
Submitted 23 December 2018
Accepted 4 November 2019
Published 29 November 2019

Corresponding author
Ke Li, keli1122@126.com

Academic editor
Claudia Muhle-Goll

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.8151

Copyright
2019 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

1H-NMR spectroscopy identifies potential
biomarkers in serum metabolomic
signatures for early stage esophageal
squamous cell carcinoma
Yan-Yan Liu1,*, Zhong-Xian Yang2,*, Li-Min Ma3, Xu-Qing Wen3, Huan-Lin Ji4

and Ke Li4

1Department of Ultrasound, Shenzhen Bao’an Maternity & Child Healthcare Hospital, Shenzhen, Guangdong,
China

2Department of Medical Imaging Center, the 2nd Affiliated Hospital, Shantou University Medical College,
Shantou, Guangdong, China

3Department of Cardiothoracic Surgery, the 2nd Affiliated Hospital, Shantou University Medical College,
Shantou, Guangdong, China

4Department of Public Health, Shantou University Medical College, Shantou, Guangdong, China
*These authors contributed equally to this work.

ABSTRACT
Background. Esophageal squamous cell carcinoma (ESCC) is one of themost prevalent
types of upper gastrointestinal malignancies. Here, we used 1H nuclear magnetic
resonance spectroscopy (1H-NMR) to identify potential serum biomarkers in patients
with early stage ESCC.
Methods. Sixty-five serum samples from early stage ESCC patients (n = 25) and
healthy controls (n = 40) were analysed using 1H-NMR spectroscopy. We distin-
guished between different metabolites through principal component analysis, partial
least squares-discriminant analysis, and orthogonal partial least squares-discriminant
analysis (OPLS-DA) using SIMCA-P+ version 14.0 software. Receiver operating
characteristic (ROC) analysis was conducted to verify potential biomarkers.
Results. Using OPLS-DA, 31 altered serummetabolites were successfully identified be-
tween the groups. Based on the area under the ROC curve (AUROC), and the biomarker
panel with AUROC of 0.969, six serum metabolites (α-glucose, choline, glutamine,
glutamate, valine, and dihydrothymine) were selected as potential biomarkers for early
stage ESCC. Dihydrothymine particularly was selected as a new feasible biomarker
associated with tumor occurrence.
Conclusions. 1H-NMR spectroscopy may be a useful tumour detection approach in
identifying usefulmetabolic ESCCbiomarkers for early diagnosis and in the exploration
of the molecular pathogenesis of ESCC.

Subjects Biochemistry, Clinical Trials, Gastroenterology and Hepatology, Oncology,
Translational Medicine
Keywords Esophageal squamous cell carcinoma, Metabolomics, Biomarker, 1H- NMR spec-
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INTRODUCTION
Esophageal squamous cell carcinoma (ESCC), amajor histologic type of oesophageal cancer,
is a prevalent upper gastrointestinal malignancy that affects major populations in China
(Lin et al., 2013). Patients diagnosed during the early stages of ESCC have significantly
greater long-term survival rates (at least five years or more) than those diagnosed at
middle or later stages. Most ESCC patients exhibit metastasis or locally advanced ESCC
at the time of diagnosis and have a five-year survival rate of only 5∼15% (Deng & Lin,
2018). Therefore, early detection of ESCC is important to improve survival rates and
to predicate prognosis. Current techniques, including computed tomography scanning,
upper gastrointestinal radiography, endoscopic ultrasonography, and chromoendoscopy
with iodine staining, have limitations or low specificities and sensitivities (Kuwahara et al.,
2010; Zhang et al., 2013a; Zhang et al., 2013b). These limitations highlight the need for
accurate non-invasive screening tools to facilitate early ESCC detection. Thus, there is a
need for the development of such a diagnostic tool, and for reliable biomarkers with high
sensitivity and specificity at an early curative stage.

