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ABSTRACT
Improved understanding of properties that mediate protein solubility and resistance to
aggregation are important for developing biopharmaceuticals, and more generally in
biotechnology and synthetic biology. Recent acquisition of large datasets for antibody
biophysical properties enables the search for predictive models. In this report, machine
learning methods are used to derive models for 12 biophysical properties. A physico-
chemical perspective is maintained in analysing the models, leading to the observation
that models cluster largely according to charge (cross-interaction measurements) and
hydrophobicity (self-interaction methods). These two properties also overlap in some
cases, for example in a new interpretation of variation in hydrophobic interaction
chromatography. Since the models are developed from differences of antibody variable
loops, the next stage is to extend models to more diverse protein sets.
Availability. The web application for the sequence-based algorithms are available on
the protein-sol webserver, at https://protein-sol.manchester.ac.uk/abpred, withmodels
and virtualisation software available at https://protein-sol.manchester.ac.uk/software.

Subjects Biochemistry, Bioinformatics, Biophysics, Biotechnology, Computational Biology
Keywords Machine learning, Antibodies, Biotherapeutics, Bioinformatics, Biophysics

INTRODUCTION
The promise of therapeutic monoclonal antibodies relies on the ability of the
pharmaceutical industry to develop large scale manufacturing processes that can produce
safe, reproducible, and economical formulations. Identifying problematic antibody
formulations, as early as possible in the drug discovery programme, has become a key
area of research. To serve this interest, researchers have identified various experimental
platforms, and developed theoretical tools, in an attempt to identify antibodies that may
exhibit deleterious solution properties, also referred to as developability issues (Jarasch et
al., 2015; Kohli et al., 2015). The use of experimental methods necessitate the production
of a large number of candidates, which is both expensive and time consuming. There is
also the cost of conducting the biophysical characterisation assays and interpreting the
result. For these reasons, there has been interest in developing new techniques to minimise
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sample requirements, or increase throughput (Razinkov, Treuheit & Becker, 2013; Man
et al., 2019). To help alleviate the sample requirement issues for experimental methods,
several groups have developed theoretical tools to assay the solubility, or developability,
before any expression or purification is required (Lauer et al., 2012; Obrezanova et al.,
2015; Hou et al., 2018; Sankar et al., 2018). Although excipients and solution conditions
have a large effect on biophysical solution behaviour (Kamerzell et al., 2011; Ohtake, Kita
& Arakawa, 2011; Lilyestrom, Shire & Scherer, 2012), the properties of the formulation
will be determined de novo by sequence and structure, and thus form the basis for many
theoretical approaches. There are a number of sequence-based predictors of protein
aggregation, particularly as applied to amyloid proteins, in the literature (Tartaglia &
Vendruscolo, 2008; Conchillo-Solé et al., 2007; Walsh et al., 2014), as well as more general
antibody specific homology models (Marcatili et al., 2014; Leem et al., 2016; Weitzner et
al., 2017), and recent work has applied these techniques for predicting the solubility of
biotherapeutics (Sormanni et al., 2017; Raybould et al., 2019).

The use of these in silico candidate screening techniques accelerates the biotherapeutic
development process, through the identification of high value leads and new engineering
targets (Shan et al., 2018), and in some cases even improving biological activity (Kumar
et al., 2018), However, the development of these tools is reliant on the availability of high
quality experimental datasets and is thus heavily dependent on the progress of experimental
techniques. Notably, the recent release of antibody biophysical characterisation
datasets (Goyon et al., 2017; Jain et al., 2017a) has allowed the development of further
theoretical tools to predict, assess and understand the physicochemical properties that are
correlated with the successful development of a therapeutic antibody, on a scale previously
unattainable to academic researchers. The Jain et al. (2017a) report in particular is an
excellent resource as it analysed 137 antibodies, representing a wide variety of late stage
clinical therapeutics, across 12 different biophysical characterisation platforms. The study
identified where there is overlap between complementary approaches and which platforms
should be prioritised for assaying candidate therapeutic mAbs.

