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ABSTRACT
Background. This study was designed to explore the profile and potential influencers
of the vaginal microbiome (VMB) among asymptomatic pregnant Chinese women and
its possible association with pregnancy outcomes.
Methods. A prospective study was conducted among pregnant Chinese women
receiving regular prenatal care at a hospital in Shanghai, China from March 2017 to
March 2018. Vaginal swabs were obtained from 113 asymptomatic pregnant women in
mid-pregnancy and sequenced by the V3–V4 region of 16S rRNA on an Ion S5TM XL
platform. Demographic characteristics and major pregnancy outcomes were collected
through questionnaires and electronic medical records.
Results. The predominant vaginal community state types (CSTs) were CST I (45.1%)
and CST III (31.9%). Participants were divided into a lactobacilli-dominant group (LD,
CST I/II/III/I–III/V, n= 100, 88.5%) and a less lactobacilli-dominant group (LLD, CST
IV-A/B, n= 13, 11.5%). Women in the LLD group showed an increased alpha diversity
[median (interquartile range, IQR): 2.41 (1.67, 2.49) vs. 0.30 (0.17, 0.59), P < 0.001],
which was related to a lower pre-pregnancy body mass index (BMI) (P = 0.012), and a
greater instance of passive smoking (P = 0.033). The relative abundance of Lactobacillus
was correlated positively with the pre-pregnancy BMI (r = 0.177, P = 0.041), but
negatively with passive smoking (r =−0.204, P = 0.030).
Conclusion. The vaginal flora of asymptomatic pregnant Chinese women was mostly
dominated by Lactobacillus crispatus and L. iners. A lower BMI and greater instance of
passive smokingmay contribute to a less lactobacilli-dominant VMB.However, a larger
sample size is needed.

Subjects Microbiology, Epidemiology, Gynecology and Obstetrics, Public Health, Women’s
Health
Keywords Vaginal microbiome, Pregnant women, Body mass index, Passive smoking, Vaginal
cleanliness
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INTRODUCTION
The vaginal microbiome (VMB) is known to play an essential role in women’s reproductive
health. Previous culture-based methods recognized the genus Lactobacillus to be the
dominant bacterium in the vagina (Rogosa & Sharpe, 1960). These bacteria can maintain
the balance of the vaginal microenvironment through the production of lactic acid from
vaginal glycogen to keep a low pH value (usually < 4.5). They are also involved in the
production of hydrogen peroxide (H2O2) and acidolin, which prevents the overgrowth
of other intrinsic bacterial and the invasion of foreign pathogens (Aroutcheva et al., 2001;
Miller et al., 2016;Mitchell et al., 2013).

The recently developing molecular technologies have enabled researchers to get a better
understanding of the VMB (Fettweis et al., 2012; Mendz, Kaakoush & Quinlivan, 2016).
With the help of the next generation of sequencing (NGS), Ravel et al. (2011) was able to
cluster the VMB of asymptomatic child-bearing women into five vaginal community state
types (CSTs). CST I, II, III, and V were dominated by L. crispatus, L. gasseri, L. iners and
L. jensenii (with an abundance usually >90%) respectively, while CST IV represented a
more diverse profile with a lesser abundance of Lactobacillus and could be further divided
into two subtypes, CST IV-A (a coexistence of Lactobacillus and some anaerobes) and CST
IV-B (mostly dominated by Gardnerella, Atopobium, Prevotella, and others) (Brotman et
al., 2014b; Huang et al., 2015; Romero et al., 2014). Though the dominant bacteria in CST
IV could also produce lactic acid, the pH value is slightly higher (Gajer et al., 2012; Ravel et
al., 2011). Moreover, the VMB needs to maintain a lower diversity to obtain the microbial
balance in the vagina, which is unlike other sites throughout the body, such as the gut and
oral cavity (Huang et al., 2014).

The composition and abundance of the VMB could be affected by various factors, such
as intrinsic genotypes, host behaviors, and health conditions (Greenbaum et al., 2019; Lewis,
Bernstein & Aral, 2017; Zhang et al., 2018). Ethnicity may be the most influential of all of
these factors. In Ravel’s study, White women were mostly dominated by CST I (45.4%),
Asians by CST III (42.7%), and Blacks and Hispanics by CST IV (40.4% and 38.1%) (Ravel
et al., 2011). Fettweis et al. (2014) further confirmed the lesser abundance of Lactobacillus
in African Americans. In addition, the pH value of African descendants was higher than
that of Whites and these women were more likely to develop bacterial vaginosis (BV).