Metabolomics, a new high throughput technology, is a powerful approach for surveying
endogenous small molecule metabolites (<1,000 Dalton) through the non-invasive analysis
of cells, tissues, or biofluids (Idle & Gonzalez, 2007; Davis et al., 2012). Metabolomics
focuses on the unique metabolomic fingerprint spectrum generated by metabolic processes
in a biological system through targeted or non-targeted strategies (Sanchez-Espiridion
et al., 2015; Xu et al., 2016). Metabolomics identifies a broad field for the detection of
useful biomarkers for disease diagnosis, therapy, and prognosis, and for insights into the
pathophysiologic mechanisms of oncogenesis and tumour staging. 1H nuclear magnetic
resonance (1H-NMR) spectroscopy is a non-destructive and non-invasive technique that
requires a small quantity of samples to screen early cancer-associated perturbations in
cellular metabolism. Today, many studies are applying metabolomics technology on tissue,
plasma, serum, and urine samples to reveal variation in the tricarboxylic acid (TCA) cycle,
and in the metabolism of choline, amino acids, fatty acids, and urea to identify metabolite
biomarkers in patients with oesophageal cancer (Yang et al., 2013; Mir et al., 2015; Cheng
et al., 2017). However, there are still some questions that need to be answered. What are
the critical metabolite changes that occur in the early stages of ESCC? What level of serum
metabolomic sensitivity and specificity is required to distinguish patients with early ESCC
from healthy groups? Answering these two questions may provide a means to improve
early diagnosis, therapy, and prognoses for ESCC patients.

Therefore, we applied principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA) methods based on 1H-NMR spectroscopy to identify
global changes in serum metabolic profiles. We analysed and compared the serum
metabolic profiles between healthy controls (CTRL) and patients in the early stages of
ESCC. Furthermore, orthogonal partial least squares discriminant analysis (OPLS-DA)
was applied to visualize the metabolic variation between the two serum samples. Our
objectives of this study were to identify potential diagnostic serum biomarkers for early
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Table 1 Summary of clinical and demographic characteristics for early stage of ESCC patients and
healthy controls (CTRL).

CTRL ESCC p

Number of subjects 40 25 0.502
Male/Female 31/9 19/6 –
Age (years) 61.6± 7.59 62.8± 8.36 0.721
BMI (kg/m2) 21.6± 5.03 22.3± 4.98 0.862
Differentiation degree / Well:23

Middle:2
–

Lymph node metastasis / Negative:19
Positive:6

–

TNM classification / I:7
II:18

–

Notes.
ESCC, esophageal squamous cell carcinoma; CTRL, healthy controls.

stage ESCC using 1H-NMR spectroscopy, and to increase our understanding of the
underlying mechanisms of ESCC.

MATERIALS & METHODS
Study subjects and sample collection
Serum samples (65) were collected from the Department of Cardiothoracic Surgery and
the Medical Examination Center in the Second Affiliated Hospital of Shantou University
Medical College, between December 2016 and June 2018. These samples included those
from 40 CTRL and 25 patients in the early stages of ESCC (stage I/II) not treated with
chemotherapy, radiotherapy, or chemoradiotherapy. Patient information and clinical
characteristics are summarized in Table 1. The clinical stages of ESCC patients were
diagnosed using esophagoscopy examination with biopsy, X-ray barium radiography, and
chest computed tomography. Tumour staging was based on the American Joint Committee
on Cancer’s (AJCC) 7th staging system. CTRL, recruited from our health examination
center, were matched with patients with ESCC based on age, gender, BMI, and place of
residence. This study was approved by the Ethical Committee of Second Affiliated Hospital
of Shantou University Medical College (Registration No. 2016-32) and carried out in
accordance with the Declaration of Helsinki. Informed consent was obtained from each
subject before participation in the study.

