
Molecular phylogeny of mulberries
reconstructed from ITS and two cpDNA
sequences
Yahui Xuan, Yue Wu, Peng Li, Ruiling Liu, Yiwei Luo, Jianglian Yuan,
Zhonghuai Xiang and Ningjia He

State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China

ABSTRACT
Background: Species in the genus Morus (Moraceae) are deciduous woody plants of
great economic importance. The classification and phylogenetic relationships of
Morus, especially the abundant mulberry resources in China, is still undetermined.
Internal transcribed spacer (ITS) regions are among the most widely used
molecular markers in phylogenetic analyses of angiosperms. However, according
to the previous phylogenetic analyses of ITS sequences, most of the mulberry
accessions collected in China were grouped into the largest clade lacking for
phylogenetic resolution. Compared with functional ITS sequences, ITS
pseudogenes show higher sequence diversity, so they can provide useful phylogenetic
information.
Methods: We sequenced the ITS regions and the chloroplast DNA regions
TrnL-TrnF and TrnT-TrnL from 33 mulberry accessions, and performed
phylogenetic analyses to explore the evolution of mulberry.
Results: We found ITS pseudogenes in 11 mulberry accessions. In the phylogenetic
tree constructed from ITS sequences, clade B was separated into short-type sequence
clades (clades 1 and 2), and a long-type sequence clade (clade 3). Pseudogene
sequences were separately clustered into two pseudogroups, designated as
pseudogroup 1 and pseudogroup 2. The phylogenetic tree generated from cpDNA
sequences also separated clade B into two clades.
Conclusions: Two species were separated in clade B. The existence of three
connection patterns and incongruent distribution patterns between the phylogenetic
trees generated from cpDNA and ITS sequences suggested that the ITS pseudogene
sequences connect with genetic information from the female progenitor.
Hybridization has played important roles in the evolution of mulberry, resulting in
low resolution of the phylogenetic analysis based on ITS sequences. An evolutionary
pattern illustrating the evolution history of mulberry is proposed. These findings
have significance for the conservation of local mulberry resources. Polyploidy,
hybridization, and concerted evolution have all played the roles in the evolution of
ITS sequences in mulberry. This study will expand our understanding of mulberry
evolution.
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INTRODUCTION
Mulberries (Morus spp.), in the family Moraceae (order Rosales), are deciduous woody
plants of great economic importance. The leaves of mulberry are the main food for
silkworms (Sánchez, 2002). The fruit of Morus species also has nutritional and medicinal
value (Chen et al., 2016b; Priya, 2012). Mulberry is believed to have originated in the
Himalayan foothills and spread across the Eurasian, American, and African continents
(Nepal & Ferguson, 2012; Vijayan, Srivastava & Awasthi, 2004). In 1753, Linnaeus
assigned seven species in the genusMorus based on the color of aggregate fruits, leaf shape,
and the presence of a cuticle (Linnaeus, 1753). Since then, many taxonomists have revised
the classification of Morus (Bureau, 1873; Koidzumi, 1917; Zhou & Gilbert, 2003), and
10–16 species are currently recognized (Nepal & Ferguson, 2012; Sánchez, 2002).
Spontaneous and artificial hybridization can occur between different species of mulberry,
leading to successive interspecific characteristics (Botton et al., 2005). The continuous
variations in the phenotypic characteristics have made it difficult to classify mulberry
resources (Vijayan, Srivastava & Awasthi, 2004). Consequently, the classification of
mulberry remains highly controversial.

Compared with phenotypic characters, DNA-based molecular markers represent a
faster and more reliable system for germplasm characterization and phylogenetic analyses.
Another advantage of DNA-based molecular markers is that they are not influenced by the
environment (Banerjee, Chattopadhyay & Saha, 2016). Sequence-related amplified
polymorphic, inter-simple sequence repeat, simple sequence repeat, and random amplified
polymorphic DNA markers have been used for phylogenetic analyses of mulberry
(Banerjee, Chattopadhyay & Saha, 2016; Sharma, Sharma & Machii, 2000; Zhao et al.,
2007). In these studies, DNA markers were successfully used to identify mulberry
accessions and analyze their genetic diversity. The results were consistent with
classifications based on morphological characters (Zhao et al., 2005, 2007). Internal
transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) are among the most widely used
molecular markers in phylogenetic analyses of angiosperms (Alvarez & Wendel, 2003;
Baldwin et al., 1996; Li et al., 2011) and are proposed to be core barcodes for seed plants
(Li et al., 2011). These markers have also been used in phylogenetic analyses of mulberry.
Based on ITS sequences and trnL-trnF sequences data of 13 mulberry accessions and
Broussonetia papyrifera, Zhao divided Morus into five major clades, and identified Morus
as a monophyletic group (Zhao et al., 2005). Nepal and Ferguson recognized 13 species
ofMorus, but phylogenetic analyses of ITS sequences and trnL-trnF sequences determined
that this genus is not monophyletic, compared with 12 species in another genus (Trophis,
Bagassa, Milicia, Sorocea, Streblus, and Artocarpus) in the Moraceae (Nepal & Ferguson,
2012). Recently, the genus Morus was redefined to contain eight species based on
comprehensive analyses of ITS sequences from 43 mulberry accessions and one outgroup
(B. papyrifera), and the phylogenetic relationships among clades were determined
(Zeng et al., 2015). Most of the mulberry accessions collected in China were grouped into
the largest clade B, even though there were many morphological polymorphisms and
12 supposed species among the mulberry accessions in clade B (Zeng et al., 2015). Because
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the sequence similarity of ITS sequences in clade B was very high, it was difficult to
redefine the classification and investigate the evolutionary patterns among them.

Generally, ITS regions are considered to be homologous in an individual as a result of
concerted evolution (Ghosh, Bhattacharya & Pal, 2017; Sang, Crawford & Stuessy, 1995;
Wendel, Schnabel & Seelanan, 1995), and intra-individual polymorphisms in ITS
regions have been regarded as exceptions in many plant groups (Mayol & Rossello, 2001).
As one type of ITS polymorphism, ITS pseudogenes were first found in Zea mays
(Buckler & Holtsford, 1996) and then in various other plants (Fan et al., 2014; Xiao,
Moller & Zhu, 2010). The ITS pseudogenes are easily distinguished by their GC
content, minimum free energy of secondary structure, the presence of conserved motifs,
substitution rates, phylogenetic positions, and copy numbers (Bailey et al., 2003;
Queiroz, Batista & De Oliveira, 2011). It has been proposed that some ITS pseudogenes
are inherited from the maternal progenitor, which is helpful for understanding the
evolutionary history of a species (Hughes, Bailey & Harris, 2002). Putative ITS pseudogenes
show higher sequence diversities than functional ITS sequences, and so they may provide
better resolution and more information in phylogenetic analyses (Xu et al., 2017). In any
case, ITS pseudogenes should be included in phylogenetic analyses (Bailey et al., 2003).

