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Images differ in their memorability in consistent ways across observers. What makes an
image memorable is not fully understood to date. Most of the current insight is in terms of
high-level semantic aspects, related to the content. However, research still shows
consistent differences within semantic categories, suggesting a role for factors at other
levels of processing in the visual hierarchy. To aid investigations into this role as well as
contributions to the understanding of image memorability more generally, we present
MemCat. MemCat is a category-based image set, consisting of 10K images representing
five broader, memorability-relevant categories (animal, food, landscape, sports, and
vehicle) and further divided into subcategories (e.g., bear). They were sampled from
existing source image sets that offer bounding box annotations or more detailed
segmentation masks. We collected memorability scores for all 10K images, each score
based on the responses of on average 99 participants in a repeat-detection memory task.
Replicating previous research, the collected memorability scores show high levels of
consistency across observers. Currently, MemCat is the second largest memorability image
set and the largest offering a category-based structure. MemCat can be used to study the
factors underlying the variability in image memorability, including the variability within
semantic categories. In addition, it offers a new benchmark dataset for the automatic
prediction of memorability scores (e.g., with convolutional neural networks). Finally,
MemCat allows the study of neural and behavioral correlates of memorability while
controlling for semantic category.
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13 Abstract

14 Images differ in their memorability in consistent ways across observers. What makes an image 

15 memorable is not fully understood to date. Most of the current insight is in terms of high-level 

16 semantic aspects, related to the content. However, research still shows consistent differences 

17 within semantic categories, suggesting a role for factors at other levels of processing in the visual 

18 hierarchy. To aid investigations into this role as well as contributions to the understanding of 

19 image memorability more generally, we present MemCat. MemCat is a category-based image 

20 set, consisting of 10,000 images representing five broader, memorability-relevant categories 

21 (animal, food, landscape, sports, and vehicle) and further divided into subcategories (e.g., bear). 

22 They were sampled from existing source image sets that offer bounding box annotations or more 

23 detailed segmentation masks. We collected memorability scores for all 10,000 images, each 

24 score based on the responses of on average 99 participants in a repeat-detection memory task. 

25 Replicating previous research, the collected memorability scores show high levels of consistency 

26 across observers. Currently, MemCat is the second largest memorability image set and the 

27 largest offering a category-based structure. MemCat can be used to study the factors underlying 

28 the variability in image memorability, including the variability within semantic categories. In 

29 addition, it offers a new benchmark dataset for the automatic prediction of memorability scores 

30 (e.g., with convolutional neural networks). Finally, MemCat allows the study of neural and 

31 behavioral correlates of memorability while controlling for semantic category.
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32 Introduction

33 A large body of work within the visual memory field has been devoted to questions about its 

34 capacity and fidelity (for a review, see Brady, Konkle, & Alvarez, 2011). Often, these studies 

35 make abstraction of the to-be-remembered stimuli and potential differences between them. Yet, 

36 work by Isola, Xiao, Parikh, Torralba, and Oliva (2014), using everyday images, showed that 

37 they do not all share the same baseline likelihood of being remembered and recognized later. 

38 Instead, images differ in “memorability” in ways that are consistent across participants and this 

39 can be measured reliably (Isola et al., 2014). 

40 To assess memorability, Isola et al. (2014) used a repeat-detection memory task, in which 

41 participants watch a sequence of images and respond whenever they see a repeat of a previously 

42 shown image. The researchers assigned a memorability score to 2222 scene images based on the 

43 proportion of participants recognizing the image upon its repeat. They found that memorability 

44 rank scores were highly consistent across participants. In other words, there was a lot of 

45 agreement as to which images were remembered and recognized, and which ones were easily 

46 forgotten. This suggests that memorability can indeed be considered an intrinsic image property 

47 and that whether you will remember a certain image does not only depend on you as an 

48 individual, but also on the image itself. The result has furthermore been replicated with a more 

49 traditional long-term visual memory task, with a separate study and test phase (Goetschalckx, 

50 Moors, & Wagemans, 2018). Moreover, image memorability rankings have been shown to be 

51 stable across time (Goetschalckx, Moors, & Wagemans, 2018; Isola et al., 2014), across contexts 

52 (Bylinskii, Isola, Bainbridge, Torralba, & Oliva, 2015), and across encoding types (intentional 

53 versus incidental; Goetschalckx, Moors, & Wagemans, 2019). Finally, while they might be 

54 related to some extent, image memorability does not simply boil down to popularity (Khosla, 

55 Raju, Torralba, & Oliva, 2015), aesthetics (Isola et al., 2014; Khosla et al., 2015), interestingness 

56 (Gygli, Grabner, Riemenschneider, Nater, & Van Gool, 2013; Isola et al., 2014), or the ability of 

57 an image to capture attention (Bainbridge, 2017).