Sample preparation and 1H NMR spectroscopy
About five mL of peripheral venous blood was collected from each subject between 7 and
8 am into tubes without any anticoagulant, and centrifuged at 3,000 rpm for 10 min.
Serum samples were isolated and immediately stored in EP tubes for further analysis.
Anticoagulation can reduce or inhibit the activity of protein and enzymes so we did
not denature or filter them during NMR acquisition. Then, in order to avoid potential
disturbance to the metabolic status during the denaturation or filtration processes, we
acquired the serum sample and stored it at −80 ◦C immediately. In order to reduce the
influence of the proteins in blood on the NMR acquisition, Carr-Purcell-Meboom-Gill
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(CPMG) pulse sequence was used in our study. This pulse sequence can suppress signals
from macromolecules and other molecules with constrained molecular motion, although
not completely. CPMG is also a common method to acquire NMR spectrum of blood
samples and has aided in the metabolomic studies of many kinds of clinical disease (Zhang
et al., 2013a; Zhang et al., 2013b; Chen et al., 2015). Frozen serum samples were thawed
immediately and vortexed for 10 s at room temperature. Then, 200 µL of phosphate
buffer solution (90 mM NaH2PO4/Na2HPO4, pH = 7.4) was added to 400 µL serum for
NMR detection. After centrifugation at 10,000 rpm for 10 min at 4 ◦C, approximately 550
µL of the clear supernatant was transferred into five mm NMR tubes (ST500, NORELL,
Inc., Morganton, NC, USA) for sampling. An NMR spectrometer (600.13 MHz, Bruker
Avance III, Bruker Corporation, Kalsruhe, Germany) was used to obtain 1H-NMR spectra
under CPMG pulse sequence with a total spin relaxation delay (2 nτ ) of 70 ms to weaken
broad resonances from high molecular weight compounds and to retain low molecular
weight compounds and some lipids. All serum samples were analysed in random order at
298 K. One-dimensional spectrum was used to obtain CPMG spin echo pulse sequence
(RD-90◦-(τ -180◦-τ )n-ACQ) to suppress water signal with a relaxation delay of 5 s. The
acquisition parameters were: spectral width, SW = 20 ppm; recycle delay, RD = 4.0 s; t1
= 350 µs; mixing time, tm = 100 ms; number of scans, NS = 32; number of points, TD =
32,768; and acquisition time, AQ = 2.73 s.

1H NMR spectroscopy analysis
The raw data (free induction decays, FIDs) were input into MestReNova Version 9.0.1
(Mestrelab Research, Santiago de Compostela, Galicia, Spain, 9.0.1) for processing and
complexity reduction to facilitate pattern recognition. To enhance the signal-to-noise
ratio, all 1H-NMR spectra were multiplied by a 1.0 Hz exponential line broadening prior
to Fourier transformation. The chemical shifts of serum spectra were referenced with
the methyl doublet signal of lactate at δ 1.33 ppm as an internal standard. Both phase
adjustment and baseline correction were performed manually. Each spectrum (from 9.0
to 0.5 ppm) was segmented into rectangular buckets with equal widths of 0.002 ppm with
each excluding residual water (from 5.18 to 4.67 ppm) and urea (from 6.40 to 5.40 ppm)
regions. To remove the dilution effect or bulk mass differences among samples due to
differing serum weights, the remainder of each bucket was internally normalized to the
total sum of the spectral integrals for each compound prior to pattern recognition analysis.
In our study, one bin was only 1.2 Hz, therefore, no more than one compound existed in
each bucket. In the usual case of more than one bucket per compound, each bucket was
statistically analyzed in multivariate statistical analysis, but the sum of the integrals in any
peak (not bucket) of some compound in NMR spectra was used for univariate statistical
analysis.

Pattern recognition (PR) analysis of serum
To establish a global profile of the feature in ESCC patients and CTRL, we usedmultivariate
analysis to identify consistent variations between 1H NMR data sets. Serum spectra data
were input into the SIMCA-P+ version 14.0 software package (Umetrics Inc., Umea,
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Sweden, V 14.0) for PR analysis. First, PCA, an unsupervised PR method, was performed
using the Parato-scaled normalized 1H NMR spectra to discover the intrinsic trends and
outliers between the two serum sample groups. Then, PLS-DA and OPLS-DA, the two
supervised PR methods, were performed to prevent over-fitting of the statistical model and
to select potential biomarkers.

