or overcoming other clinical invasive measurements,
provides information for distinguishing vaginal sub-regions, planes, rings and maneuvers,
contributing to evaluate aspects such as coordination and asymmetry that may play an
important role in pelvic floor dysfunctions.

Finally, the performance attained using the six features with the highest selection
frequencies, which were able to reach 97.9% accuracy, require further validation with a
new and larger data set. This results in the 77.1% accuracy as the highest test accuracy
achieved in the present study, demonstrating the potential for an automatic diagnosis
system for discriminating female UI using quantitative intravaginal pressure data.

This result is quite below the 96% accuracy obtained by the discriminant analysis model
in the study where two other types of UI were also classified (Laurikkala et al., 1999). In
addition to the fact that the data used by Laurikkala et al. were categorical, it is not clear if
the reported performance was a test or validation accuracy, which, in the latter case, would
provide an over-optimistic performance metric.

CONCLUSIONS
This first attempt to use intravaginal pressure data to automatically diagnose female
UI demonstrated that the data have discriminatory potential depending on how well
they are harnessed. When fed with all features, the employed RFE algorithm was able
to produce the best-achieved accuracy and, although not at the level required by an
automatic system, provided insights into the PFM functioning aspects contributing to a
UI diagnosis. Overall, the best performance was achieved by combining the features of all
four acquired maneuvers. When considering the group of six variables with the highest
selection frequency, the Valsalva maneuver had the greatest impact. Further, the endurance
maneuvermight not be an advisable test for UI classification, and wavemaneuver produced
good results, except for recall value.

To further explore the data potential, a larger data set is necessary since the use of an
intravaginal probe for pressure data collection is a very new tool for incontinence urinary

Carafini et al. (2019), PeerJ, DOI 10.7717/peerj.8207 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.8207


assessment in women. Additionally, a reduction in the branch and bound computational
cost is needed in order to increase the number of features kept after the first ranking stage.
Furthermore, the application of other methods of feature extraction, including supervised
methods based on neural networks, should further test the potential of intravaginal pressure
data for classification.
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