58 The findings spurred new research aimed at understanding and predicting memorability. When it 

59 comes to merely predicting the memorability score of an image, the best results so far are 

60 achieved using convolutional neural networks (CNNs; e.g., Khosla et al., 2015). When it comes 

61 to truly understanding, on the other hand, CNNs have often been critiqued to be black boxes 

62 (however, see Benitez, Castro, and Requena, 1997 for counterarguments). It is not always clear 
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63 to us humans why a CNN predicts a certain score for one image and not another. Nonetheless, 

64 Khosla et al.'s (2015) analyses provided some further insight, mostly pointing at differences 

65 between broader image categories and content types. For example, units in the network 

66 displaying the highest correlation with memorability seemed to respond mostly to humans, faces, 

67 and objects, while those with the lowest correlation seemed to respond to landscapes and open 

68 scenes. Furthermore, the most memorable regions of an image, according to the CNN, often 

69 capture people, animals or text. These findings are in line with earlier work, which also 

70 predominantly revealed high-level semantic attributes. Isola et al. (2014), for example, showed 

71 that the predictive performance of a model trained on mere object statistics (e.g., number of 

72 objects) was boosted considerably when the object labels were taken into account. In addition, a 

73 model trained on the overall scene labels alone, already predicted memorability scores with a 

74 Spearman’s rank correlation of .37 to the ground truth. Memorable images often had labels 

75 referring to people, interiors, foregrounds, and human-scaled objects, while labels referring to 

76 exteriors, wide-angle vistas, backgrounds, and natural scenes were associated with low image 

77 memorability scores.

78 Together, these findings suggest that a fair share of the variability in memorability resides in 

79 differences between semantic categories. Perhaps this is not surprising considering the central 

80 position occupied by categories in the broader cognitive system. It has been said that carving up 

81 the world around us into meaningful categories of stimuli that can be considered equivalent is a 

82 core function of all organisms (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). It helps 

83 us understand novel events and make predictions about it (Medin & Coley, 1998). According to 

84 Rosch et al. (1976), categories are represented hierarchically and organized into a taxonomy of 

85 different levels of abstraction. The basic level is the best compromise between providing enough 

86 information and being cognitively inexpensive. It is also the preferred naming level (e.g., “cat”). 

87 Other levels can be superordinate (e.g., “feline” or “mammal”) or subordinate (e.g., “tabby”). 

88 Recently, Akagunduz, Bors, and Evans (2019) pointed out that categories are also used to 

89 organize memory. More specifically, instead of encoding an image as a mere collection of pixels, 

90 we extract visual memory schemas associated with its category (i.e., key regions and objects and 

91 their interrelations), along with an image’s idiosyncrasies. To map these visual memory schemas, 

92 they had participants indicate which image regions made them recognize the image. The 

93 resulting maps showed high consistency across participants, suggesting that visual memory 

PeerJ reviewing PDF | (2019:06:38849:1:1:REVIEW 14 Oct 2019)

Manuscript to be reviewed



94 schemas partly determine what participants find memorable. Moreover, humans can visually 

95 categorize an object depicted in an image very rapidly and accurately (e.g., Bacon-Macé, Macé, 

96 Fabre-Thorpe, & Thorpe, 2005; Fei-Fei, Iyer, Koch, & Perona, 2007; Greene & Oliva, 2009), as 

97 well as categorize the image at the level of the whole scene (e.g., Delorme, Richard, & Fabre-

98 Thorpe, 2000; VanRullen & Thorpe, 2001; Xu, Kankanhalli, & Zhao, 2019). Often a single 

99 glance suffices. Interestingly, Broers, Potter, and Nieuwenstein (2018) observed enhanced 

100 recognition performance for memorable versus non-memorable images in an ultra-rapid serial 

101 visual presentation task. Finally, there is also evidence for a category hierarchy in the 

102 representations in high-level human visual cortex, with for example clusters for animacy and 

103 subclusters for faces and body parts (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, 

104 Pantazis, & Oliva, 2014; Kriegeskorte et al., 2008).

105 While semantic categories (or labels) seem to play a large role in image memorability, they do 

106 not explain all the observed variability. Interestingly, consistent differences in memorability 

107 scores remain even within image categories (Bylinskii et al., 2015). Goetschalckx, Moors, 

108 Vanmarcke, and Wagemans (2019) for example, have argued that part of that variability might 

109 be due to differences in how well the image is organized. Nonetheless, the concept of 

110 memorability and its correlates is not yet fully understood to date and further research is required 

111 to paint a clearer picture. The current work presents a novel, category-based dataset of images 

112 quantified on memorability, designed for research to achieve this goal (example images in Figure 

113 1). 