In preliminary analyses, we found ITS pseudogene sequences in mulberry, and
speculated that they may provide new insights into mulberry evolution. Therefore,
we conducted deep sequencing of ITS sequences from 33 mulberry accessions (seven
species). We constructed phylogenetic trees using ITS sequences and the chloroplast DNA
(cpDNA) sequences trnL-trnF and trnT-trnL, and found three connection patterns
between ITS sequences and cpDNA sequences. Based on analyses of these patterns,
we propose that hybridization has played important roles in the evolution of mulberry.
The evolutionary history of mulberry is proposed. The results of this study contribute to
our understanding of mulberry evolution.

MATERIALS AND METHODS
Plant materials
We selected 33 mulberry accessions (seven species: M. alba, M. mongolica, M. cathayana,
M. wittiorum, M. nigra, M. yunnanensis, and M. notabilis) for this study (see Table 1).
Morus yunnanensis was obtained from the Institute of Sericulture and Apiculture,
Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan province, China.
The other mulberry accessions were obtained from the Mulberry Germplasm Nursery
at Southwest University, China (He et al., 2013; Zeng et al., 2015), where they are preserved
by propagation through grafting. The relatively closely related species Artocarpus
heterophyllus was selected as the outgroup for the phylogenetic analyses based on ITS
sequence (KT002551) and cpDNA sequences (MG434693).

DNA preparation, sequence selection, and amplification
Genomic DNA was extracted from all mulberry accessions using the CTAB method
(Saghai-Maroof et al., 1984). Chloroplast DNA was extracted as described by Shi et al.
(2012). Based on the alignment of six whole chloroplast genomes (from M. notabilis
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(KP939360.1), M. indica (DQ226511.1), M. cathayana (KU981118.1), M. mongolica
(KM491711.2), M. alba var. multicaulis (KM491711.2), and M. alba var. atropurpurea
(KU355276.1)) using VISTA viewer (http://genome.lbl.gov/vista/index.shtml) (Frazer
et al., 2004), we selected the two variable cpDNA sequences, trnL-trnF and trnT-trnL, for
analyses. The ITS and the trnL-trnF sequences were amplified using primers described
elsewhere (Taberlet et al., 1991; Zeng et al., 2015). We designed primers to amplify
trnT-trnL (F: 5′-TGCGATGCTCTAACCTCT-3′; R: 5′-TAGCGTCTACCAATTTCG-3′).
These sequences were amplified using GoTaq Flexi DNA Polymerase (Promega
Corporation, Madison, WI, USA) according to the manufacturer’s instructions. All the
polymerase chain reaction (PCR) cycles consisted of initial denaturation of 95 �C for
5 min; followed by 32 cycles of 95 �C for 30 s, annealing for 30 s, 72 �C for 1 min; and then
final extension for 7 min. The amplified fragments were isolated by electrophoresis on
1% (w/v) agarose gels. The purified sequences were cloned into the pMD19-T vector, and
then 7–20 positive clones were sequenced for each accession.

Sequence analyses
The cpDNA and ITS sequences were assembled and corrected for PCR errors using
Sequencher 4.2 (Gene Codes Corp., Ann Arbor, MI, USA). All the sequences were
aligned using Clustal X 1.81 software (Thompson et al., 1997). The boundaries of the
ITS1, 5.8S, and ITS2 regions were determined as described elsewhere (Zeng et al., 2015).
The GC content and sequence length was calculated using BioEdit (Hall, 1999).
Three angiosperm conserved motifs (motif 1: GAATTGCAGAATCC, motif 2:
TTTGAACGCA, motif 3: CGATGAAGAACGTAGC) were detected by BioEdit (Kerbs
et al., 2017; Yakimowski & Rieseberg, 2014). The minimum free energy of the secondary
structure was predicted using Mfold (http://www.bioinfo.rpi.edu/applications/mfold)
(Zuker, 2003).

Phylogenetic analyses
Phylogenetic analyses of ITS sequences and cpDNA sequences were conducted using
maximum-likelihood (M-L) and Bayesian inference (BI) methods. The first phylogenetic
analysis was conducted using the ITS sequences of the 33 mulberry accessions
determined in this study and those from another nine species (M. mesozygia
(HM747171), M. insignis (HM747169), M. serrata (HM747176), M. rubra (HQ144180),
M. celtidifolia (HM747168), M. macroura (HM747170), M. mongolica (KF784879),
M. wittiorum (AY345154), and M. australis (KT002555)) reported previously (Zeng et al.,
2015). The best-fit model SYM+G for BI analyses of ITS sequences was selected by the
lowest Akaike Information Criterion (AIC) scores in MrModelTest 2.3 (Nylander et al.,
2004). MrBayes v3.2.6 software was used for BI analyses (Huelsenbeck & Ronquist, 2001).
Four Markov chain Monte Carlo chains were run for 2,000,000 generations, with
sampling every 100 generations. The first 5,000 trees were discarded as burn-ins and the
50% majority-rule consensus tree was determined to calculate the posterior probabilities
for each node. The standard deviations of split frequencies were checked and the
number of minimum generations required for analysis were those with a standard
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deviation value lower than 0.01. The M-L phylogenetic trees were constructed using the
most suitable Kimura 2-parameter model with the lowest Bayesian Information Criterion
scores in MEGA 7 (Kumar, Stecher & Tamura, 2016). A discrete gamma distribution
was used to model evolutionary rate differences among sites (five categories (+G,
parameter = 1.3541)) (Kumar, Stecher & Tamura, 2016). All characters were equally
weighted.

Phylogenetic analyses of cpDNA sequences were performed using sequence matrix
data for the trnL-trnF and trnT-trnL regions. The best-fit model (GTR) for BI and M-L
analyses for cpDNA sequences was selected by the lowest AIC scores in MrmodelTest
2.3 (Nylander et al., 2004). The other parameters for BI analyses based on cpDNA
sequences were the same as the parameters for analyses based on ITS sequences. The M-L
phylogenetic tree was constructed in MEGA 7 with 1,000 bootstrap replicates (Kumar,
Stecher & Tamura, 2016). All characters were equally weighted.

RESULTS
Variations among ITS sequences
Thirty-three mulberry accessions were sequenced and their ITS sequences were analyzed
(Table 1). For each accession, 7–20 clones were sequenced (Table 1). Of the 33 mulberry
accessions, 19 contained only one type of ITS sequence, with lengths ranging from
611 bp to 631 bp. The ITS sequences of M. notabilis, M. yunnanensis, and M. nigra
were confirmed to have lengths of 631 bp, 631 bp, and 624 bp, respectively, as reported
previously (Zeng et al., 2015). Of the 19 mulberry accessions with one ITS sequence, 16 had
an ITS sequence of 611 bp, with differences at only two single nucleotide polymorphism
(SNP) sites.