Compared with non-pregnant women, the VMB of pregnant women exhibits a lower
diversity and abundance of flora but amore stable community (Aagaard et al., 2012;Husain
et al., 2014;Walther-Antonio et al., 2014). Since the maternal VMB during pregnancy could
largely affect the next generation, researchers are interested in discovering how the VMB
could affect pregnancy outcomes. The rich progress in the research of the VMB during
pregnancy has been driven by the Human Microbiome Projects in recent years (Fettweis
et al., 2019; Serrano et al., 2019). Researchers have found that the lesser abundance of
Lactobacillus in the VMB was more likely to lead to the development of adverse pregnancy
outcomes, such as preterm birth, still birth, and latemiscarriage (Baqui et al., 2019;DiGiulio
et al., 2015; Fettweis et al., 2019; Hyman et al., 2014; Tabatabaei et al., 2019). Results have
also shown that race or ethnicity may modify the association of the VMB and preterm birth
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mostly among women of African and European ancestry (Callahan et al., 2017; Wheeler et
al., 2018). However, the association among Asian populations remains unclear.

Studies involving local Asian women have been implemented in Japan, Korea, Thailand,
and China (Chen et al., 2017; Hong et al., 2016; Matsumoto et al., 2018; Sirichoat et al.,
2018), but few have well investigated the VMB of pregnant women using NGS (Kim et al.,
2017; Matsumoto et al., 2018), especially among Chinese populations. Thus, in order to
gain a more comprehensive understanding to VMB and to see if there was an association
of VMB with pregnancy outcomes, we undertook this study to probe into the profile of the
VMB among asymptomatic pregnant Chinese women.

MATERIALS & METHODS
Participants and procedures
A prospective study was conducted among pregnant Chinese women receiving regular
prenatal care at Shanghai Punan Hospital of Pudong New District in Shanghai, China from
March 2017 to March 2018. The study was reviewed and approved (IRB#2017-01-0608)
by the ethical committee of the School of Public Health, Fudan University (IRB00002408
& FWA00002399).

Participants were recruited at their first prenatal visit. The inclusion criteria included:
(a) aged 16 years or older with a singleton pregnancy, (b) gestational week earlier than 28
weeks, and (c) ability to complete the study procedure. The exclusion criteria included:
(a) the use of antibiotics within four weeks prior to recruitment, (b) sexual intercourse
48 h prior to sampling, and (c) having a severe illness (such as liver or heart disease). After
informed consents, participants were asked to complete a structured questionnaire on their
sociodemographic characteristics, medical and reproductive history, and lifestyle data, and
were then followed up for their major pregnancy outcomes including delivery (gestational
weeks of delivery, delivery mode) and infant information (gender, birth weight) through
hospital electronical records.

Sample collection and clinical examination
Vaginal samples were taken by skilled obstetricians from the posterior fornix using sterile
swabs. Two swabs were obtained from each participant. One was placed in a tube without
any buffer and stored at−80 ◦Cbefore use and the otherwas used for clinical inspectionwith
a wet mount. The results were reported by an experienced laboratory staff (Huang). The
laboratory examination included the presence of vaginal inflammation and standardized
I-IV grades of ‘‘vaginal cleanliness’’ were used by wet mount microscopy (Shang, Wang &
Shen, 2014), which was a composite indicator based on grading bacillus, coccus, epithelial
cells, and leukocytes per high power (HP). Higher grades imply a presence of vaginal
inflammation (Table S1).

DNA extraction, 16S rRNA amplification and sequencing
The total genome DNA from samples was extracted using a mixture of cetyltrimethylam-
monium bromide (CTAB) and sodium dodecyl sulfate (SDS) methods. The hypervariable
V3–V4 region of the 16S rRNA gene (Primer: 341F-CTAYGGGRBGCASCAG; 806R-
GGACTACNNGGGTATCTAAT) was amplified with the sample-specific barcodes and
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then sequenced on an Ion S5TM XL platform (Novogene Co., Ltd., Beijing, China),
generating results of 600 bp single-end reads.