When available, previous work from our group has used experimental data to produce
algorithms for both prediction and theoretical calculation which we have made freely
and openly available as web applications on the protein-sol web server. Prior to the
release of the high throughput biotherapeutic datasets, we have focussed on using other
large datasets, such as the Niwa et al. (2009) E. coli solubility dataset, as a proxy for
therapeutic proteins, to study the role of sequence information in predicting protein
solubility (Hebditch et al., 2017). Using the Goyon et al. (2017) dataset we studied the
importance of CDR (complementarity-determining regions) length and aromatic content
for predicting behaviour on HIC (hydrophobic interaction chromatography) (Hebditch et
al., 2018). Lastly, we have developed tools for predicting the presence of hydrophobic and
charged patches as well as fold state stability (Hebditch & Warwicker, 2019) from crystal
structures available in the PDB (Berman et al., 2007) and applied these observations to
experimental work (Austerberry et al., 2017). After the release of the Jain et al. (2017a)
dataset, reports have appeared in the literature using the dataset. For example, predictive
models of HIC performance using QSPR models (Jetha et al., 2018) and a combined
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sequence and structure approach (Jain et al., 2017b). CDR properties of the Jain et al.
(2017a) dataset have also been implicated in identifying antibodies with developmental
issues (Raybould et al., 2019), and the dataset has also been used to benchmark aggregation
prediction algorithms (Sankar et al., 2018).

In this report, we describe our approach to using machine learning algorithms trained
on the Jain et al. (2017a) dataset. Models for all 12 biophysical measurement platforms
are produced, with varying efficacies. Compared to other approaches, our models rely
simply on sequence information which is readily available in comparison to structural
approaches. To our knowledge, this report gives the first set of sequence trained models
for predicting the performance on biophysical characterisation platforms important for
assessing the developability of biotherapeutic antibodies. The models are interrogated
for which sequence features contribute most significantly for each measurement, and
clustering the models according to the relative importance of the sequence features is
largely in accord with clustering from the experimental report (Jain et al., 2017a). From
our analysis of sequence information, we associate charge and hydrophobicity calculated
from amino acid propensity as the features of most importance. In a novel interpretation
of results for HIC, a complexity is revealed whereby charge effects are hypothesised to be
minor at low retention times, but major at high retention times, owing to the ionic strength
gradient that is used to modulate hydrophobicity.

METHODS
Dataset
The Fv (concatenated VH and VL) sequences for the 137 antibodies (mAb137), as well as
the experimental result data for the 12 biophysical platforms were obtained from Jain et
al. (2017a). The experimental methods were: AC-SINS (affinity-capture self-interaction
nanoparticle spectroscopy), CSI-BLI (clone self-interaction by bio-layer interferometry),
PSR (poly-specificity reagent), BVP-ELISA (baculovirus particle ELISA), CIC (cross-
interaction chromatography), ELISA (enzyme-linked immunosorbent assay), HEK (HEK
cell expression titer), HIC (hydrophobic interaction chromatography), SGAC-SINS (salt-
gradient affinity-capture self-interaction nano-particle spectroscopy), SMAC (stand-up
monolayer adsorption chromatography), SEC (size-exclusion chromatography), DSF
(differential scanning fluorimetry).

Identifying explanatory variables
Following on from previous work where we used protein sequence features to estimate
solution behaviour (Hebditch et al., 2017), we have used the same 35 sequence features
in an attempt to understand the variance in the 137 antibodies with the 12 different
biophysical characterisation assays. The 35 features are composed of the standard 20 amino
acid propensities, followed by 7 amino acid composite scores (KmR = K-R, DmE = D-E,
KpR = K+R, DpE = D+E, PmN = K+R-D-E, PpN = K+R+D+E, aro = F+W+Y) and a
further 8 sequence features, fld = folding propensity (Uversky, Gillespie & Fink, 2000), dis
= disorder propensity (Linding et al., 2003), bet = beta strand propensities (Costantini,
Colonna & Facchiano, 2006), mem = Kyte-Doolittle hydropathy (Kyte & Doolittle, 1982),
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pI, absolute charge (calculated from the presence of amino acids with titratable moieties: K
and R positive, D and E negative) and sequence entropy (Hebditch et al., 2017), reflecting
different calculations of charge and hydrophobicity as well as previously established
calculations used in the literature. The complementary determining regions (CDRs) were
identified for each Fv sequence using a set of sequence based rules (Abhinandan & Martin,
2008).