114 To the best of our knowledge, there were previously five large image sets with memorability 

115 scores, three consisting of regular photographs, which is also the focus here: Isola et al. (2014), 

116 FIGRIM (Bylinskii et al., 2015), and LaMem (Khosla et al., 2015), and two more specialized 

117 sets, which we will not further discuss here: Bainbridge, Isola, and Oliva (2013; face images), 

118 and Borkin et al. (2013; data visualizations). For completeness, we also mention a smaller set 

119 (850 images) that was used to study which objects in an image are memorable (Dubey, Peterson, 

120 Khosla, Yang, & Ghanem, 2015). Table 1 compares MemCat to the other large datasets. The 

121 comparison is discussed in more detail below.

122 A first feature of the current dataset is its hierarchical category structure. It was designed to be 

123 representative for five different broad natural categories and to allow the study of memorability 

124 differences within semantic categories. The set is characterized by a hierarchy of five broader 
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125 categories, further divided into more fine-grained subcategories. Only the FIGRIM set also offers 

126 a category structure, but the number of exemplar images per category was lower: 59-157, 

127 compared to 2000 in the current set. We opted for broad categories to ensure that the whole was 

128 still varied and representative enough, while containing a large number of exemplar images per 

129 category at the same time. Moreover, our final choice of categories: animal, food, landscape, 

130 sports, and vehicle, was motivated by their relevance for memorability, meaning that they (or 

131 related categories) have been observed to differ in their overall memorability in previous 

132 research (Isola, Xiao, Parikh, Torralba, & Oliva, 2011; Isola et al., 2014; Aditya Khosla, Raju, 

133 Torralba, & Oliva, 2015). For example, knowing that the presence of people in an image is 

134 predictive for memorability (see above), we chose one category of images depicting  people as 

135 the main subject and avoided including images with people in other categories. For this one 

136 category, we chose “sports”, because “people” in itself constitutes a category that was too broad 

137 in comparison to the other categories and did not lend itself well for a division into 

138 subcategories. Furthermore, we included an animal category as a non-human animate category, 

139 food and vehicle as more object-based categories, and landscape to represent the wide exteriors 

140 that are often associated with lower memorability scores (Isola et al., 2011, 2014; Khosla et al., 

141 2015).

142 Second, we aimed for a large set, such that it would be suitable for machine learning approaches. 

143 With a total of 10,000 images quantified on memorability, the current set is the second largest 

144 memorability dataset, after LaMem.

145 Third, we sampled images from existing datasets, such that the image annotations collected there 

146 would also be available for researchers studying memorability. In particular, we searched for 

147 images annotated with segmentation masks or at least bounding boxes, reasoning that they may 

148 hold some indications of how the image is organized (e.g., where is the subject located), which 

149 might be of particular interest when studying memorability within categories and factors other 

150 than semantics.

151 In summary, the unique combination of features of MemCat, together with its richness in data, 

152 make it a valuable addition to the memorability. Among the possible uses by memorability 

153 researchers are the study of what makes an image memorable beyond its category, a benchmark 

154 for machine learning approaches, and a semantically controlled stimulus set for psychophysical 

155 or neuroscientific studies about the correlates of memorability (elaborated in the Discussion 
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156 section). However, given that categorization is a core function of the human mind, MemCat 

157 would also appeal to a much broader range of cognitive (neuro)scientists.  

158 Materials & Methods

159 Participants. There were 249 undergraduate psychology students (KU Leuven) who participated 

160 in this study in exchange for course credits (216 female, 32 male, 1 other). Four students did not 

161 disclose their age and the remainder were aged between 18 and 27 years old (M = 19.24, SD= 

162 0.94). The majority of the participants, however, were recruited through Amazon’s Mechanical 

163 Turk (AMT) and received a monetary compensation (see further for details). The settings on 

164 AMT were chosen such that only workers who indicated to be at least 18 years old and living in 

165 the USA could participate. Further eligibility criteria were that the worker had to have an 

166 approval rate of at least 95% on previous human intelligence tasks (HITs) and a total number of 

167 previously approved HITs of at least 100. A total of 2162 AMT-workers participated in this 

168 study (1139 female, 917 male, 4 other, and 102 who did not disclose this information). For the 

169 1851 workers who disclosed their age, the reported ages  ranged between 18 and 82 years old (M 

170 = 37.14, SD = 11.89). The AMT data collection took place from April 2018 till July 2018. Data 

171 collected through AMT has been shown to come from participant samples that are more diverse 

172 than student samples and  to be comparable in quality and reliability to those collected in the lab 

173 (e.g., Buhrmester, Kwang, & Gosling, 2011).