Bioinformatic and statistical analyses
The upstream analysis of the sequencing data was conducted on the QIIME 2 software
platform (Quantitative Insights into Microbial Ecology 2, Version 2018.11, http:
//qiime2.org) with its pluginsDADA2, feature-table, feature-classifier and phylogeny. Single-
end reads were assigned to samples based on their unique barcodes and truncated by cutting
off the barcodes andprimer sequences.Quality controlswere performed and sequenceswere
denoised with the DADA2. After filtering the low abundance of features (reads <10) and
omitting chimeras, the representative sequences for amplicon sequence variants (ASVs)
were screened for annotation using the SILVA-based training classifier database. The
majority of the Lactobacillus genus could not reach the species level because of the short
read lengths obtained by high-throughput sequencing, but it was essential for further
analysis in studies of VMB (Van Der Pol et al., 2019).Therefore the BLAST (Basic Local
Alignment Search Tool) database at the National Center for Biotechnology Information
website (http://blast.ncbi.nlm.nih.gov) was utilized with a minimum support threshold of
80%, and the top hit was selected as the species level. If multiple top hits with exactly the
same values are found, we expressed them as ‘‘Lactobacillus sp.’’ and numbered them in
order.

After the ASV table was obtained, further analyses were performed using R 3.5.2
software for Windows (R Core Team, 2018) and the packages vegan, phyloseq, ggplot2,
and pheatmap. Alpha diversity showing the richness and evenness within the subjects was
computed using the Shannon index (SID). We also calculated the Bray–Curtis distance
as beta diversity for clustering CSTs according to DiGiulio et al. (2015): extracting the
most significant Principal Coordinates Analysis (PCoA) eigenvectors to form the distance
matrix, applying the partitioning around medoids algorithm, and determining the number
of clusters form the gap statistic (k = 7). A heatmap was displayed for visualizing. The
linear discriminate analysis coupled with effect size measurements (LEfSe) was performed
to identify differential species among different characteristic groups of participants with a
linear discriminant analysis (LDA) score >2.0 considered as significant.

Continuous variables were presented using mean ± standard deviation (SD) or the
median [interquartile range (IQR)], while discrete variables were presented using numbers
and proportions. Referring to previous studies, the subjects were divided into two distinct
subgroups according to the vaginal dominance of Lactobacillus. For univariate analyses
of participant characteristics, alpha diversity, and relative abundance of taxa between
groups, one-way ANOVA, the Mann–Whitney U test and Pearson χ2 test (or Fisher’s
exact test) were used to compare the means, medians, and proportions, respectively. The
relationships of two continuous variables, including the relative abundance of taxa, alpha
diversity, pre-pregnancy body mass index (BMI), passive smoking (days per week), and
gestational ages in weeks were investigated with Spearman’s rho. The level of a significant
difference was set at a two-sided 0.05.

He et al. (2019), PeerJ, DOI 10.7717/peerj.8172 4/17

https://peerj.com
http://qiime2.org
http://qiime2.org
http://blast.ncbi.nlm.nih.gov
http://dx.doi.org/10.7717/peerj.8172


Pregnant women receiving prenatal 

care at Shanghai Punan Hospital of 

Pudong New District  in 2017-2018

Questionnaires and samples collected

(N0=156)

Excluding participants who failed to 

meet the requirements

Excluding participants who failed to meet the requirements:

a) Absence of laboratory test, n=3

b) Gestational week later than 28 weeks, n=7

c) Having sex behavior within 48 hours, n=12

d) multiple pregnancy, n=4

e) Use of antibiotics within 4 weeks, n=3

f) Suffering other illness, n=11

g) Samples contaminated, n=3

113 pregnant women included

82 (72.6%) had regular 

gestational follow-up
31 (27.4%) did not complete 

follow-up

Figure 1 The flowchart shows the selection of participants enrolled in this study with consent in-
formed.

Full-size DOI: 10.7717/peerj.8172/fig-1

RESULTS
Participant characteristics
During the period fromMarch 2017 to March 2018, a total of 156 women were recruited at
their first prenatal visit in the Shanghai PunanHospital of PudongNewDistrict in Shanghai,
China. After a careful screening, 113 pregnant women met the inclusion/exclusion criteria
(Fig. 1). All subjects were Han Chinese in mid-pregnancy, with ages ranging from 17 to
34 years old (mean ± SD: 25.69 ± 3.69) and with gestational ages of 12.42 to 26.71 weeks
(mean ± SD: 16.68 ± 2.76). After a regular gestational follow-up, the delivery data of 82
women (72.56%) was collected at Punan Hospital. The gestational age at birth ranged
from 35.86 to 41.43 weeks (mean ± SD: 39.40 ± 1.23). The demographic characteristics
of women with delivery data collected and not collected were comparable, except for the
proportion of vaginal inflammation (Table S2).