Feature engineering and preprocessing the experimental datasets
For each experimental method, we first determined which features should be selected as
explanatory variables. If we desired to simply maximise the R2 value, we could retain all of
the variables as the R2 value will always increase with higher degrees of freedom (Kvålseth,
1985). However in order to generate the most robust, and interpretable, model it is
preferable to reduce the number of variables used. For example, collinearity occurs
in multivariate regressions when input/explanatory variables are correlated, and this
correlation can destabilise the estimation of individual coefficients (Farrar & Glauber,
1967). If the VIF value is high, the variance of the coefficient in the multivariate model is
high, and thus the estimation of the standard error is high. To account for this, for each
experimental platform we selectively removed variables with a high VIF score (traditionally
considered 10 and above) to address the issue ofmulticollinearity (O’brien, 2007). This list of
non-collinear variables formed our first set of explanatory variables: VIF all. To identify the
most important coefficients we conducted a mixed stepwise selection regression (Venables
& Ripley, 2013) to minimise the Akaike information criterion (Akaike, 1998). This process
resulted in the second of our two sets of explanatory variables for each biophysical platform:
VIF selected. For each experimental dataset, we then scaled the explanatory variables to
ensure that the coefficient value of each explanatory variable would be comparable, as well
as for aiding the prediction of the statistical techniques.

Mathematical transformation of the experimental data
Manymachine learning algorithms perform best on normally distributed datasets (James et
al., 2013), and it is commonpractise tomathematically transformnon-normal distributions
in order to improve the predictive power of machine learning approaches. We noted that
many of the values are in fact better described by a generalized extreme value distribution
type 1 (Gumbel distribution). As many of the experimental distributions appeared to be
significantly non-normal, we normalised all of the distributions using a mathematical
transformation (see Table 1). For each dataset, we attempted to normalise the distribution
of experimental values using the R package bestNormalize and then trained the algorithm
against both the standard and normalised datasets using both the stepwise selected
and complete sets of coefficients (Peterson & Cavanaugh, 2019). For the datasets with
significantly non-normal distributions, the machine learning algorithm was then trained
on these transformed experimental values and will thus produce regressions in the context
of the transformed space. Although these transformed predictions do not have any physical
meaning, they are still mathematically related to the original experimental value, and can
therefore be used to compare between proteins in the mAb137 dataset.
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Table 1 Chosenmachine learning algorithm summary. For each experimental dataset we tested a number of different algorithm, variable and mathematical transfor-
mation types.

HIC SMAC CIC ACSINS ELISA BVP SGAC-SINS PSR HEK DSF CSI ACC-STAB

Algorithm Elastic
net

Elastic
net

SVM Elastic
net

Random
forest

Random
forest

SVM SVM SVM SVM SVM SVM

Variables VIF
selected

VIF
selected

VIF all VIF
selected

VIF all VIF all VIF all VIF all VIF all VIF all VIF all VIF all

Transformation None Ordered
quantile

Ordered
quantile

Ordered
quantile

None None None None None None Ordered
quantile

None

R2 0.391 0.353 0.306 0.268 0.383 0.355 0.215 0.316 0.1121 0.13 0.169 0.086
p-value 2.33E–17 7.33E–15 4.46E–17 6.46E–14 4.95E–77 6.85E–68 2.30E–39 2.39E–10 1.87E–09 4.49E–08 1.24E–05 2.82E–01
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Statistical model selection and cross-validation
We tested the performance of both parametric and non-parametric machine learning
algorithms. The advantage of non-parametric methods is that they are generally unbiased
as they do not expect the data to fit to an a priori approximation (James et al., 2013). This
flexibility however comes at the cost of generally requiring larger datasets in order to model
the relationship, and the increased degrees of freedom can lead to overfitting the data.
Parametric algorithms are easier to interpret and are more useful for inferential statistical
approaches, but are however more likely to be biased as they assume a structure to the data
that may not exist (James et al., 2013). To determine which algorithm should be used for
each experimental method, we tested 11 different regression algorithms representing a both
parametric and non-parametric algorithms. By using a broad range of different machine
learning theoretical approaches, we are unbiased in our model selection as we make no
assumptions about the structure of the data. Each algorithm was provided with both sets of
explanatory variables (VIF all and VIF selected) and the normalised and standard datasets
for each of the 12 experimental methods.