174 Materials. MemCat consists of 10,000 images sampled from four previously existing image sets: 

175 ImageNet (Deng et al., 2009), COCO (Lin et al., 2014), SUN (Xiao, Hays, Ehinger, Oliva, & 

176 Torralba, 2010), and The Open Images Dataset V4 (Kuznetsova et al., 2018). The four source 

177 sets were chosen because of their large size (i.e., number of images), the availability of semantic 

178 annotations, and the availability of bounding box annotations or more complete segmentation 

179 masks for at least a subset of their images. The images selected from the source sets to be 

180 included in MemCat belonged to the five broader semantic categories outlined in the 

181 Introduction: animal (2000 images), food (2000 images), landscape (2000 images), sports (2000 

182 images), and vehicle (2000 images). We explain the different steps in the selection procedure in 

183 more detail below. 

184 As a first step, we listed at least 20 subcategories for each broader category. The goal was to 

185 obtain 2000 images per category, without including more than 100 exemplar images per 
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186 subcategory. This was to ensure a reasonable level of variability and to avoid high levels of false 

187 alarms in the memory task (see further). The subcategories were then translated to semantic 

188 annotations from the source dataset. For example, for the subcategory “bear” (animal), we used 

189 COCO images annotated with a “bear” tag and ImageNet images from nodes “American black 

190 bear”. “brown bear”, and “grizzly”. An overview of our hierarchy of categories and 

191 subcategories, can be found in Figure 2. 

192 The second step consisted of automatically sampling exemplar images from the listed 

193 subcategories, while satisfying a number of shape restrictions. To avoid that images would stand 

194 out because of an extreme aspect ratio, we only sampled images with aspect ratios between 1:2 

195 and 2:1. Furthermore, the minimum resolution was set to 62,500 pixels. Finally, to ensure that 

196 the images would fit comfortably on most computer monitors, we adopted a maximum height of 

197 500 pixels and a maximum width of 800 pixels. However, for SUN and The Open Images 

198 Dataset, only a low number of images satisfied the latter two restrictions (they were often too 

199 big), which is why we opted to resize (using Hamming interpolation) images from those two 

200 source datasets to meet the restrictions. Apart from the shape restriction, we also restricted the 

201 sampling to images for which bounding box annotations or more complete segmentation masks 

202 were available from the source datasets. Finally, we sampled more images than the target number 

203 (2000 images per broad category), anticipating exclusions in the next step.

204 The third step constituted manual selection work, carried out by the first author, assisted by two 

205 student-interns. We manually went through the exemplar images sampled in the previous step, 

206 and eliminated images following a number of exclusion rules. The exclusion rules can roughly 

207 be divided into two kinds. A first kind of exclusion rule touches upon the quality of the image. 

208 We excluded images of poor image quality (e.g., very dark, very much overexposed, blurry, 

209 etc.), images that did not convincingly belong to the subcategory they were assigned to,1 images 

210 in greyscale or looking like they were the result of another color filter, images that were not real 

211 photographs (e.g., drawings, digitally manipulated images, computer generated images), and 

212 collages. A second set of rules concerns factors that could affect the memorability of an image, 

213 but were not of interest for the purpose of MemCat. One such factor is text. We excluded images 

214 containing large, readable text or text not belonging to the image itself (e.g., date of capture). 

215 Another factor was the presence of people in the image. There was one designated “people” 

216 category, the sports category, meaning that every included exemplar image depicted one or more 
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217 people practicing sports. However, the presence of people was avoided in all other categories 

218 (but we allowed anonymous people in the background in the vehicle category or the presence of 

219 a hand in images of the food category). Furthermore, images depicting remarkably odd scenes 

220 (e.g., dog wearing Santa Clause costume) were also excluded. Similarly, we avoided images 

221 depicting famous places or people (e.g., Roger Federer or Cristiano Ronaldo in the sports 

222 category), and images of dead, wounded or fighting animals. In addition to these exclusion rules, 

223 we also tried, to the best of our ability, not to include (near) duplicate images. If the target 

224 number of images was not obtained after Step 3, we reverted back to Step 2, if there were still 

225 images to sample from, or to Step 1 if we needed to include additional subcategories.

226 Finally, for those categories for which more than the target number of images survived Step 3, 

227 there was a fourth step to randomly down-sample the selection to the target number, assigning 

228 higher sampling probabilities to images annotated with segmentation masks.