The other 14 mulberry accessions had polymorphic ITS sequences (Table 1). There
were two types of ITS sequences: short ITS sequences (ITS-a) and long ITS
sequences (ITS-β). The ITS sequences of the mulberry accessions Shimiansang,
Hanguodabaizhenzhu, Shuisang, and Pisang2 contained two short-type sequences.
Sequences with higher and lower copy numbers were designated as ITS-a1 and ITS-a2,
respectively. The accession Yun6muben contained two long ITS sequences (625 bp and
624 bp, designated as ITS-β1 and ITS-β2, respectively). The ITS-a sequences in 13
mulberry accessions were identical with a length of 611 bp. The length of ITS-β sequences
ranged from 624 bp to 626 bp. An alignment of the ITS sequences of the mulberry
accessions is shown in Fig. 1. We detected the 13-bp InDel reported previously (Zeng et al.,
2015). Further, we found three types of 13-bp sequences among the 33 mulberry accessions
(CGTATACAATGCG, TGTGTGCAATGCG, and CGTACACAATGCG). Alignment
analyses of the ITS sequences revealed six 1-bp and three 2-bp InDels. Other sequence
variations were SNPs.

Identification of ITS pseudogenes
The GC content of the ITS region, the minimum free energy of the secondary structure,
and conserved motifs in the 5.8S rDNA region were used to identify ITS pseudogenes.
As shown in Fig. 2 and Table S1, the GC contents of Shuisang-a2, Jianpuzhai-β, and
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Yun6-β were similar to that of ITS-a1/a. The GC content of Yun6muben-β2 was lower
than that of ITS-β1. The GC contents of ITS-a2/β2 sequences in the remaining mulberry
accessions were lower than those of ITS-a1/β1 sequences in at least one region of ITS1,
5.8S rDNA, and ITS2. The minimum free energy of secondary structure showed a similar
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pattern to that of GC contents, except that it was lower in Shuisang-a2, Jianpuzhai-β,
Yun6-β, and Yun6muben-β2 than in ITS-a1/a and Yun6muben-β1. The sequences of
Hanguodabaizhenzhu-a2, Shuisang-a2, Yun7-β, Jianpuzhai-β, Yun6-β, and
Yun6muben-β2 contained all three conserved motifs. Based on the sequence length
information, the GC content of the ITS region, the minimum free energy of secondary
structure, and conserved motifs in the 5.8S rDNA region, we identified 11 ITS sequences as
pseudogenes (Yun6muben-β2, Pisang2-a2, Shimiansang-a2, Shanxitiansang-β,
Xinyizhilai-β, Lunjiao109-β, Huosang-β, Agentingsang-β, Hanguodabaizhenzhu-a2,
Baojing7-β, and Yun7-β).

ITS phylogenetic analyses
We included M. mesozygia (clade D1), M. insignis (clade D2), M. serrata (clade A4),
M. rubra (clade A3), M. celtidifolia (clade A1), M. macroura (clade B), M. mongolica
(clade B), M. wittiorum (clade B), and M. australis (clade B) in the phylogenetic
analyses, as they represented six of the eight clades classified in a previous study
(Zeng et al., 2015). We constructed M-L and BI trees. The main clades in the M-L trees
(Fig. 3) were the same as those in the BI trees (Fig. S2), and both were consistent with
the results of a previous study (Zeng et al., 2015). However, the pseudogene Yun6muben-
β2 clustered together with the functional ITS sequences in the BI tree (Fig. S2), so we
used the M-L tree for further analyses. Most of the mulberry accessions were clustered in
clade B in these two trees. In clade B, all the functional ITS sequences were grouped into
three clades (clade 1, clade 2, and clade 3) (Fig. 3): two short-type ITS sequence clades
(clade 1 and clade 2) and a long-type ITS sequence clade (clade 3). The ITS pseudogenes
were grouped into two pseudogene clades, designated as pseudogroup 1 and
pseudogroup 2 (Fig. 3).

Characteristics and phylogenetic analyses of cpDNA sequences
Based on the synteny analyses of the whole chloroplast genomes of M. indica (Ravi et al.,
2007),M. notabilis (Chen et al., 2016a),M. mongolica (Kong & Yang, 2016),M. cathayana
(Kong & Yang, 2017), M. alba var. multicaulis (Kong & Yang, 2017), and M. alba var.
atropurpurea (Hu et al., 2014) (Fig. S1) and sequence alignment analyses, the trnL-trnF
and trnT-trnL regions were selected for the cpDNA phylogenetic analyses. In the 33
mulberry accessions, the length of trnL-trnF ranged from 913 bp to 931 bp, and that of
trnT-trnL ranged from 1108 bp to 1150 bp. The combined data matrix of trnL-trnF and
trnT-trnL consisted of 2109 aligned nucleotides (Fig. 4).

We constructed M-L and BI phylogenetic trees using the trnL-trnF and trnT-trnL data
(Fig. 5; Fig. S3). The topologies of the BI trees were disordered (Fig. S3), and some identical
sequences were clustered into different clades. Therefore, the M-L trees were used for
further analyses. First, M. notabilis and M. yunnanensis were diverged first among the
33 mulberry accessions. The remaining 31 mulberry accessions were separated into two
main clades. Clade I contained 11 accessions of species M. alba (Banqiao6, Basailuona,
Huasang, Huai302, Huosang, Shanxitiansang, Shimiansang, Sililanka, Xinyizhilai,
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Yidachimu, and Wupisang), two accessions of species M.mongolica (Jimengsang and
Mengsang) (Figs. 4 and 5; Table 1). Clade II contained 10 accessions of species M. alba
(Agentingsang, Gailiang10, Hanguodabaizhenzhu, Jianpuzhai, Leshandahongpi,
Lunjiao109, Shuisang, Taiwanchaochangguo, Xinjiaposijiguosang, and Zhenzhubai), three
accessions of species M. cathayana (Baojing7, Gui23, and Pisang2), four accessions of
species M. wittiorum (Yun6, Yun6muben, Yun7, and Yun7muben), and one accession of
species M. nigra (Fig. 5; Table 1). There were more sequence variations in clade II than in
clade I (Fig. 4). Species of M. alba (Hanguodabaizhenzhu, Lunjiao109, Shuisang,
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Taiwanchaochangguo, and Xinjiaposijiguosang) formed a subclade, and M. nigra was
separated from the other mulberry accessions on a long branch (Fig. 5).