For predicting how machine learning models perform on unseen data a validation
approach is required. Traditionally a hold-out, or lock box, validation approach is
favoured (Chicco, 2017), however for a dataset of this size (n= 137), a hold out-approach
for estimating model performance would be problematic. Firstly it would be difficult to
ensure that both the validation and hold-out would be truly representative of the sample,
for this reason, any partition of the data would be highly variable due to randomness in
selecting the hold-out set. Secondly, machine learning approaches perform worse with
fewer observations, and by necessity a hold-out validation approach will immediately
remove a substantial portion of the data for validation. For these reasons, we chose to use
cross-validation for estimating the test error directly from the training data, a technique
common in life sciences (Krstajic et al., 2014). A traditional approach to cross-validation
is the k-fold technique where the data is divided into k folds, with 1 of the folds being
put aside for validating a model trained on the remaining k-1 folds. Compared to the
hold-out validation method, this ensures that we can use the entirety of our data for
training the algorithms whilst still retaining an estimate of performance on future data.
Other cross-validation approaches to studying the mAb137 dataset (Jetha et al., 2018) have
used leave-one-out cross-validation, which is a special subset of k-fold cross-validation
where the number of folds is equal to the number of observations, and thus each validation
fold consists of a single observation with the remaining folds used to train the algorithm.
The leave-one-out form of cross-validation will tend to have higher variance than a k-fold
of 10 approach due to the high similarity of the training sets, which only differ by 1
sample (Kohavi, 1995). This means that each dataset in the leave-one-out approach is
highly correlated, whereas if a smaller number of k-folds are used, the training sets are
more diverse and should therefore provide a more accurate estimate of the test error as
a proxy for performance on unseen data due to the bias–variance trade-off (James et al.,
2013). As we are most concerned with providing a robust predictive algorithm which
can be applied to future unseen data, we chose to use a 50 times repeated 10-fold cross
validation approach as a trade-off between providing the model with as much training
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data as possible, whilst maintaining a robust and diverse training set to avoid over fitting
(Braga-Neto & Dougherty, 2004; Krstajic et al., 2014). For the HIC dataset, we excluded the
experimental values with a value of 25, as these were arbitrarily assigned a value of 25 due
to exceeding the maximum measurement time and were thus misleading for the training.
Both the algorithms and cross-validation were implemented using the caret (Kuhn, 2008)
package in R version 3.5.1.

Selection of machine learning algorithms and data input
After training each algorithm on the original untransformed and transformed experimental
data, the algorithms with the lowest mean average error (MAE) were chosen for further
exploration. Formost of the experimental datasets, the best performing algorithms were the
elastic net, a linear algorithm (Zou & Hastie, 2005), using the stepwise selected variables,
and the non-linear algorithms: support vector machines (SVM) (Drucker et al., 1997), and
random forest (Ho, 1995), both using the complete set of non-collinear variables (see Table
1). The selected model for each experimental method was then used to predict the entire
experimental dataset to obtain predicted values for each of the proteins.

Meta score
We also provide a meta score which combines and averages multiple biophysical platforms.
The meta score is calculated by ranking the original Jain dataset in order from best to worst
result, and then calculating where the candidate sequence falls within that ranking for each
biophysical platform. We rescale the rankings from 1–100, with 1 being predicted to be the
best, and 100 predicted to be the worst, with the rankings ordered dependent on whether
higher or lower better values are preferable. We then combine and average the ranks for
the biophysical platform. For META X we average the rankings for ELISA, BVP, PSR, CSI,
ACC STAB and CIC, and for META Y we average SMAC and HIC. The lower the ranking
the better for each group, and thus the closer to origin (0,0) the better we predict the
candidate to behave on average across the platforms.