Vaginal microbiome profiles
A total of 113 vaginal samples were sequenced, generating 3,671,402 raw reads. Chimeric
and low abundance of features (reads < 10) were filtered out, leaving 3,644,890 reads
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Figure 2 The heatmap indicates the relative abundance of top taxa in all samples. The CSTs were clus-
tering using Bray–Curtis indices, and was annotated on the top of the heatmap. Notes. CST, community
state types.

Full-size DOI: 10.7717/peerj.8172/fig-2

with an average of 32,255 reads per sample (ranging from 1,424 to 52,991 reads). Among
annotated taxa, L. crispatus generated the most reads at 2,279,244, followed by L. iners and
L. gasseri. Megasphaera, Dialister and Aerococcus were the top three genera following the
Lactobacillus genus.

CSTs definition
Seven CSTs were identified using the clustering Bray–Curtis distance matrix. Five of them
were dominated by Lactobacillus. Of these, L. crispatus dominated CST I had the highest
proportion (51/113, 45.1%), followed by L. iners, which dominated CST III (36/113,
31.9%). L. gasseri and L. jensenii dominated CST II and V took up only 3.5% (4/113) and
2.7% (3/113) of the subjects, respectively. A I-III type (6/113, 5.3%) contained almost equal
abundance of L. crispatus and L. iners. The other two CSTs were divided into CST IV-A
(coexistence of L. iners and Megasphaera, Dialister, etc., 9/113, 8.0%) and IV-B (diversity,
4/113, 3.5%) according to their lower abundance of Lactobacillus. The relative abundance
of the top taxa in different CSTs was displayed in a heatmap for visualizing (Fig. 2).

LD and LLD groups
The relative abundance of the Lactobacillus genus in CST I/II/III/I–III/Vwere all higher than
90%, thus the participants were divided into two groups: The lactobacilli-dominant group
(LD, CST I/II/III/I–III/V, n= 100, 88.5%), and the less lactobacilli-dominant group (LLD,
CST IV-A/B, n= 13, 11.5%). More detailed bacterial abundance data from different CSTs
are shown in Table S3. The relative abundance of other genera was also compared between
groups. The genus of Megasphaera, Dialister, Aerococcus, Gardnerella, and Gemella were
detectedmore frequently in the LLD group (P < 0.05 for all, Fig. 3). The sociodemographic,
medical and reproductive history, lifestyle characteristics, and major pregnancy outcomes
of subjects were compared between the two groups (Table 1).
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Figure 3 An alluvial diagram showing the relative abundance of top taxa in LD and LLD groups. The
genus ofMegasphaera, Dialister, Aerococcus, Gardnerella, and Gemella were detected more frequently in
the LLD group (P < 0.05 for all). Genus with abundance less than 1% is not shown (Gardnerella). Notes.
* indicates P value< 0.05, and ** indicates P value< 0.001. LD, lactobacilli-dominant group; LLD, less
lactobacilli-dominant group.

Full-size DOI: 10.7717/peerj.8172/fig-3

Results showed that women in the LLD group had a lower maternal pre-pregnancy BMI
(especially the proportion of BMI lower than 18.5 kg/m2) (mean ± SD: 19.16 ± 2.60 vs.
21.16 ± 2.68, P = 0.012; 38.5% vs. 13.0%, P = 0.045) and participated in more passive
smoking (>3 days per week) (38.5% vs. 15.0%, P = 0.033). There were no differences in
the pregnancy outcomes between the groups (P > 0.05 for all). Nevertheless, women in the
LLD group tended to have a higher proportion of vaginal inflammation (but not higher
than CST I–III and III, Table S4), active smoking, and preterm birth in contrast with those
in the LD group.

Comparative analysis of alpha diversity
A significantly increased SID was observed in the LLD group (median (IQR): 2.30 (1.69,
2.48) vs. 0.28 (0.17, 0.57), P < 0.001). To investigate the potential influential factors of
alpha diversity within the subjects, SIDwas further compared among selected characteristics
(Table 1). Results revealed that the presence of vaginal inflammation was correlated with a
higher SID when compared with that of lower grades (median (IQR): 0.55 [0.29, 1.28] vs.
0.29 [0.18, 0.82], P = 0.017). Women with a lower BMI (P = 0.181) and who participated
in more passive smoking (P = 0.262) also had a tendency toward higher diversity, in
accordance with the result of CST distribution, although the difference did not achieve
statistical significance at 0.05. With the growing gestational age of weeks at enrollment, the
alpha diversity showed a declining trend (P = 0.120).