DISCUSSION
Characterization and mutation pattern of ITS pseudogenes
ITS pseudogenes have been detected in many plants (Fan et al., 2014;Won& Renner, 2005;
Xiao, Moller & Zhu, 2010; Xu et al., 2017), and should not be excluded from phylogenetic
analyses of ITS sequences (Bailey et al., 2003). However, ITS pseudogenes have evolved
at a faster rate than functional ITS sequences, which can cause confusion in phylogenetic
analyses (Bailey et al., 2003; Fan et al., 2014). Thus, comprehensive analyses of ITS
sequences are required. The ITS pseudogenes can be easily identified based on their GC
content, minimum free energy of secondary structure, presence of conserved motifs,
substitution rates, phylogenetic positions, and copy numbers (Bailey et al., 2003;
Queiroz, Batista & De Oliveira, 2011). In the present study, we found ITS pseudogenes in
11 mulberry accessions, implying that incomplete concerted evolution is occurring in
mulberry. Compared with functional ITS sequences, the ITS pseudogenes of mulberry
showed higher diversity in the whole ITS region (ITS1, 5.8S rDNA, and ITS2), as
found in other studies (Fan et al., 2014; Xiao, Moller & Zhu, 2010). Both the
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pseudogenes and functional ITS sequences were a mixture of short- and long-type
sequences. Recombination was detected by the RDP4 program (Martin et al., 2015).
The results showed that the short-type pseudogene sequences Shimiansang-a2 and
Hanguodabaizhenzhu-a2 have recombined with putative long-type ITS sequences,
representing one pathway of concerted evolution of ITS sequences.
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Phylogenetic analyses and evolution of ITS
We conducted phylogenetic analyses of ITS functional sequences and pseudogenes.
The main topologies of the phylogenetic trees were the same as that reported elsewhere
(Zeng et al., 2015). In the present study, ITS pseudogenes were identified and separated
from the functional ITS clades (Fig. 3) (Bailey et al., 2003). Clade 3 is a newly identified
clade with long-type ITS sequences compared with the previous study (Zeng et al.,
2015). Based on the sequence similarities and sequence length of the ITS region, the
long-type ITS sequences in clade 3 may have closer relationships with the sequences in
clades A, C, and D (Fig. 1).

In our analyses, most of the sequences were clustered in clade 1 and clade 2, with only
three sequences clustered into clade 3 (Fig. 3). We detected inconsistencies between
traditional and molecular classifications in this study. Twenty-nine mulberry accessions
with morphological polymorphisms clustered together with a low phylogenetic resolution
and had similar or identical ITS sequences. For example, Yun6muben and Yun7muben
showed similar fruit, leaf, bud, and internode morphologies, indicating that both should be
classified as M. wittiorum. However, Yun6muben had long-type ITS sequences that
clustered in clade 3, while Yun7muben had short-type ITS sequences that clustered in
clade 2. As the morphological characteristics were very complex, no details are discussed
here. These phenomena are indicative of concerted evolution or introgression of the ITS
region, and of hybridization (Bailey et al., 2003; Xu et al., 2017). Thus, the classification of
mulberry is very complex, and there is considerable confusion at present. Systematic
classification of mulberry resources should be based on molecular markers, morphology,
chromosome number, genome data, and other characteristics.

Intra-individual polymorphisms in the ITS region have been detected in many plants
and pseudogene sequences have been included in phylogenetic analyses (Mayol & Rossello,
2001; Xiao, Moller & Zhu, 2010; Zheng et al., 2008). Bidirectional, unidirectional, or
different rates of evolution have been detected from analyses of ITS sequences
(Wendel, Schnabel & Seelanan, 1995; Xu et al., 2017; Zheng et al., 2008). In this study,
we detected multiple functional ITS copies, putative ITS pseudogenes, or recombinants
of ITS pseudogenes in the same individual. The successive evolution patterns of ITS
sequences are indicative of concerted evolution (Figs. 1 and 3). There are several lines of
evidence for the concerted evolution of ITS sequences. First, clades A, C, D, and 3 had
long-type and ancient ITS sequences. Second, Yun6 was identified as the progeny of
Yun6muben through natural pollination. Yun6-β showed one SNP variation compared
with Yun6muben-β1, suggesting that concerted evolution started in the F1 generation.
Third, Hanguodabaizhenzhu-a2 and Shimiansang-a2 were found to be recombined from
long-type ITS sequences, and other ITS pseudogenes showed more variations. Fourth,
Shuisang-a2 had only one SNP variation compared with ITS sequences in clade 1 and
clade 2, implying that concerted evolution is continuing or has completed only recently.
Finally, most functional ITS copies were short-type sequences. In conclusion, the
evolutionary process of ITS, as indicated by our data, is that long-type ITS sequences are
undergoing concerted evolution to form short-type ITS sequences.
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Hybridization is an important evolutionary mechanism in plants, especially in
flowering plants (Kerbs et al., 2017; Soltis & Soltis, 2009; Yakimowski & Rieseberg, 2014).
Hybridization can also help to explain the concerted evolution of ITS sequences (Xu et al.,
2017). We detected three hybridized mulberry accessions (Jianpuzhai, Shuisang, and
Yun6), which contained two functional ITS sequences. Hybridization between M. rubra
(A clade) andM. alba (B clade) has been detected in previous studies (Burgess & Husband,
2004; Burgess, Morgan & Husband, 2008). It has been suggested that hybridization
between M. rubra and M. alba caused the local decline of M. rubra (Burgess et al., 2005).
This may indicate that M. alba has higher ecological potential. The continuous
back-cross hybridization of M. rubra with M. alba may have led to the disappearance of
ITS sequences from M. rubra, or the concerted evolution to form short-type sequences.
Like other plants, local Morus species face the risk of extinction (Burgess & Husband,
2004; Burgess, Morgan & Husband, 2008; Ellstrand & Schierenbeck, 2000; Wolf,
Takebayashi & Rieseberg, 2001).

Polyploidy is another important evolutionary mechanism that is known to affect the
concerted evolution of ITS sequences in plants (Ainouche et al., 2004). The ITS sequences
can retain their subgenomic sequences or become homogenized through concerted
evolution (Wendel, Schnabel & Seelanan, 1995). Existing mulberry species show various
polyploidy levels, with 14, 28, 35, 42, 49, 56, 84, 112, 126, or 308 chromosomes (Xuan et al.,
2017; Zeng et al., 2015). Multiple nucleolus organizing region (NOR) loci have also
contributed to the concerted evolution of ITS sequences. Two pairs of NOR loci have
been reported for M. notabilis (Xuan et al., 2017). The other mulberry accessions
contained at least two pairs of NOR loci (data not shown). Mulberry is often cultivated
by grafting or propagated from cuttings, resulting in a long generation time. This may be
another factor affecting the concerted evolution of ITS sequences. In summary,
hybridization, polyploidy, multiple NOR loci, and long generation times have all
contributed to the concerted evolution of ITS sequences in mulberry.

Phylogenetic analyses of cpDNA sequences
Certain cpDNA sequences are widely used molecular markers in phylogenetic analyses
(Nepal & Ferguson, 2012; Xu et al., 2012). With the development of universal primers for
cpDNA and chloroplast genome sequencing, increasing numbers of studies have been
conducted based on cpDNA (Huang et al., 2014;Wu et al., 2014). Another characteristic of
cpDNA is that it is maternally inherited. To date, six chloroplast genomes of mulberry
have been reported, and they can provide comprehensive information about the evolution
of the whole chloroplast genome (Chen et al., 2016a; Hu et al., 2014; Kong & Yang, 2016,
2017; Ravi et al., 2007). Several other molecular markers have been used in phylogenetic
studies, with trnL-trnF being the most commonly used (Ayinampudi et al., 2011; Nepal &
Ferguson, 2012). In this study, more variable cpDNA regions (trnL-trnF and trnT-trnL)
were used for phylogenetic analyses to study the concerted evolution of mulberry.
The mulberry accessions in clade B were separated into two clades in the phylogenetic tree
based on cpDNA sequences. The sequences in clade I were almost identical, sequences
in clade II showed more variations and a subclade was clustered (Figs. 4 and 5). Successive
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evolution pattern of the sequences was shown in Fig. 4, suggesting a closer progenitor
among them. Thus, clade II could be treated as a single clade. These results were consistent
with those of previous studies in which two clades were proposed based on phylogenetic
analyses of TrnL-TrnF (Zhao et al., 2005; Zhao et al., 2007).