Model quality and reliability were assessed using R2X, R2Y, and Q2 values, which reflect
the explained variance and model predictability. R2X represents the variation explained
by the models and R2Y indicates the ‘goodness of fit’ in the data. Q2, calculated by
a cross-validation procedure, indicates the predictability of the model. To avoid model
overfitting, a default seven-round cross-validation procedure was performed in SIMCA-P+
14.0 to determine the optimal number of principal components. Reliability of the models
was further rigorously validated by a permutation analysis (n= 300 times). The variable
importance in the projection (VIP) from OPLS-DA models was identified as a coefficient
for peak selection. These variables were considered potential biomarker candidates based
on class discriminating information –the higher the value, the greater the discriminatory
power of the metabolite. VIPs larger than 1.0 usually represent those metabolites with the
greatest group discrimination.

Data preprocessing statistical analysis
CV-ANOVA (analysis of variance testing of cross-validated predictive residuals) was
performed to identify significantly different features between groups in OPLS-DA models.
Univariate statistical significance of p <0.05 was considered to distinguish metabolites.
Student’s t (normal distribution) or Mann–Whitney U (if abnormal distribution)
tests were performed to analyse the metabolic profiles between ESCC patients and
CTRL. The metabolites were recognized according to the Human Metabolome Database
(http://www.hmdb.ca/) and receiver operating characteristic (ROC) analysis was conducted
in SPSS 19.0 (SPSS Inc., Chicago, IL, United States) to verify potential biomarkers. Area
under the ROC curve (AUROC) of >0.80 indicated excellent diagnostic ability.

RESULTS
Metabonomic profiling of serum samples for ESCC patients and CTRL
The one-dimensional 1H-NMR spectra of serum samples provided an overview of all
metabolites from ESCC patients and CTRL (Fig. 1). We did not try to absolutely quantify
the metabolites in serum samples by comparing them with an internal standard such as
DSS or TMSP. In fact, no current NMR standard is readily available for serum. DSS, TMS
or TMSP are not suitable as an internal standard for proteinaceous fluids (such as serum
and plasma) due to their potential protein binding capacity (Shimizu, Ikeguchi & Sugai,
1994; Alum et al., 2008). The chemical shift and line-width of DSS or TMSP will show
large variation due to protein binding, thus greatly affecting the accurate qualification
of the metabolites in serum. In our study, endogenous lactate (δ 1.33 ppm) in serum
samples was used as an internal standard reference, and the relative concentrations
of the metabolites were calculated and statistically discriminated by integrating their
signals in the NMR spectra. Ultimately, approximately 47 metabolites were tagged in the
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Figure 1 1HNMR spectra (δ 0.5–9.0 ppm) of serum obtained from healthy controls (CTRL) and the
patients at the early stage of esophageal squamous cell carcinoma (ESCC). The regions of δ 6.0–9.0
ppm (in the left dashed box) were vertically magnified 20 times, and the regions of δ 0.5–1.1 ppm (in
the right dashed box) were magnified four times both vertically and horizontally compared with corre-
sponding regions of δ 1.1–6.0 ppm for the purpose of clarity. Keys: 1-MH, 1-methylhistidene; 3-HB, 3-
hydroxybutyrate; 3-MH, 3-methylhistidene; AA, acetoacetate; Ace, acetate; Act, actone; Ala, alanine; Asc,
ascorbate; Cho, choline; Ci, citrate; Cn, creatinine; Cr, creatine; DHT, dihydrothymine; DMG, N, N-
dimethylglycine; EA, ethanolamine; For, formate; G, glycerol; Gln, glutamine; Glu, glutamate; Gly, glycine;
GPC, glycerolphosphocholine; HG, homogentisate; HOD, the residual water resonance; IB: isobutyrate;
Ile, isoleucine; IP, isopropanol; L, lipid; Lac, lactate; LDL, low density lipoprotein; Leu, leucine; Lys, ly-
sine; M, malonate; Met, methionine; MG, methylguanidine; m-I,myo-inositol; Mol, methanol; NAS, N-
acetyl glycoprotein signals; OAS, O-acetyl glycoprotein signals; Phe, phenylalanine; Py, pyruvate; Sar, sar-
cosine; Thr, threonine; TMAO, trimethylamine N-oxide; Tyr, tyrosine; Val, valine; VLDL, very low density
lipoprotein; α-Glc, α-glucose; β-Glc, β-glucose.

Full-size DOI: 10.7717/peerj.8151/fig-1

spectra between the two groups, including amino acids, organic acids, energy metabolism,
methylguanidine, myo-inositol, trimethylamine N-oxide, glucose components, lipids,
carbohydrates, nucleotides and so on.