229 In addition to MemCat, we collected 10,000 filler images, that were not quantified on 

230 memorability themselves, but were needed in the memory task used to quantify the other images. 

231 The filler images were sampled randomly from The Open Images Dataset, but from a different 

232 subset to avoid overlap.2 As these images would function only as filler images, there were fewer 

233 restrictions. For example, the images could be of any category, they were allowed to contain text, 

234 etc. However, the same shape restrictions were still applied.

235 Procedure. Having carefully collected 10,000 images for MemCat, the next step was to quantify 

236 them on memorability. Following previous work, this was achieved by presenting the images in 

237 an online repeat-detection memory game (Isola et al., 2014; Khosla et al., 2015), in which 

238 participants watch a sequence of images and are asked to respond when they recognize a repeat 

239 of a previously shown image. Students participating for course credits played the game in the 

240 university’s computer labs, hosting about 20 students at a time. AMT workers played the game 

241 from the comfort of their homes (or whichever location they preferred). Prior to starting the 

242 game, all participants were prompted to read through an informed consent page explaining the 

243 aims of the study and their rights as participants. They could give their consent by actively 

244 ticking a box. The study was approved by SMEC, the Ethical Committee of the Division of 

245 Humanities and Social Sciences, KU Leuven, Belgium (approval number: G-2015 08 298).

246 For the task design of the game, we closely followed Khosla et al. (2015), as their version of the 

247 game was designed to quantify large numbers of images. We divided the game into blocks of 
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248 200 trials. On each trial, an image was presented at the center of the browser window for a 

249 duration of 600 ms, with an intertrial interval of 800 ms. During this interval, a fixation cross 

250 was shown. Sixty-six images were target images, sampled randomly from MemCat, and repeated 

251 after 19 to 149 intervening images. Forty-four images were random filler images that were never 

252 repeated. Finally, there were 12 additional random filler images that were repeated after 0 to 6 

253 intervening images to keep participants attentive and motivated. They are referred to as vigilance 

254 trials. Participants could indicate that they recognized a repeat by pressing the space-bar. They 

255 did not receive trial-by-trial feedback, but were shown their hit rate as well as number of false 

256 alarms at the end of the block. Figure 3 presents a schematic of the game.

257 Each block lasted a little less than 5 min. Care was taken to ensure that an image was never 

258 repeated more than once and never across blocks. Students were asked to complete as many 

259 blocks as they could in one hour, with one bigger, collective break of roughly 10 min after half 

260 an hour, and smaller self-timed breaks between the remainder of the blocks. Most students could 

261 complete eight blocks, but for some groups, slow data uploads at the end of a block resulted in 

262 lower numbers. AMT workers could complete one to 16 blocks, were allotted 48h to submit their 

263 completed blocks (so, they were allowed to spread the blocks over time), and were paid $0.40 

264 per block. To ensure a good quality of the AMT data and to avoid random or disingenuous 

265 responses, AMT workers were blocked from playing anymore blocks after two with a d' lower 

266 than 1.5 on the vigilance trials. They were warned the first time this happened.

267 Memorability Measures. We computed two different, but related measures of memorability 

268 from the data collected through the repeat-detection memory game. These were the same two 

269 measures as used in LaMem, the largest available image memorability dataset yet. As mentioned 

270 in the Introduction, one measure is simply the proportion of participants recognizing the image 

271 when shown to them for the second time (i.e., the hit rate across participants). This is the 

272 “original” memorability measure, as introduced by Isola et al. (2014), also adopted in many other 

273 memorability studies (e.g., Bainbridge, Isola, & Oliva, 2013; Bylinskii, Isola, Bainbridge, 

274 Torralba, & Oliva, 2015; Khosla, Raju, Torralba, & Oliva, 2015). The other memorability 

275 measure computed for the LaMem images  was based on the same principle, but penalized for 

276 false alarms (i.e., when participants press the space-bar for the first presentation of the image) in 

277 the way proposed by Khosla, Bainbridge, Torralba, and Oliva (2013), who applied it to a dataset 

278 of face images (Bainbridge et al., 2013). Rather than H/Nresp (first measure), their formula was 
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279 the following: (H-F)/Nresp, where H is the number of participants recognizing the image, F is the 

280 number of participants making a false alarm when the image is presented for the first time, and 

281 Nresp is the total number of participants having been presented with the image. Here, an image’s 

282 Nresp was 99 (after exclusions) on average. Note that the memorability scores have an upper 

283 bound of 1 and a lower bound of 0. In theory, (H-F)/Nresp could result in a negative score, but in 

284 practice it is highly unlikely that there would be more participants making a false alarm for the 

285 image than there are participants making a hit.