Evolution of mulberry
Based on the analyses of ITS sequences, the 33 functional ITS sequences in clade B
were separated into short-type sequence clades (clade 1 and clade 2) and a long-type
sequence clade (clade 3). Two pseudogroups were also divided in the ITS phylogenetic tree.
These findings suggest that there is a shallow level of phylogeny among 29 mulberry
accessions, consistent with the two clades detected in the cpDNA phylogenetic tree
(Bailey et al., 2003). Thus, clade B contains two species.

On the basis of a study of the genus Leucaena, it was proposed that some ITS
pseudogene sequences are inherited from the maternal progenitor (Hughes, Bailey &
Harris, 2002). In this study, we detected three connection patterns between ITS
pseudogene sequences and cpDNA sequences (Figs. 1 and 4). Connection pattern
(1) was between pseudogroup 2 and clade I, and was detected in Shanxitiansang,
Xinyizhilai, Huosang, and Shimiansang. In this pattern, both the ITS pseudogene
sequences and cpDNA sequences showed high sequence similarities. Connection pattern
(2) was between pseudogroup 1 and clade II, and was detected in Yun7, Yun6muben,
Baojing7, and Pisang2. The ITS pseudogene sequences of these four mulberry accessions
displayed sequence variations, but the cpDNA sequences did not. Connection pattern
(3) was between pseudogroup 2 and clade II, and was detected in Hanguodabaizhenzhu,
Lunjiao109, and Agentingsang. In these three patterns, the ITS pseudogene sequences have
connections with genetic information from the female progenitor. This provides more
clues to trace the evolution process of ITS sequences and the Morus genus.

The three connection patterns and the incongruent distribution patterns between the
cpDNA and the ITS phylogenetic trees imply that hybridization has contributed to the
evolution of mulberry. Based on the discussion above, a simple evolutionary pattern is
proposed for mulberry (Fig. 6). First, mulberry with short-type ITS sequences (aAA)
existed at a certain time and showed stronger ecological potential. Those resources then
hybridized with mulberry with long-type sequences (bBB). The ITS sequences gradually
became short-type sequences through concerted evolution or hybridization. Finally,
long-type ITS sequences (B) were left as pseudogene sequences (B) in the offspring, and
most mulberry had short-type functional ITS sequences (aAA, aAAB, and bAAB). Thus,
mulberry with long-type ITS sequences (bBB) are the original mulberry resources, and
are being polluted by those with short-type ITS sequences during evolution. The actual
evolutionary process of mulberry will be more complex than this evolutionary pattern, and
dominated by hybridization.

In the phylogenetic trees constructed from ITS and cpDNA sequences (Figs. 3 and 5), all
the clades contained accessions with different ploidy levels, and there were cross-links
between the clades in different trees (e.g., Huai302 (2n = 12x = 84) belonged to clade 2 and
clade I). These results indicate that hybridization and polyploidy have played important
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roles in the evolution of mulberry, even in the accessions with higher ploidy levels. Clade 2
of the phylogenetic tree constructed from ITS sequences contained mulberry accessions
with different high ploidy levels, identical ITS sequences, and successively evolved cpDNA
sequences, implying that concerted evolution has played a key role in the evolution of
this clade. In conclusion, polyploidy, hybridization, and concerted evolution have all
played important roles in the evolution of ITS sequences in mulberry.

CONCLUSIONS
Based on phylogenetic analyses of ITS sequences and cpDNA sequences, clade B was
separated into two species. We found ITS pseudogenes in mulberry, and detected a
concerted evolutionary process in the direction of short-type ITS sequences. We detected
three connection patterns between ITS pseudogene sequences and cpDNA sequences,
suggesting that the ITS pseudogene sequences connect with genetic information from the
female progenitor. Combining the three connection patterns and incongruent distribution
patterns between phylogenetic trees constructed from cpDNA and ITS sequences,
hybridization is recent or still occurring, and has played important roles in mulberry
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Figure 6 Simple evolutionary pattern of mulberry. Mulberry with short-type (aAA) and long-type
(bBB) ITS sequences continuously hybridized with mulberry with short-type ITS sequence mulberry
(aAA). Finally, aAA mulberry have become most abundant. Mulberry with aAAB and bAAB contain ITS
pseudogene sequences (B) from different female progenitors. bBB represents mulberry with long-type ITS
sequences. Dotted arrow represents continuous hybridization process.
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evolution. The proposed evolutionary pattern, in which hybridization is a key feature,
helps us to understand the evolutionary history of mulberry and highlights the importance
of conserving local resources. Finally, polyploidy, hybridization, and concerted evolution
have all played roles in the evolution of ITS sequences in mulberry.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project was funded by the National Key Research and Development Program
(No. 2018YFD1000602), the Natural Science Foundation of China (No. 31572323), the
special fund for Agro-scientific research in the public interest of China (No. 201403064),
the “111” Project (B12006), the Chongqing Research Program of Basic Research and
Frontier Technology (cstc2018jcyjAX0407), and the Fundamental Research Funds for the
Central Universities (SWU118040). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key Research and Development Program: 2018YFD1000602.
Natural Science Foundation of China: 31572323.
Agro-Scientific Research in the Public Interest of China: 201403064.
“111” Project: B12006.
Chongqing Research Program of Basic Research and Frontier Technology:
cstc2018jcyjAX0407.
Fundamental Research Funds for the Central Universities: SWU118040.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Yahui Xuan conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

� Yue Wu performed the experiments, analyzed the data, contributed reagents/materials/
analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper,
approved the final draft.

� Peng Li performed the experiments, prepared figures and/or tables, approved the final
draft.

� Ruiling Liu performed the experiments, approved the final draft.
� Yiwei Luo performed the experiments, contributed reagents/materials/analysis tools,
prepared figures and/or tables, approved the final draft.

� Jianglian Yuan performed the experiments, contributed reagents/materials/analysis
tools, prepared figures and/or tables, approved the final draft.

Xuan et al. (2019), PeerJ, DOI 10.7717/peerj.8158 16/21

http://dx.doi.org/10.7717/peerj.8158
https://peerj.com/


� Zhonghuai Xiang conceived and designed the experiments, authored or reviewed drafts
of the paper, approved the final draft, suggested the manuscript.