RESULTS
Web application and model availability
Previous work from our group has focussed on developing predictive models (Hebditch et
al., 2017) and theoretical tools (Hebditch & Warwicker, 2019) which we have made freely
available as a suite of web-tools for the wider research community at https://protein-
sol.manchester.ac.uk. Accordingly, we have made all twelve machine learning algorithms
available at protein-sol. The user can enter a candidate Fv sequence into theweb application,
which is then processed using the same methodology as described in this study. The
sequence composition scores of the new sequence are preprocessed for scale, and where
applicable mathematical transformations applied (Table 1). The composition variables
are then used as new inputs for the trained algorithms to obtain predictions for the 12
biophysical experiments. The web application provides an interactive scatter plot, with
the original, or transformed, experimental value on the x-axis, and the predicted value
from the machine learning algorithm for the same protein on the y-axis (Fig. 1). As the
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Figure 1 Demonstration of the protein-sol web application. The x axis of the scatter plot is the original
experimental value, or mathematical transformation thereof, and the y axis is the prediction for that pro-
tein. The protein submitted by the user is coloured orange, and the mAb137 dataset is coloured green with
the three shades representing the FDA approval stage. The heat map below is coloured red if the candidate
protein is predicted to lie beyond the threshold and green otherwise.

Full-size DOI: 10.7717/peerj.8199/fig-1

new candidate sequence has only a predicted value, we assign x = y . The web application
presents the 12 predicted experimental values and the calculatedMETA value in the context
of the original mAb137 dataset to allow the user to assess the prediction. Hovering over
the individual points on the scatter graph provides the name and FDA approval stage
of the protein in question, as well as the original experimental value and the predicted
value from the machine learning algorithm for comparison to the candidate protein.
Where the machine learning algorithm has been trained on a mathematically transformed
dataset (see ‘Mathematical transformation of the experimental data’) it is important to
note that the values on the x and y axis are reported on the same transformed scale. For
the candidate sequence the user is also given a ranking, scaled from 1−100 where 1 is
always the preferential ranking, for each experiment, allowing the user to contextualise
how the candidate sequence performs in comparison to the mAb137 set of clinical stage
therapeutics. The heat map is colour coded for each Fv dependent on the threshold value.
We use threshold values, available for 10/12 experimental platforms, from the original Jain
et al. (2017a) study, for the remaining 2/12 (HEK and DSF) we set the threshold to mark
values that rank within the worst 10% of the experimental values. If the predicted value is
above the threshold value for the experiment, the corresponding square is coloured red,
otherwise it is coloured green. Hovering over the heat map changes the displayed scatter
graph to display the predictions for that category, as well as the ranking of the candidate
sequence for that experiment.
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The web application allows users to easily visualise and understand the predictions
for single Fv sequences. If the user wishes to make predictions for multiple proteins, or
implement the abpred software into their own pipelines, we are also providing the complete
suite of software both as a repository with instructions for installing dependencies, and also
as a docker image which is an industry standard form of operating system virtualisation
allowing the user to download a preconfigured image containing all of the required
software designed to run cross platform on Linux, Windows and macOS. These resources
are available at https://protein-sol.manchester.ac.uk/software.

Models for 12 biophysical properties that characterise antibody
behaviour
Sequence composition scores for the 137 Fv (combined VH and VL sequences averaged
by length) from the Jain et al. (2017a) dataset (mAb137) were used to train multiple
different machine learning algorithms, on the original, and mathematically transformed
datasets. To ascertain generalisability, each algorithm was trained using 50-repeat 10-fold
validation. From the cross-validation we obtained the MAE value which was used to
choose determine which combination of algorithm and experimental data transformation
best described each of the 12 experimental datasets (see methods). Finally, we then used
the cross validated models to describe the entirety of the experimental data in order to
obtain predicted values corresponding to each experimental value to power the prediction
matrix (Fig. 2, Figs. S1 and S2). Using MAE as a qualification metric for model quality, we
demonstrate that machine learning models trained simply on Fv sequence information,
can provide reasonably accurate predictions for some of the 12 biophysical techniques,
although accuracy varies substantially (Table 1). Although the models are selected in order
to maximise the MAE rather than the correlation coefficient R2, it closely follows the
model accuracy with a correspondingly low p-value. Our HIC model has an R2 value of
0.391, comparable to values in the literature. The Jetha et al. (2018) report describes three
sequence based models with R2 values of 0.17, 0.1 and 0.23, and two more complicated
structural based QSPR models with R2 values of 0.33 and 0.38. The Jain et al. (2017b) uses
a combined sequence and structural approach, but reports an AUC of 0.87 rather than
an R2 value making direct comparison difficult. Compared to both previous reports in
the literature, our report provides the user with predictions based purely on amino acid
sequence rather than the more complicated structural based approaches used by Jetha et
al. (2018) and Jain et al. (2017b).