286 Results

287 Participant Performance. As mentioned, the performance on the easier vigilance trials was 

288 taken as an indication of whether participants were playing the memory game in a genuine way. 

289 If in a certain block, a participant did not distinguish vigilance repeats from non-repeat trials with 

290 a d' of at least 1.5 (preset performance threshold), that block was excluded from further analyses. 

291 The exclusion rate amounted to 3% of all played blocks. Recall, however, that AMT workers 

292 were not allowed to play more blocks after two excluded ones. 

293 After exclusion, the mean d' across participants was 2.77 (SD = 0.56) for the vigilance repeats, 

294 and 2.47 (SD = 0.50) for the target repeats. Table 2 summarizes participants’ overall 

295 performance, collapsing over vigilance and target repeats. Participants generally performed well 

296 on the task.

297 Memorability Scores. Participants’ high performance was also reflected in the average image 

298 memorability scores. Figure 4 displays the mean for each of the two memorability measures as a 

299 horizontal line (MH/Nresp
 = .76, SD; M(H-F)/Nresp

 = .70). It is comparable to the mean observed in 

300 Khosla et al. (2015). In addition, Figure 4 visualizes the distribution of the collected image 

301 memorability scores for each of the five broad main categories separately. A simple linear 

302 regression revealed that the category explains 43% of the variance in the H/Nresp scores and 44% 

303 of the variance in the (H-F)/Nresp. In line with previous research, the landscape images were on 

304 average the least memorable (MH/Nresp
 = .60; M(H-F)/Nresp

 = .53). They were followed by the vehicle 

305 images (MH/Nresp
 = .76; M(H-F)/Nresp

 = .70). Somewhat surprisingly, the food images generally came 

306 out on top of the ranking (MH/Nresp
 = .85; M(H-F)/Nresp

 = .80), topping the animal MH/Nresp
 = .80; M(H-

307 F)/Nresp
 = .73) and sports MH/Nresp

 = .78; M(H-F)/Nresp
 = .71) categories. However, there is still a large 

308 degree of variability that is not explained by differences in broad image categories. Indeed, 
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309 memorability varied considerably within categories as well, with SDs of: .09 (animal; SD(H-

310 F)/Nresp
 = .09), .08 (food; SD(H-F)/Nresp

 = .08), .13 (landscape; SD(H-F)/Nresp
 = .14), .09 (sports; SD(H-

311 F)/Nresp
 = .10), and .09 (vehicle; SD(H-F)/Nresp

 = .09).

312 Having observed that images from the same broader category indeed still differed in 

313 memorability, the next question was whether these differences are consistent across participants. 

314 This question taps into the reliability of the memorability measures. Following previous 

315 memorability work (e.g., Isola et al., 2014), the consistency was assessed by randomly splitting 

316 the participant pool in half, computing the memorability scores for each half separately and 

317 determining the Spearman’s rank correlation between the two sets of scores. This was repeated 

318 for 1000 splits and the Spearman’s rank correlation was averaged across the splits. Figure 5 

319 shows the results in function of the mean Nresp for each category as well as for the total image set. 

320 We first discuss the results for H/ Nresp (see Figure 5, left panel).  When collapsing over all five 

321 categories, the observed mean split-half Spearman’s rank correlation with all available responses 

322 (Nresp = 99, on average) amounted to .78. In comparison, Khosla et al. (2015) reported a mean 

323 split-half Spearman’s rank correlation of .67 for their LaMem dataset. However, they only 

324 collected 80 responses per image. After randomly down-sampling our data to an Nresp of 80, we 

325 still found a split-half consistency of .73. With the exception of the landscape category, for 

326 which we observed a total (i.e., without down-sampling) split-half consistency of .77, the total 

327 per category split-half consistency estimates were lower, ranging between .59 and .67. This is 

328 possibly due to smaller ranges of memorability scores within those categories (see Figure 4). 

329 Note, however, that the split-half consistencies are an underestimate of the reliability of the 

330 memorability scores calculated based on the full participant pool. The latter can be estimated 

331 from the split-half consistency by means of the Spearman-Brown formula (Brown, 1910; 

332 Spearman, 1910). Applying this formula, we found the following final reliabilities for the H/Nresp 

333 memorability scores : .87 (all), .80 (animal), .75 (food), .87 (landscape), .75 (sports), .78 

334 (vehicle).

335 For the (H-F)/Nresp memorability scores, we confine the discussion to pointing out that the pattern 

336 of results is qualitatively similar, although the final reliabilities are somewhat lower: .86 (all), .74 

337 (animal), .71 (food), .85 (landscape), .77 (sports), .71 (vehicle).