� Ningjia He conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the paper, approved the final draft.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

The raw data of ITS sequences and cpDNA sequences are available in Zenodo:
DOI 10.5281/zenodo.3238365.

Data Availability
The following information was supplied regarding data availability:

The sequences are available at NCBI: ITS sequences, MN044813–MN044856; trnL-trnF
sequences, MN057958–MN057990; trnT-trnL sequences, MN057991–MN058023.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8158#supplemental-information.

REFERENCES
Ainouche ML, Baumel A, Salmon A, Yannic G. 2004.Hybridization, polyploidy and speciation in

Spartina (Poaceae). New Phytologist 161(1):165–172 DOI 10.1046/j.1469-8137.2003.00926.x.

Alvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference.Molecular
Phylogenetics and Evolution 29(3):417–434 DOI 10.1016/S1055-7903(03)00208-2.

Ayinampudi SR, Wang YH, Avula B, Smillie TJ, Khan IA. 2011. Quantitative analysis of
oxyresveratrol in different plant parts ofMorus species and related genera by HPTLC and HPLC.
Journal of Planar Chromatography 24(2):125–129 DOI 10.1556/JPC.24.2011.2.8.

Bailey CD, Carr TG, Harris SA, Hughes CE. 2003. Characterization of angiosperm nrDNA
polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution
29(3):435–455 DOI 10.1016/j.ympev.2003.08.021.

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. 1996.
The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm
phylogeny (vol. 82, p. 247, 1995). Annals of the Missouri Botanical Garden 83(1):151
DOI 10.2307/2399971.

Banerjee R, Chattopadhyay S, Saha AK. 2016. Genetic diversity and relationship of Mulberry
genotypes revealed by RAPD and ISSR markers. Journal of Crop Improvement 30(4):478–492
DOI 10.1080/15427528.2016.1177803.

Botton A, Barcaccia G, Cappellozza S, Da Tos R, Bonghi C, Ramina A. 2005. DNA
fingerprinting sheds light on the origin of introduced mulberry (Morus spp.) accessions in Italy.
Genetic Resources and Crop Evolution 52(2):181–192 DOI 10.1007/s10722-003-4429-x.

Buckler ES, Holtsford TP. 1996. Zea ribosomal repeat evolution and substitution patterns.
Molecular Biology and Evolution 13(4):623–632 DOI 10.1093/oxfordjournals.molbev.a025622.

Bureau LÉ. 1873. Moraceae. In: DeCandolle AP, ed. Prodromus Systematis Naturalis Regni
Vegetabilis. Paris: Tuettel and Wurtz, 211–288.

Xuan et al. (2019), PeerJ, DOI 10.7717/peerj.8158 17/21

https://doi.org/10.5281/zenodo.3238365
http://www.ncbi.nlm.nih.gov/nuccore/MN044813
http://www.ncbi.nlm.nih.gov/nuccore/MN044856
http://www.ncbi.nlm.nih.gov/nuccore/MN057958
http://www.ncbi.nlm.nih.gov/nuccore/MN057990
http://www.ncbi.nlm.nih.gov/nuccore/MN057991
http://www.ncbi.nlm.nih.gov/nuccore/MN058023
http://dx.doi.org/10.7717/peerj.8158#supplemental-information
http://dx.doi.org/10.7717/peerj.8158#supplemental-information
http://dx.doi.org/10.1046/j.1469-8137.2003.00926.x
http://dx.doi.org/10.1016/S1055-7903(03)00208-2
http://dx.doi.org/10.1556/JPC.24.2011.2.8
http://dx.doi.org/10.1016/j.ympev.2003.08.021
http://dx.doi.org/10.2307/2399971
http://dx.doi.org/10.1080/15427528.2016.1177803
http://dx.doi.org/10.1007/s10722-003-4429-x
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025622
http://dx.doi.org/10.7717/peerj.8158
https://peerj.com/


Burgess KS, Husband BC. 2004. Maternal and paternal contributions to the fitness of hybrids
between red and white mulberry (Morus Moraceae). American Journal of Botany
91(11):1802–1808 DOI 10.3732/ajb.91.11.1802.

Burgess KS, Morgan M, Deverno L, Husband BC. 2005. Asymmetrical introgression between two
Morus species (M-alba, M-rubra) that differ in abundance.Molecular Ecology 14(11):3471–3483
DOI 10.1111/j.1365-294X.2005.02670.x.

Burgess KS, Morgan M, Husband BC. 2008. Interspecific seed discounting and the fertility cost of
hybridization in an endangered species. New Phytologist 177(1):276–283
DOI 10.1111/j.1469-8137.2007.02244.x.

Chen C, Zhou W, Huang Y, Wang ZZ. 2016a. The complete chloroplast genome sequence of the
mulberry Morus notabilis (Moreae). Mitochondrial DNA Part A 27(4):2856–2857
DOI 10.3109/19401736.2015.1053127.

Chen H, Pu JS, Liu D, YuWS, Shao YY, Yang GW, Xiang ZH, He NJ. 2016b. Anti-inflammatory
and antinociceptive properties of flavonoids from the fruits of Black Mulberry (Morus nigra L.).
PLOS ONE 11(4):e0153080 DOI 10.1371/journal.pone.0153080.

Ellstrand NC, Schierenbeck KA. 2000. Hybridization as a stimulus for the evolution of
invasiveness in plants? Proceedings of the National Academy of Sciences of the United States of
America 97(13):7043–7050 DOI 10.1073/pnas.97.13.7043.

Fan X, Liu J, Sha LN, Sun GL, Hu ZQ, Zeng J, Kang HY, Zhang HQ, Wang Y, Wang XL,
Zhang L, Ding CB, Yang RW, Zheng YL, Zhou YH. 2014. Evolutionary pattern of rDNA
following polyploidy in Leymus (Triticeae: Poaceae). Molecular Phylogenetics and Evolution
77:296–306 DOI 10.1016/j.ympev.2014.04.016.

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for
comparative genomics. Nucleic Acids Research 32(Suppl. 2):W273–W279
DOI 10.1093/nar/gkh458.

Ghosh JS, Bhattacharya S, Pal A. 2017. Molecular phylogeny of 21 tropical bamboo species
reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and
their consensus secondary structure. Genetica 145(3):319–333 DOI 10.1007/s10709-017-9967-9.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program
for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.

He NJ, Zhang C, Qi XW, Zhao SC, Tao Y, Yang GJ, Lee TH, Wang XY, Cai QL, Li D, Lu MZ,
Liao ST, Luo GQ, He RJ, Tan X, Xu YM, Li T, Zhao AC, Jia L, Fu Q, Zeng QW, Gao C, Ma B,
Liang JB, Wang XL, Shang JZ, Song PH, Wu HY, Fan L, Wang Q, Shuai Q, Zhu JJ, Wei CJ,
Zhu-Salzman K, Jin DC, Wang JP, Liu T, Yu MD, Tang CM, Wang ZJ, Dai FW, Chen JF,
Liu Y, Zhao ST, Lin TB, Zhang SG, Wang JY, Wang J, Yang HM, Yang GW, Wang J,
Paterson AH, Xia QY, Ji DF, Xiang ZH. 2013. Draft genome sequence of the mulberry tree
Morus notabilis. Nature Communications 4:2445 DOI 10.1038/ncomms3445.