PCA, PLS-DA, and OPLS-DA pattern recognition analysis of serum
metabolomic profiling for ESCC patients and CTRL
To obtain useful metabolomic profiles, unsupervised PCA analysis of 1H-NMR results
showed the difference between ESCC patients and CTRL. Pareto scaling, performed by
dividing the mean-centered data by the square root of the standard deviation (SD), was
applied to the variables. The two-dimension PCA score plots and loading plots revealed
separation trends and group clustering based on 1H-NMR spectra of the two groups
(R2X(PC1+PC2) = 43.3%) (Figs. 2A–2B). However, we were unable to identify a very
clear difference between them via PCA scores plot. We performed supervised PLS-DA and
the resultant plot showed different metabolic perturbations between the groups using 2D
score plots (R2X = 51.9%, R2Y=80.9%, Q2

= 81.4%) (Fig. S1). To maximize the group
separation and to visualize the metabolic distinctions, the OPLS-DA classification model
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Figure 2 The 2D PCA scores plots (A) and loading plots (B) based on 1HCPMGNMR spectra of serum
obtained from healthy controls (CTRL) and ESCC group (R2X (PC1+PC2)= 43.3%).

Full-size DOI: 10.7717/peerj.8151/fig-2

was performed to investigate metabolomic alterations. We used the OPLS-DA methods
to distinguish between ESCC patients and CTRL obviously (Fig. 3 A-D). Taken together,
these results suggest that the models were robust and the random permutation tests (300
iterations) indicated that those models were not over-fitted (R2X = 81.9%, R2Y = 95.4%,
Q2
= 94.0%, CV-ANOVA p = 2. 23×10−35). Our results indicate that 1H-NMR-based

serum metabolomics have potential application in identifying early ESCC.

Discovery, description, and identification of potential biomarkers and
a biomarker panel
A total of 31 differential metabolites were identified as characteristic metabolites (Table 2).
We constructed a map of hierarchical cluster analysis (Fig. 4) to visualise the distinction
power of biomarkers between the two groups. The rows represent the results of the
expression of metabolites, and the columns show serum samples. In the top bar, the light
blue color indicates CTRL individuals, and the pink color indicates ESCC patients. Figure 4
indicates that the metabolite profile could distinguish ESCC patients from CTRL. Based on
the sensitivity and specificity of this approach, ROC analyses were performed for further
prediction of potential biomarkers. Neoplastic diseases involve systematic disturbance
of metabolic biochemical pathways. Therefore, a biomarker panel including multiple
biomarkers, rather than a single biomarker, can better distinguish the different groups and
supply useful information for clinicians. We identified a panel of six biomarkers, glucose,
choline, glutamine, glutamate, valine, and dihydrothymine (DHT), that were combined
together by binary logistic regression with high AUC values of 0.969 (Fig. 5). Changes in
these metabolite biomarkers could be related to tumour burden. In particular, the decline
of DHT (Fig. 6, p < 0.01), a new feasible biomarker, is associated with tumor invitation.

DISCUSSION
Patients with ESCC have greater long-term survival when ESCC is treated in its early
stages. Early detection increases diagnostic accuracy, promotes personalized treatment,
and improves prognostic effects. However, the main causes of tumour occurrence remain
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Figure 3 OPLS-DA scores plots (A) derived from 1HCPMGNMR spectra of serum and correspond-
ing coefficient loading plots (C, D) obtained from controls (CTRL) and ESCC by cross validation (B) by
permutation test. The color map shows the significance of metabolites variations between the two classes.
Peaks in the positive direction indicate metabolites that are more abundant in the groups in the positive
direction of first principal component. Consequently, metabolites that are more abundant in the groups in
the negative direction of first primary component are presented as peaks in the negative direction.