338 Finally, after finding that the two image memorability measures were both acceptably reliable, 

339 we asked how they compared to each other. In the current dataset, they were highly 
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340 intercorrelated, as evidenced by a Pearson correlation of .93 when collapsing over all five 

341 categories. The per category correlations were: .82 (animal), .90 (food), .91 (landscape), .85 

342 (sports), .88 (vehicle).

343 Discussion

344 We presented a new dataset, MemCat, consisting of a total of 10,000 images, each quantified on 

345 memorability using a repeat-detection memory task (first introduced by Isola et al., 2014, version 

346 used here based on Khosla et al., 2015). MemCat is the second largest image memorability 

347 dataset available, and the largest that is based on a category structure. That is, it is divided into 

348 five broader, memorability-relevant semantic categories: animal, food, landscape, sports, and 

349 vehicle, each with 2000 exemplar images, which are further divided into subcategories (e.g., 

350 bear, cat, cow). Furthermore, the images were sampled from popular, existing datasets such that 

351 additional annotations available there (e.g., segmentations masks or bounding boxes) would also 

352 be available to researchers wishing to use MemCat for research aimed at investigating specific 

353 factors underlying memorability.

354 Replicating previous research, we found that images differ considerably in memorability and that 

355 these differences are highly consistent across participants. Part but not all of this variability can 

356 be explained by differences between the five broader semantic categories. Note, however, that 

357 this result is correlational in nature, and that one should be cautious drawing causal conclusions. 

358 In line with Bylinskii et al. (2015), considerable variability in memorability remained even 

359 within the categories. However, the consistency there was somewhat lower, probably because the 

360 variance was also lower. When the differences between images become smaller, it becomes 

361 harder to reliably and consistently distinguish them. Nevertheless, the consistency estimates per 

362 category were still high, indicating that we obtained reliable memorability scores. Finally, we 

363 reported results for two different methods to compute memorability scores. One is to compute 

364 the hit rate across participants: H/Nresp. This was the method used in the original work by Isola et 

365 al. (2014). However, in principle, it possible that some images elicit more key presses not 

366 because they are truly recognized, but for some other reason (e.g., they seem familiar). That is 

367 why Bainbridge et al. (2013) suggested to correct for false alarms (i.e., when participants press 

368 the key for the first presentation of an image, when it is not a repeat) by computing (H-F)/Nresp. 

369 We report both measures for comparison, but note that they lead to a highly similar pattern of 
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370 results and are also strongly intercorrelated. In what follows, we discuss possible uses of 

371 MemCat. 

372 Most of what we learned from previous studies about what makes an image memorable is 

373 specified in terms of semantic categories or content types (e.g., images of people are more 

374 memorable than landscapes). However, a considerable amount of variability was still left 

375 unexplained. A primary use of the current dataset is in studies aiming to better understand the 

376 factors underlying image memorability. In particular, with 2000 images for each of five broader 

377 categories, it allows to zoom in on variability within categories. This variability is of more 

378 interest to practical applications (e.g., advertising, education), because the semantic category or 

379 the content type (e.g., a certain product) will often be predefined and it will be a matter of 

380 choosing or creating a more memorable depiction of it. In addition to dividing the set into broad 

381 semantic categories, we also avoided variability due to other factors already discovered in 

382 previous studies (e.g., we excluded images depicting oddities, images containing text or 

383 recognizable places or faces), thus creating a set designed to help understand the previously 

384 unexplained variability in image memorability.

385 Second, MemCat is also useful as a benchmark for machine learning approaches to automatically 

386 predict memorability. Currently, LaMem (Khosla et al., 2015) is most often used, but models can 

387 now also be trained and tested on the current dataset. When taking Khosla et al.'s (2015) 

388 MemNet-CNN (without retraining), we found that its predictions show a rank correlation of .68 

389 with the (H-F)/Nresp memorability scores in the current set, suggesting that there is room for 

390 improvement. Given the category structure in MemCat, one could explore, for the first time, 

391 memorability models with one or more layers that are specific to a category. Indeed, it is possible 

392 that what makes landscape images memorable is different from what makes animal images 

393 memorable.