Hu DC, Zhang P, Sun YL, Zhang SM, Wang ZH, Chen CJ. 2014. Genetic relationship in
mulberry (Morus L.) inferred through PCR-RFLP and trnD-trnT sequence data of chloroplast
DNA. Biotechnology & Biotechnological Equipment 28(3):425–430
DOI 10.1080/13102818.2014.928980.

Huang H, Shi C, Liu Y, Mao SY, Gao LZ. 2014. Thirteen Camellia chloroplast genome sequences
determined by high-throughput sequencing: genome structure and phylogenetic relationships.
BMC Evolutionary Biology 14:151 DOI 10.1186/1471–2148-14-151.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics 17(8):754–755 DOI 10.1093/bioinformatics/17.8.754.

Xuan et al. (2019), PeerJ, DOI 10.7717/peerj.8158 18/21

http://dx.doi.org/10.3732/ajb.91.11.1802
http://dx.doi.org/10.1111/j.1365-294X.2005.02670.x
http://dx.doi.org/10.1111/j.1469-8137.2007.02244.x
http://dx.doi.org/10.3109/19401736.2015.1053127
http://dx.doi.org/10.1371/journal.pone.0153080
http://dx.doi.org/10.1073/pnas.97.13.7043
http://dx.doi.org/10.1016/j.ympev.2014.04.016
http://dx.doi.org/10.1093/nar/gkh458
http://dx.doi.org/10.1007/s10709-017-9967-9
http://dx.doi.org/10.1038/ncomms3445
http://dx.doi.org/10.1080/13102818.2014.928980
http://dx.doi.org/10.1186/1471�2148-14-151
http://dx.doi.org/10.1093/bioinformatics/17.8.754
http://dx.doi.org/10.7717/peerj.8158
https://peerj.com/


Hughes CE, Bailey CD, Harris SA. 2002. Divergent and reticulate species relationships in
Leucaena (Fabaceae) inferred from multiple data sources: insights into polyploid origins and
nrdna polymorphism. American Journal of Botany 89(7):1057–1073 DOI 10.3732/ajb.89.7.1057.

Kerbs B, Ressler J, Kelly JK, Mort ME, Santos-Guerra A, Gibson MJS, Caujape-Castells J,
Crawford DJ. 2017. The potential role of hybridization in diversification and speciation in an
insular plant lineage: insights from synthetic interspecific hybrids. AoB Plants 9(5):plx043
DOI 10.1093/aobpla/plx043.

Koidzumi G. 1917. Taxonomical discussion on Morus plants. Bulletin of Sericultural Experimental
Station 3:1–62.

Kong WQ, Yang JH. 2016. The complete chloroplast genome sequence of Morus mongolica and a
comparative analysis within the Fabidae clade. Current Genetics 62(1):165–172
DOI 10.1007/s00294-015-0507-9.

Kong WQ, Yang JH. 2017. The complete chloroplast genome sequence of Morus cathayana and
Morus multicaulis, and comparative analysis within genus Morus L. PeerJ 5:e3037
DOI 10.7717/Peerj.3037.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version
7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870–1874
DOI 10.1093/molbev/msw054.

Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX,
Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW, Grp CPB.
2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS)
should be incorporated into the core barcode for seed plants. Proceedings of the National
Academy of Sciences of the United States of America 108(49):19641–19646
DOI 10.1073/pnas.1104551108.

Linnaeus C. 1753. Morus P. 968 in species plantarum. Vol. 2. Stockholm: Impensis Laurentii
Salvii, 3.

Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: detection and analysis of
recombination patterns in virus genomes. Virus Evolution 1(1):vev003 DOI 10.1093/ve/vev003.

Mayol M, Rossello JA. 2001. Why nuclear ribosomal DNA spacers (ITS) tell different stories in
Quercus. Molecular Phylogenetics and Evolution 19(2):167–176 DOI 10.1006/mpev.2001.0934.

Nepal MP, Ferguson CJ. 2012. Phylogenetics of Morus (Moraceae) inferred from ITS and
trnL-trnF sequence data. Systematic Botany 37(2):442–450 DOI 10.1600/036364412X635485.

Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL, Buckley T. 2004. Bayesian
phylogenetic analysis of combined data. Systematic Biology 53(1):47–67
DOI 10.1080/10635150490264699.

Priya S. 2012. Medicinal values of mulberry: an overview. Journal of Pharmacy Research
5(7):3588–3596.

Queiroz CD, Batista FRD, De Oliveira LO. 2011. Evolution of the 5.8S nrDNA gene and internal
transcribed spacers in Carapichea ipecacuanha (Rubiaceae) within a phylogeographic context.
Molecular Phylogenetics and Evolution 59(2):293–302 DOI 10.1016/j.ympev.2011.01.013.

Ravi V, Khurana JP, Tyagi AK, Khurana P. 2007. The chloroplast genome of mulberry: complete
nucleotide sequence, gene organization and comparative analysis. Tree Genetics & Genomes
3(1):49–59 DOI 10.1007/s11295-006-0051-3.

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. 1984. Ribosomal DNA
spacer-length polymorphisms in Barley: Mendelian inheritance, chromosomal location, and
population dynamics. Proceedings of the National Academy of Sciences of the United States of
America 81(24):8014–8018 DOI 10.1073/pnas.81.24.8014.

Xuan et al. (2019), PeerJ, DOI 10.7717/peerj.8158 19/21

http://dx.doi.org/10.3732/ajb.89.7.1057
http://dx.doi.org/10.1093/aobpla/plx043
http://dx.doi.org/10.1007/s00294-015-0507-9
http://dx.doi.org/10.7717/Peerj.3037
http://dx.doi.org/10.1093/molbev/msw054
http://dx.doi.org/10.1073/pnas.1104551108
http://dx.doi.org/10.1093/ve/vev003
http://dx.doi.org/10.1006/mpev.2001.0934
http://dx.doi.org/10.1600/036364412X635485
http://dx.doi.org/10.1080/10635150490264699
http://dx.doi.org/10.1016/j.ympev.2011.01.013
http://dx.doi.org/10.1007/s11295-006-0051-3
http://dx.doi.org/10.1073/pnas.81.24.8014
http://dx.doi.org/10.7717/peerj.8158
https://peerj.com/


Sánchez MD. 2002. World distribution and utilization of mulberry, potential for animal feeding.
Rome: FAO Animal Production & Health Division.

Sang T, Crawford DJ, Stuessy TF. 1995. Documentation of reticulate evolution in Peonies
(Peonia) using Internal transcribed spacer sequences of nuclear ribosomal DNA: implications
for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of
the United States of America 92(15):6813–6817 DOI 10.1073/pnas.92.15.6813.