Full-size DOI: 10.7717/peerj.8151/fig-3

unknown (Lee et al., 2017). One study found five salivary biomarkers (propionylcholine, N-
Acetyl-L-phenylalanine, sphinganine, phytosphingosine, and S-carboxymethyl-L-cysteine)
in combinationwith anAUCvalue of 0.997 differentiated between early stage oral squamous
cell carcinoma and controls (Wang et al., 2014), while we found a panel of six serum
biomarkers (glucose, choline, glutamine, glutamate, valine, and DHT) combined together
with high AUC values of 0.969 differentiated between early stage ESCC and CTRL. The
results showed that there were no obvious cross correlations between the two groups,
indicating that different forms of cancer may have different metabolic features associated
with them. Therefore, recognition of the characteristic metabolites of early stage ESCC
would enable us to identify the disease and intervene earlier, which is more likely to prevent
and/or delay the development of ESCC to medium-term or advanced stage, ultimately
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Table 2 Summary of metabolites statistical data from healthy controls (CTRL) and ESCC groups. The
Variable importance in projection (VIP) values more than 1,000 were used for the statistical significance.
Univariate statistical significance of p < 0.05 was identified to distinguish early ESCC metabolites from
CTRL. Sensitivity, specificity, AUC curve value of the metabolites were also for discrimination ESCC from
CTRL. Metabolites in bold showed potential biomarkers between ESCC and CTRL.

Metabolites ESCC vs CTRL

VIP p trend sensitivity specificity AUC

1-Methylhistidine 1.096 2.55×10−8 ↓ 0.694 0.783 0.754
3-Hydroxybutyrate 2.430 2.27×10−13 ↑ 0.712 0.754 0.712
Acetate 2.171 8.09×10−6 ↑ 0.649 0.525 0.637
Acetone 2.143 0.0005 ↑ 0.432 0.708 0.584
Alanine 2.516 0.0004 ↓ 0.753 0.822 0.789
Choline 3.819 2. 27×10−21 ↑ 0.839 0.876 0.855
Citrate 1.134 0.031 ↑ 0.587 0.682 0.633
Creatinine 1.023 2.66×10−7 ↑ 0.691 0.535 0.579
Dihydrothymine 3.055 3.25×10−21 ↓ 0.845 0.822 0.824
Glutamate 3.587 1.38×10−10 ↑ 0.823 0.847 0.834
Glutamine 3.135 1.43×10−8 ↑ 0.803 0.841 0.816
Glycerol 1.725 2.68×10−5 ↑ 0.662 0.713 0.678
Isobutyrate 1.543 1.54×10−5 ↑ 0.630 0.512 0.594
Isoleucine 1.891 6.73×10−16 ↓ 0.610 0.675 0.625
Isopropanol 1.938 0.0007 ↓ 0.723 0.641 0.662
Leucine 1.964 1.38×10−11 ↓ 0.749 0.810 0.786
Low density lipoprotein 2.061 0.017 ↑ 0.520 0.812 0.642
Lysine 2.406 7.83×10−6 ↑ 0.707 0.556 0.634
Malonate 1.191 2.48×10−7 ↑ 0.498 0.674 0.589
Methanol 2.273 1.36×10−8 ↓ 0.476 0.683 0.529
Methionine 1.378 1.96×10−5 ↓ 0.588 0.786 0.671
Methylguanidine 2.648 1.64×10−10 ↓ 0.801 0.721 0.742
myo-Inositol 1.573 0.003 ↓ 0.719 0.843 0.785/
Pyruvate 2.054 1.84×10−9 ↓ 0.723 0.810 0.773
Trimethylamine N-oxide 1.128 6.45×10−6 ↓ 0.675 0.497 0.576
Valine 2.964 6.45×10−9 ↓ 0.801 0.843 0.827
Very low density lipoprotein 2.234 0.014 ↓ 0.611 0.720 0.651
α-Glucose 4.672 3.05×10−9 ↓ 0.891 0.856 0.879
β-Glucose 3.656 0.0003 ↓ 0.853 0.769 0.798

Notes.
‘ ↑’, increased. ‘ ↓’, decreased.

resulting in improved prognoses for patients. Previous studies found that variations in
molecular and biochemical metabolism occur before histopathological and morphological
changes (Wei, Wolin & Colditz, 2010). Here, we used 1H-NMR spectroscopy to identify
useful metabolic ESCC biomarkers for early diagnosis, and to further explore the molecular
pathogenesis of ESCC.