394 Finally, a third possible use is in neuroscientific studies or psychophysical studies examining 

395 effects of memorability. The current set offers a large number of quantified images to choose 

396 from. Moreover, it facilitates matching memorability conditions (e.g., high versus low) on 

397 semantic category, something that is often done in neuroscientific studies (e.g., Bainbridge, 

398 Dilks, & Oliva, 2017; Khaligh-Razavi, Bainbridge, Pantazis, & Oliva, 2016; Mohsenzadeh, 

399 Mullin, Oliva, & Pantazis, 2019). 
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400 Usage. On the MemCat project page, http://gestaltrevision.be/projects/memcat/, we provide a 

401 link to the collection of 10,000 images as well as links to two data files, all hosted on OSF (also 

402 see Additional Information). One file describes the images that were used and contains columns 

403 indicating the image filename in its source dataset, the name of its source dataset, the category 

404 (e.g., animal) and subcategory (e.g., bear) we assigned it to, the label that was used to sample it 

405 from its source dataset (e.g., American black bear), the current width, the current height, the 

406 factor by which it was resized (both the original width and height were multiplied by this factor), 

407 the number of hits (H), the number of false alarms (FA), the number of participants it was 

408 presented to (Nresp), and the two memorability scores. The other file contains the data collected in 

409 the repeat-detection memory game. Its columns indicate the participant ID (anonymized), the 

410 participant’s age, the participant’s gender, whether or not they participated through AMT, the 

411 block number, the trial number, the image shown, the trial type (target, target repeat, filler, 

412 vigilance, vigilance repeat), the participant’s response (hit, correct rejection, miss, false alarm), 

413 the screen width, and the screen height.

414 Conclusions

415 With MemCat, we present a large new dataset of 10,000 images fully annotated with ground 

416 truth memorability scores collected through an online repeat-detection memory task. It is the 

417 second largest memorability dataset to date and the largest with a hierarchical category structure. 

418 The results showed that images differ in memorability in ways that are consistent across 

419 participants, even within semantic categories. Among other things, MemCat allows the study of 

420 which factors might underlie such differences. Its richness in data and unique combination of 

421 features will appeal to a broad range of researchers in cognitive science and beyond (e.g., 

422 computer vision).

423  
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429 Endnotes

430 1 This could happen, for example, with images from the COCO source dataset. COCO images do 

431 not come with a single, overall scene label, but instead come with multiple semantic tags 

432 describing what is in the image. For this reason, an image annotated with the tag “cat,” for 

433 instance, could be more of a living room image that just happens to have a cat sleeping 

434 somewhere in a corner in the background.

435 2 The source set is presented in three different subsets: train, validation, and test. We sampled 

436 from the validation and test subsets for MemCat, and from the train subset for the fillers images 

437 used in the memory task.
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Figure 1
Example images of MemCat.

The memorability score, calculated as the hit rate across participants (H/Nresp) is indicated

in the bottom right corner. In line with previous research, images differed consistently in their

memorability score, even within semantic categories. MemCat represents five broader

semantic categories: animal, food, landscape, sports and vehicle. Each row (A–C) displays

exemplar images in that category order.
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Figure 2
Category hierarchy of MemCat.
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Figure 3
Schematic of our implementation of the repeat-detection memory game first introduced
by Isola et al. (2014).

Each image is presented for 600 ms, with an intertrial interval of 800 ms. Participants are
instructed to press the space-bar whenever they recognize a repeat of a previously shown
image.
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Figure 4
Distribution of the collected memorability measures.

Panel A represents memorability scores computed as the hit rate across participants. Panel B
represents scores corrected for false alarms. The horizontal lines indicate the global mean
memorability scores. The asterisks represent the mean per category. Each category contains
2000 quantified images. In addition to overall differences across categories, we observed
considerable variability in memorability within categories too.
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Figure 5
Split-half consistency across participants in function of Nresp.

Estimates are based on 1000 random splits. Nresp corresponds to the total number of data

points for an image, not to the number that goes into one half during the split-half procedure.
The dashed line represents predicted consistencies based on the Spearman-Brown formula
(Brown, 1910; Spearman, 1910) applied to the observed consistency when Nresp is the

maximum number of available data points. Even though the consistency was lower when
zooming in on a single category compared to the whole set at once (possibly due to a smaller
range of scores), images still showed highly consistent differences in memorability within
categories.
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Table 1(on next page)

Comparison MemCat to other memorability datasets.
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 Isola et al. 

(2014)

FIGRIM LaMem MemCat

Category-based no yes no yes

Number of quantified images 2222 1754 ~60K 10K

Bounding boxes or segmentation data yes yes no yes

1
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Table 2(on next page)

Recognition memory performance.

The table presents descriptive statistics across participants (n = 2291) for five Signal
Detection Theory measures. See Macmillan and Creelman (2005) for an explanation of these
measures.
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 d’ β Hit rate

False

alarm rate

Prop. 

correct

Mean 2.50 4.43 .76 .05 .87

Median 2.48 3.00 .79 .04 .88

SD 0.49 5.48 .14 .04 .05

Min 0.69 0.09 .03 .00 .60

Max 4.46 98.26 1.00 .49 .98

1
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