Bioinformatic trends analysis
To further explore the bioinformatic trends of alpha diversity (SID) and relative abundance
of taxa with age, maternal pre-pregnancy BMI, passive smoking (days per week), and
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Table 1 LD/LLDGroups and SID among relevant characteristics of subjects.

Characteristics (N = 113) LD Group (n= 100) LLD Group (n= 13) P SID P
CST I/II/III/I–III/V CST IV-A/B

Sociodemographic
Age (mean± SD) (years old) 25.70± 3.78 25.62± 3.07 0.938 – –
<18 1(1.0) 0(0.0) >0.99* 0.30 [0.30, 0.30] 0.984
18–25 36(36.0) 5(38.5) 0.32 [0.21, 0.90]
25–35 63(63.0) 8(61.5) 0.32 [0.18, 0.89]
Gestational age of weeks at
enrollment (mean± SD) (weeks)

16.78± 2.86 15.92± 1.64 0.294 – –

12–18 79(79.0) 12(92.3) 0.810* 0.33 [0.21, 0.97] 0.120
18–24 17(17.0) 1(7.7) 0.29 [0.17, 0.90]
24–28 4(4.0) 0(0.0) 0.17 [0.13, 0.21]
Education status 0.737* 0.622
Middle school and lower 25(25.0) 4(30.8) 0.31 [0.21, 0.57]
High school and higher 75(75.0) 9(69.2) 0.32 [0.19, 0.95]
Economic status (RMB per year) 0.459 0.777
<100,000 43(43.0) 7(53.8) 0.32 [0.21, 0.83]
≥100,000 57(57.0) 6(46.2) 0.30 [0.18, 1.01]
Medical and reproductive history
Maternal pre-pregnancy BMI
(mean± SD) (kg/m2)

21.16± 2.68 19.16± 2.60 0.012 – –

Underweight (<18.5) 13(13.0) 5(38.5) 0.045* 0.49 [0.27, 1.24] 0.181
Normal weight (18.5–24.0) 71(71.0) 7(53.8) 0.28 [0.18, 0.80]
Overweight and obese (>24.0) 16(16.0) 1(7.7) 0.48 [0.21,0.84]
Unipara 69(69.0) 8(61.5) 0.752* 0.32 [0.21, 0.88] 0.777
No 31(31.0) 5(38.5) 0.30 [0.16, 1.02]
Presence of inflammation (Grade III/IV) 22(22.0) 4(30.8) 0.492* 0.55 [0.29, 1.28] 0.017
No 78(78.0) 9(69.2) 0.29 [0.18, 0.82]
Previous adverse pregnancy outcomes 24(24.0) 3(23.1) >0.99* 0.25 [0.15, 1.06] 0.313
No 76(76.0) 10(76.9) 0.33 [0.21, 0.87]
Lifestyle
Vaginal douching 34(34.0) 3(23.1) 0.541* 0.27 [0.20, 0.70] 0.407
Never 66(66.0) 10(76.9) 0.35 [0.20, 1.01]
Active smoking 6(6.0) 2(15.4) 0.230* 0.33 [0.22, 1.15] 0.538
Never 94(94.0) 11(84.6) 0.31 [0.19, 0.88]
Passive smoking (>3 days per week) 15(15.0) 5(38.5) 0.033* 0.58 [0.21, 1.31] 0.262
≤3 days per week 85(85.0) 8(61.5) 0.30 [0.19, 0.80]
Drinking 8(8.0) 1(7.7) >0.99* 0.21 [0.16, 0.33] 0.109
Never 92(92.0) 12(92.3) 0.32 [0.21, 0.95]
Alpha diversity
Shannon index (median [IQR]) 0.28 [0.17, 0.57] 2.30 [1.69, 2.48] <0.001 – –

(continued on next page)
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Table 1 (continued)

Characteristics (N = 113) LD Group (n= 100) LLD Group (n= 13) P SID P
CST I/II/III/I–III/V CST IV-A/B