Figure 2 shows one of the better performing models (HIC) with good agreement at
lower at lower HIC values but less effective prediction at higher HIC values. The feature
selection stage of the machine learning methods gives an indication of the sequence-based
features that are most associated with particular biophysical properties. A complementary
approach, is to examine correlations between sequence features and measured properties.

For each experimental dataset, we calculated the Pearson correlation coefficient between
each calculated sequence feature and the experimental value for the entire Fv chain (Fig. 3).
Inspection reveals that some biophysical measurements are associated with sets of sequence
correlations that are of larger magnitude than for other measurements. These largely reflect
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Figure 2 The scatter graph demonstrates the predictive power of the HICmodel, where the original
experimental value is on the x axis, and the prediction is on the y axis. The closer each data point is to
the y = x line the better the prediction. Predictions for HIC are generally close to the y = x line at lower,
but not at higher retention times, suggesting that sequence based prediction is less reliable at higher HIC
values.

Full-size DOI: 10.7717/peerj.8199/fig-2

our observations for models developed with machine learning (see Fig. S3 for a comparison
of selected features and their correlation to the experimental result). Generally, the models
shown in Fig. S1, with greater overall correlation values, and giving predictions that lie
close to the y = x diagonal, are associated with greater correlation magnitudes reading
across in Fig. 3. Consideration of sequence features that underlie models is important in
further our understanding of molecular behaviour, as demonstrated with presentation of
a new model for mAb behaviour in HIC, in a subsequent section.

Clustering of biophysical characterisations
Hierarchical clustering of biophysical characterisation for the 137 mAbs revealed 5
clusters (Jain et al., 2017a), which we are able to now associate with enrichment for
higher correlations with certain sequence features. A grouping of positive correlations for
charge-associated properties is apparent (Fig. 3) for the largest cluster identified previously
(PSR, CSI, ACSINS, CIC), but we would add in a second of the original clusters (ELISA,
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Figure 3 Heat map of the Pearson correlation coefficient between the Fv sequence composition scores
used in the abpred algorithms and the score on each of the experimental datasets for the mAb137
dataset.Dark red values indicate a stronger positive correlation, and dark blue values indicate a stronger
negative correlation.

Full-size DOI: 10.7717/peerj.8199/fig-3

BVP) that sits next to the largest cluster in the hierarchical tree. These 6 properties lie at the
bottom of the heat maps in Fig. 3 and (to varying degrees) give correlations for absolute
charge and negative charge subtracted from positive charge (PmN) i.e., overall net positive
charge. The 6 assays in this cluster assess cross-interaction (BVP, ELISA, CIC, PSR) and self-
interaction (CSI, ACSINS). We predict that, for the cross-interactions, negatively-charged
proteins (or regions of proteins, and for some assays perhaps additionally phospholipids)
are being targeted by more positively-charged CDRs in the mAbs. For self-interactions,
absolute charge favours interaction, but it is less clear that this is a positive charge.

Whereas SMAC, HIC and SGAC-SINS were clustered according to biophysical
characterisation (Jain et al., 2017a), Fig. 3 indicates (according to sequence properties)
that SMAC and HIC are more closely related to each other than to SGAC-SINS, including
positive correlation of aromatic content with association to the hydrophobic medium.
This observation is consistent with our earlier modelling (Hebditch & Warwicker, 2019)
for HIC measurements with a smaller dataset (Goyon et al., 2017), given the multiple
dependencies of biophysical properties on sequence features it is unsurprising that
models constructed with machine learning methods give correlations that are useful,
but far from precise. It is likely that consideration of 3D structure can improve modelling
when we have sufficient understanding of properties such as a shape-dependence of the
hydrophobic effect (Hebditch & Warwicker, 2019), but 3D structure will not always be
available and models are liable to error. In this context we have used the clustering of
biophysical characterisation methods, which largely agrees when clustering is based on the
measurements themselves (Jain et al., 2017a), to generate two combinations for prediction.
Further, we loosely associate these two predictors with variation within a dataset of two
overriding features. For cross-interaction and self-interaction, BVP, ELISA, CIC, PSR,
CSI and ACSINS predicted rankings are averaged and displayed along the horizontal axis,
and for hydrophobic interaction the rankings from HIC and SMAC are averaged and
displayed on the vertical axis. The background to the plot, labelled ‘meta’ prediction, are
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the combined rankings calculated for the 137 mAb set. There is some cross-over between
these two combinations, for example the charge effects in HIC (Fig. 3), and a positive
correlation between CIC data and aromatic content, which is accommodated in the models
for individual biophysical properties. In general terms though, this ‘meta’ prediction can be
thought of as displaying variation associated with charge-related properties (horizontally),
and variation associated with hydrophobicity (vertically).