Sharma A, Sharma R, Machii H. 2000. Assessment of genetic diversity in a Morus germplasm
collection using fluorescence-based AFLP markers. Theoretical and Applied Genetics
101(7):1049–1055 DOI 10.1007/s001220051579.

Shi C, Hu N, Huang H, Gao J, Zhao YJ, Gao LZ. 2012. An improved chloroplast DNA extraction
procedure for whole plastid genome sequencing. PLOS ONE 7(2):e31468
DOI 10.1371/journal.pone.0031468.

Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. Annual Review of Plant
Biology 60(1):561–588 DOI 10.1146/annurev.arplant.043008.092039.

Taberlet P, Gielly L, Pautou G, Bouvet JJPMB. 1991. Universal primers for amplification of three
non-coding regions of chloroplast DNA. Plant Molecular Biology 17(5):1105–1109
DOI 10.1007/bf00037152.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X
windows interface: flexible strategies for multiple sequence alignment aided by quality analysis
tools. Nucleic Acids Research 25(24):4876–4882 DOI 10.1093/nar/25.24.4876.

Vijayan K, Srivastava PP, Awasthi AK. 2004. Analysis of phylogenetic relationship among
five mulberry (Morus) species using molecular markers. Genome 47(3):439–448
DOI 10.1139/g03-147.

Wendel JF, Schnabel A, Seelanan T. 1995. Bidirectional interlocus concerted evolution following
allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences
of the United States of America 92(1):280–284 DOI 10.1073/pnas.92.1.280.

Wolf DE, Takebayashi N, Rieseberg LH. 2001. Predicting the risk of extinction through
hybridization. Conservation Biology 15(4):1039–1053
DOI 10.1046/j.1523-1739.2001.0150041039.x.

Won H, Renner SS. 2005. The internal transcribed spacer of nuclear ribosomal DNA in the
gymnosperm Gnetum. Molecular Phylogenetics and Evolution 36(3):581–597
DOI 10.1016/j.ympev.2005.03.011.

Wu ZH, Gui ST, Quan ZW, Pan L, Wang SZ, Ke WD, Liang DQ, Ding Y. 2014. A precise
chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina
MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal
eudicots. BMC Plant Biology 14:289 DOI 10.1186/s12870-014-0289-0.

Xiao LQ, Moller M, Zhu H. 2010.High nrDNA ITS polymorphism in the ancient extant seed plant
Cycas: incomplete concerted evolution and the origin of pseudogenes. Molecular Phylogenetics
and Evolution 55(1):168–177 DOI 10.1016/j.ympev.2009.11.020.

Xu B, Wu N, Gao XF, Zhang LB. 2012. Analysis of DNA sequences of six chloroplast and nuclear
genes suggests incongruence, introgression, and incomplete lineage sorting in the evolution of
Lespedeza (Fabaceae). Molecular Phylogenetics and Evolution 62(1):346–358
DOI 10.1016/j.ympev.2011.10.007.

Xu B, Zeng XM, Gao XF, Jin DP, Zhang LB. 2017. ITS non-concerted evolution and rampant
hybridization in the legume genus Lespedeza (Fabaceae). Scientific Reports 7:40057
DOI 10.1038/Srep40057.

Xuan et al. (2019), PeerJ, DOI 10.7717/peerj.8158 20/21

http://dx.doi.org/10.1073/pnas.92.15.6813
http://dx.doi.org/10.1007/s001220051579
http://dx.doi.org/10.1371/journal.pone.0031468
http://dx.doi.org/10.1146/annurev.arplant.043008.092039
http://dx.doi.org/10.1007/bf00037152
http://dx.doi.org/10.1093/nar/25.24.4876
http://dx.doi.org/10.1139/g03-147
http://dx.doi.org/10.1073/pnas.92.1.280
http://dx.doi.org/10.1046/j.1523-1739.2001.0150041039.x
http://dx.doi.org/10.1016/j.ympev.2005.03.011
http://dx.doi.org/10.1186/s12870-014-0289-0
http://dx.doi.org/10.1016/j.ympev.2009.11.020
http://dx.doi.org/10.1016/j.ympev.2011.10.007
http://dx.doi.org/10.1038/Srep40057
http://dx.doi.org/10.7717/peerj.8158
https://peerj.com/


Xuan YH, Li CS, Wu Y, Ma B, Liu RL, He NJ. 2017. FISH-based mitotic and meiotic diakinesis
karyotypes of Morus notabilis reveal a chromosomal fusion–fission cycle between mitotic and
meiotic phases. Scientific Reports 7(1):9573 DOI 10.1038/s41598-017-10079-6.

Yakimowski SB, Rieseberg LH. 2014. The role of homoploid hybridization in evolution: a century
of studies synthesizing genetics and ecology. American Journal of Botany 101(8):1247–1258
DOI 10.3732/ajb.1400201.

Zeng QW, Chen HY, Zhang C, HanMJ, Li T, Qi XW, Xiang ZH, He NJ. 2015.Definition of eight
mulberry species in the genusMorus by internal transcribed spacer-based phylogeny. PLOS ONE
10(8):e0135411 DOI 10.1371/journal.pone.0135411.

Zhao WG, Pan YL, Zhang ZF, Jia SH, Miao XX, Huang YP. 2005. Phylogeny of the genusMorus
(Urticales: Moraceae) inferred from ITS and trnL-F sequences. African Journal of Biotechnology
4(6):563–569.

Zhao WG, Zhou ZH, Miao XX, Zhang Y, Wang SB, Huang JH, Xiang H, Pan YL, Huang YP.
2007. A comparison of genetic variation among wild and cultivated Morus Species (Moraceae:
Morus) as revealed by ISSR and SSR markers. Biodiversity and Conservation 16(2):275–290
DOI 10.1007/s10531-005-6973-5.

Zheng XY, Cai DY, Yao LH, Teng YW. 2008. Non-concerted ITS evolution, early origin and
phylogenetic utility of ITS pseudogenes in Pyrus. Molecular Phylogenetics and Evolution
48(3):892–903 DOI 10.1016/j.ympev.2008.05.039.

Zhou ZK, Gilbert MG. 2003. Moraceae. In: Wu ZY, Raven PH, Hong DY, eds. Flora of China.
Beijing & St. Louis: Science Press & Missouri Botanical Garden Press, 22–26.

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research 31(13):3406–3415 DOI 10.1093/nar/gkg595.

Xuan et al. (2019), PeerJ, DOI 10.7717/peerj.8158 21/21

http://dx.doi.org/10.1038/s41598-017-10079-6
http://dx.doi.org/10.3732/ajb.1400201
http://dx.doi.org/10.1371/journal.pone.0135411
http://dx.doi.org/10.1007/s10531-005-6973-5
http://dx.doi.org/10.1016/j.ympev.2008.05.039
http://dx.doi.org/10.1093/nar/gkg595
http://dx.doi.org/10.7717/peerj.8158
https://peerj.com/

	Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences
	Introduction
	Materials&#x00a0;and methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