Pregnancy outcomes (N ′= 82) 72(72.0) 10(76.9) >0.99* – –
Delivery mode 0.742* 0.258
Cesarean 31(43.1) 5(50.0) 0.28 [0.17, 0.66]
Vaginal delivery 41(56.9) 5(50.0) 0.37 [0.19, 1.00]
Gestational age of weeks at birth 0.327* 0.212
Preterm birth (<37 weeks) 2(2.8) 1(10.0) 0.88 (0.59,1.57)
Term birth (≥37 weeks) 70(97.2) 9(90.0) 0.31 [0.17, 0.89]
Fetus gender 0.735* 0.512
Male fetus 29(40.8) 5(50.0) 0.36 [0.20, 0.96]
Female fetus 42(59.2) 5(50.0) 0.30 [0.18, 0.89]
Birth weight >0.99* 0.445
Low birth weight 4(5.6) 0(0.0) 0.52 [0.17, 0.89]
Normal birth weight 62(87.3) 100(100.0) 0.32 [0.21, 1.04]
Large for birth weight 5(7.0) 0(0.0) 0.28 [0.13, 0.46]

Notes.
P-values were calculated using chi-squared or Fisher’s exact analysis (*) for assessment of association of frequency between groups and the Mann-Whitney U -Test for compari-
son of means and medians.
LD, lactobacilli-dominant group; LLD, less lactobacilli-dominant group; SID, Shannon index; CST, community state type; SD, standard deviation; BMI, Body Mass Index;
IQR, interquartile range.

gestational age of weeks at enrollment, correlation calculations using Spearman’s rho
were carried out. Results showed that the maternal pre-pregnancy BMI and the relative
abundance of Lactobacillus correlated positively (r = 0.177, P = 0.041) at genus level,
but not with any individual species. Moreover, as the days of passive smoking per
weeks increased, the abundance of Aerococcus also increased (r = 0.309, P = 0.001), but
Lactobacillus decreased (r =−0.204, P = 0.030). No statistically significant correlations
existed between other pairwise variables.

Differential abundance of taxa
LEfSe results distinguished the differential taxa among selected characteristics. The VMB
of women with vaginal inflammation revealed more L. iners, Dialister, Enterococcus, and
Aerococcus, and less L. crispatus. Smoking also affect the composition of VMB: active
smokers have a higher abundance of Megasphaera and Prevotella, while passive smokers
have more Aerococcus. BMI groups and selected pregnancy outcomes did not reveal any
specific bacteria species.

DISCUSSION
Overall, this prospective study revealed the predominance of CST I and III by investigating
the profile of VMB among 113 asymptomatic pregnant Chinese women. Lower pre-
pregnancy BMI andmore passive smoking were correlated with a less lactobacilli-dominant
VMB. No significant findings were associated with pregnancy outcomes.

Earlier studies have reported that the distribution of CSTs was largely affected by race,
and the VMB of Asian women was generally dominated by CST III (Ravel et al., 2011;
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Zhou et al., 2010). Our study found that CST I was predominant among pregnant Chinese
women, followed by CST III. This result, although slightly different, was in line with studies
carried out among Korean and Japanese pregnant women (Kim et al., 2017; Matsumoto et
al., 2018), implying the possibility of a diverse profile of VMB among Asian women due to
genetic variations or other environmental factors such as socioeconomic status. We also
identified a I–III type containing an equal abundance of L. crispatus and L. iners among this
population, which was rarely reported in previous studies. Gajer et al. (2012) once divided
this type into CST IV-A, but both the composition and the diversity (both alpha and beta)
of CST I–III and IV-A were dissimilar. Perhaps the definition of CSTs should be on the
basis of dissimilitude.

Apart from race, the composition of the VMB could be affected by other factors (Fettweis
et al., 2014; Jasarevic et al., 2017). In Wen’s study, BMI was significantly correlated to the
structure of the microbial community and negatively correlated with the presence of
Mycoplasma and BV-associated bacterium-2 (BVAB2) (Wen et al., 2014). Our study noted
a similar finding that women with a lower BMI (particularly <18.5 kg/m2) tended to harbor
CST IV-A and IV-B, which are the less lactobacilli-dominant type of VMB. Moreover, a
positive correlation was observed between BMI and the genus of Lactobacillus. This result
was in accordance with the study by Mirmonsef et al. (2014), that BMI was positively
associated with vaginal glycogen and a higher abundance of lactobacilli. Lower BMI may
have lower concentrations of vaginal glycogen, leading to the lack of lactobacilli.