HIC and the interplay between charge and hydrophobicity
For HIC we note that (Fig. 3) strong correlations between HIC value and aromatic content
(positive) and absolute charge (negative). From Fig. S4, it is clear that there is no simple
delineation between the high and low charge sequences (Fig. S4A) when considering the
relationship between aromatic content and HIC, and between the high and low aromatic
content sequences when considering the relationship between absolute charge and HIC
(Fig. S4B). This suggests that the relationship between HIC and charge/hydrophobicity
is not linear, and will thus not be captured by traditional linear models. To account
for this, we calculated an interaction model between aromatic content and absolute
charge for predicting HIC retention time (Fig. 4). Tracking the plot across at constant
charge, about one third up along the charge axis, the expected behaviour is evident, where
aromatic content is used to represent hydrophobicity. More generally though the plot
shows that increased charge leads to lower retention times in HIC, for a uniform content
of aromatic residues, evidenced by a worsening of the correlation between measurement
and prediction at higher HIC values (Fig. 2). Deconvoluting and keeping track of features
that are included in a model permits physical interpretation and re-evaluation that may be
valuable for research into HIC methodology.

Figure 4 also includes a physical interpretation of these data. At higher ionic strength
(relating to lower retention times in HIC), charge interactions between bound proteins
are screened and thus high net charge proteins (Q) behave in a similar manner to those
with low net charge (q). We suggest, at lower ionic strength (and longer elution times),
charge interactions are no longer screened as effectively, so that repulsion between proteins
with higher net charge (Q) would lead to greater elution of these proteins relative to those
with smaller net charge (q). This combination of experimental data, informatics, and
physicochemical analysis, leads to a novel interpretation of the complexity required in
accounting for HIC data.

DISCUSSION
Our models have been developed with specific biophysical characterisations and a single
type of protein therapeutic, giving rise to the question of whether they retain predictive
ability when either of these factors are changed. We have focussed on characterisation
by HIC, largely since careful comparison of the data yields the insight that ionic strength
variation during elution leads to a dependence on charge as well as hydrophobicity. Of
the reported biophysical methods (Jain et al., 2017a), HIC is widely used, however it is
applied in variants of the format that lead to altered ranges of measured retention times.
A set of 97 mAb variants, targeting integrin α11, have HIC elution times in the range of
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Figure 4 Plot of an interaction model trained on the aromatic content and absolute charge (from
number of amino acids in the sequence with titratable moieties) for the mAb137 dataset and HIC ex-
perimental data. Red indicates areas of higher HIC retention time, and blue areas of lower retention time.
The schematic provides a suggested physical explanation for differences in HIC values in sequences with
high aromatic content denoted by green non-polar interactions.

Full-size DOI: 10.7717/peerj.8199/fig-4

20–30 min, compared with those used for the current models that are centred around
10 min (Jetha et al., 2018). Models can still be assessed with correlation, or relative ranking,
even when the measurement domains are different. A scatter plot of HIC values calculated
with our model against experimental values has a similar appearance to a that produced
with a sequence-based prediction developed in the original study (Jetha et al., 2018). The
correlation coefficient for the scatter plot in our calculation is 0.35, lower than reported by
Jetha et al. (2018) (0.46), but significant (p= 0.00044, 97 data points). The mAb variants
in this study consist of mutations designed to reduce hydrophobicity, with varying degrees
of success in the design, which are largely reflected in the scatter plot for model versus
experimental HIC. Interestingly, a group of mutations based on Y30 are amongst the more
poorly predicted set, and this residue is part of a relatively small hydrophobic patch and
likely not involved in binding to integrin α11. In contrast the sequence space of the 137
mAb set will be determined mostly by altered binding to the various targets, and therefore
qualitatively different to the 97 mAb set. Jetha et al. (2018) observe that structure-based
modelling can be used to distinguish surface environments, consistent with our own report
that an improved understanding of the shape-dependence of the hydrophobic effect is
needed (Hebditch & Warwicker, 2019).