Smoking is also an important affecting factor. Women who were active smokers were
reported as being prone to having higher proportions of BV-associated bacteria (Brotman
et al., 2014a; Fettweis et al., 2014; Ryckman et al., 2009). A recent study by Nelson et al.
(2018) reported an altered vaginal tract metabolomic profile among smokers, with higher
agmatine, cadaverine, putrescine, tryptamine and tyramine, which were known to affect
the virulence of infective pathogens and contribute to vaginal malodor. Notably, our
study observed a different VMB composition among women who practiced more passive
smoking (>3 days per week) instead of active smoking. Moreover, with the days of passive
smoking per weeks increased, the abundance of Aerococcus (a BV-associated bacterium)
also increased and Lactobacillus decreased. However, the differential taxa detected by LEfSe
were not the same with women who actively smoked, leading to the issue of whether active
and passive smoking had a similar mechanism that affected VMB. To achieve favorable
pregnancy outcomes, pregnant women with either active or passive smoking exposures
should remain under close scrutiny.

Although our study did not perform the clinical examination for bacterial vaginosis (BV)
and aerobe vaginitis (AV), we used the index of ‘‘vaginal cleanliness’’ grades, which is used
routinely as an indicator in Chinese hospitals to suggest the potential inflammation of the
vagina. It is used as a pilot screening for BV and AV because of its low cost. Researchers have
investigated its possible implications for BV and found that higher grades exhibited higher
risks of BV (Lin, Wei & He, 2008). LEfSe results showed the relevance of higher grades with
a greater abundance of Aerococcus, Enterococcus, and Dialister, which are AV/BV associated
bacteria (Donders et al., 2017). Surprisingly, LEfSe results also revealed a higher abundance
of L. iners and a lower abundance of L. crispatus in the higher grades group. This was
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consistent with our previous results that women with higher abundance of L. iners (CST
III/I–III) had a higher proportion of vaginal inflammation, implying the greater risk of
developing vaginal inflammation. Although a small sample size may be subject to some
criticisms, the results still suggested the exclusive identity of L. iners (Petrova et al., 2017).
Compared with other species of Lactobacillus (especially L. crispatus), L. iners possesses a
poorer ability to produce the antibacterial product H2O2 and lactic acid (Kim et al., 2006;
Petrova et al., 2017). Moreover, L. iners may even produce a toxin called Inerolysin similar
to Gardnerella vaginalis (Rampersaud et al., 2018; Rampersaud et al., 2011). Therefore, in
some cases, CST III has been described as a transitional state, sometimes associated with
BV (Verstraelen et al., 2009; Walther-Antonio et al., 2014).

This study also explored the possible association of VMB and pregnancy outcomes.
However, due to the limited sample size and a medium proportion of delivery data
not collected, the results were uncertain. Since a lower BMI and the rate of passive
smoking were also reportedly related to adverse pregnancy outcomes, these two may
act as the modifications between VMB and adverse pregnancy outcomes (Wen et al.,
2014). Moreover, CST III has been reported associated with preterm birth in some studies
(Kindinger et al., 2017; Petricevic et al., 2014), further indicating the specialty of L. iners as
we’ve mentioned previously. However, the proportion of CST III was high among Asian
women, but the incidence rate of preterm birth was not higher than the western countries.
We intend to expand our cohort in future research.

Our study had several limitations. Firstly, our study detected very little G. vaginalis and
no BVAB1, which seemed different form other studies. However, due to the low proportion
ofG. vaginalis vagitypes among pregnant Asian women (3.6% in Korea byKim et al. (2017),
and 2/24 in Japan byMatsumoto et al. (2018)), we have to suppose that our participants in
this study happened to have no vagitype of G. vaginalis. As for BVAB1, we did not really
report it yet, probably due to the primer and reference database selection bias (Van Der Pol
et al., 2019). Further researches may extend the reference database in advance. Moreover,
our study only used a single sampling point, failing to explore the stability of the VMB
throughout the pregnancy. Larger sample sizes and better study design are needed.

CONCLUSIONS
The vaginal flora of asymptomatic pregnant Chinese women was mostly dominated by
L. crispatus and L. iners. A lower BMI and more passive smoking may contribute to a
less lactobacilli-dominant VMB. The investigation of the profile and influencers among
pregnant women provides a basis for a further probe into the association of VMB and
pregnancy outcomes. However, larger sample sizes are needed.
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