With regard to measurements for non-mAb systems, we follow Jetha et al. (2018) in
comparing predicted HIC values with measured inclusion body (IB) percentage formation
for 31 adnectin loop variants (Trainor et al., 2016), i.e., assuming that hydrophobicity is a
contributing factor in IB formation. Our model for HIC correlates with the IB percentage
data, yielding R= 0.668 (p= 0.00004, 31 data points).

These tests, against other mAbs and another loop-based protein affinity system, give us
confidence that the models can be used for relative ranking of candidate molecules. There
are clearly insufficiencies in themodels, and correlations vary across models. Developments
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may come from inclusion of 3-dimensional structure (where available). Careful analysis
of models can yield areas where improved physicochemical understanding is possible,
illustrated here with HIC data.

CONCLUSIONS
A set of predictive models are presented for the 12 biophysical properties assessed in a
landmark study of 137 mAbs (Jain et al., 2017a). The models have been developed from
sequences of the (heavy and light chain) variable domains, using the 20 amino acid
compositions and 15 sequence-derived features that represent physicochemical properties
(Hebditch et al., 2017), and variation in those properties between the CDRs of the 137
mAbs. Machine learning methods have been used to access fits to the data that would be
missed by linear models. For many of the experimental platforms, it turns out that linear
models can account for much, but not all, of the variation observed, whilst for some of the
measured properties it is difficult to obtain an effective predictive model. These deficits,
for example in DSF (Tm) and HEK (expression titer) may highlight where sequence fails
to capture salient structural features (Jetha et al., 2018; Raybould et al., 2019), or important
factors in the solution environment. For example, structural stability of a mAb, either
globally or for local regions, is likely to be correlated with Tm measurements, although
this may be difficult to obtain accurately in a predictive model. Sequence-based prediction,
though, gives effective models for many of the biophysical platforms and is accessible to
users without structural information, it negates the requirement for comparative modelling
(with its potential errors), and in prior work we find that 3D-based methods are still in
development in regard to assessment of hydrophobic interactions at CDRs (Hebditch et al.,
2018). An advantage of our methodology, with models for 12 biophysical properties, is that
models can be clustered and examined in the context of common sets of sequence features
with higher correlations. This clustering is similar to that established in the original report
of the mAb137 set data. Further, the method allows new interpretation of underlying
physicochemical behaviour. The example given is for HIC, where despite delivering one
of the better models, we find that charge combines with hydrophobicity in a way that is
difficult to capture precisely. However, the fundamental nature of this combination can
plausibly be related to the HIC method. An ammonium sulphate gradient (high to low)
is used to modulate hydrophobicity. We hypothesise that at shorter elution times, charge
plays less of a role (with electrostatic interactions screened) but is more important at longer
elution times, at lower ionic strength and with proteins with higher net charge repelling
each other on the support. The current work complements other modelling studies, but of
individual properties, built on the mAb137 set (HIC, Jain et al. (2017a); CIC, Kizhedath,
Karlberg & Glassey (2019). It also adds to studies prior to reporting of the mAb137 set, that
identified QSAR as an effective area for prediction of mAb solution properties (Sharma et
al., 2014; Robinson et al., 2017).

A key question for prediction methods developed with data for mAbs, is how well
they transfer to other proteins, particularly since the emphasis is on differences in CDRs.
Since the detail of experimental procedures is likely to vary, the first step to other systems
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is to swap from a comparison of absolute values to rankings or correlations, using the
numerical values given in our method. Following this procedure, our HIC prediction
model is effective for another set of mAbs (Jetha et al., 2018) and a set of adnectin variants
(Trainor et al., 2016). Both of these additional sets are centred on variation in defined loop
regions. In the next stages of the work, wider variation in proteins will be studied, requiring
collaboration with experimental determination to both extend the range of measurements,
and to narrow the range of biophysical techniques to focus studies.
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