We found that the metabolic profiles of serum could differentiate patients with ESCC
from CTRL using OPLS-DA methods. Altered metabolite levels could reflect disturbed
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Figure 4 Hierarchical cluster analysis of serummetabolic profile for distinguishing ESCC from healthy controls (CTRL). The rows represent
the results of the expression of metabolites, and the columns show serum samples. The expression values are represented by the color scale. The in-
tensity increases from blue (relatively decreased) to yellow (relatively increased). In the top bar, the light blue color indicates CTRL, and the pink
color indicates ESCC patients.

Full-size DOI: 10.7717/peerj.8151/fig-4

Figure 5 ROC curve of the discriminatory power of combined potential biomarkers panel for ESCC
and CTRL (Combined AUC= 0.969).

Full-size DOI: 10.7717/peerj.8151/fig-5

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.8151 10/17

https://peerj.com
https://doi.org/10.7717/peerj.8151/fig-4
https://doi.org/10.7717/peerj.8151/fig-5
http://dx.doi.org/10.7717/peerj.8151


Figure 6 Box plots of relative integral values of dihydrothymine between healthy controls (CTRL) and
ESCC groups (??, p< 0.01).

Full-size DOI: 10.7717/peerj.8151/fig-6

glycometabolism (glycolysis and the TCA cycle), fatty acids, amino acids, choline, ketone
bodies, nucleotides, and lipid metabolism. The potential biomarker panel, which reflects
metabolic changes including glycolysis, choline, amino acids, and nucleotide metabolism,
could significantly differentiate early ESCC patients from CTRL. One glucose molecule
can generate 36 ATP molecules via the TCA cycle, while glycolysis produces only two (Fig.
S2). The use of glucose by tumour cells to generate energy under conditions of adequate
oxygen supply is called theWarburg effect (Warburg, 1956;Gillies, Robey & Gatenby, 2008).
The significant decrease in glucose found in our study demonstrated that the metabolic
feature of ESCC with strong aerobic glycolysis is consistent with the results observed
in many other rapidly proliferating cancers (Theodorescu et al., 2006; Chen et al., 2011).
Accelerated glycolysis is a characteristic of all types of cancer and altered glycolysis has been
previously examined in ESCC. The metabolomic results showed that energy metabolism
was the dominant factor in the pathophysiologic mechanism of ESCC. It also identified
triglycerides, glycoproteins, and acetone as important sources of energy. Lactate levels
were disregarded because of the chance of glycolysis occurring in serum samples during
the experiment. Choline, with higher VIP values in patients with ESCC, was the second
markedly altered metabolite. Choline, phosphorylcholine, and glycerophosphorylcholine
(GPC) are important for the phospholipid metabolism of cell membranes and have been
previously identified as markers of cell proliferation and growth. The increased choline and
decreased GPC identified in our research were probably membrane breakdown products
due to accelerated tumour propagation. This result is consistent with those obtained
for other tumour types (Dobrzyńska et al., 2005; Monteggia et al., 2000; Chen et al., 2011),
including those in the high-resolution magic-angle spinning 1H-NMR spectroscopy study
of squamous carcinoma tissues (Yang et al., 2013). Elevated glutamine, glutamate, and
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glucogenic amino acid levels were also observed playing a distinct role in proliferating
cancer cells in early stage ESCC. To provide for continuous high-energy demands for fast
cell proliferation even under hypoxic conditions, glutamine is converted to glutamate, and
further transformed into alpha-ketoglutarate for ATP synthesis through the TCA cycle
(Zhang et al., 2013a; Zhang et al., 2013b), similarly shown in the results of other serum
studies (Wu et al., 2009; Zhang et al., 2011; Ikeda et al., 2012; Wang et al., 2017; Zhang et
al., 2017). However, our results are inconsistent with those previously reported for ESCC
(Jin et al., 2014; Ma et al., 2014). One reason for this is that these studies focused on
the signatures of lymph node ESCC metastasis in which glutamine/glutamate could be
consumed in the TCA cycle. Another plausible reason for the observed discrepancies is
that they used a different platform (UPLC/TOF/MS or GC/MS) and different status of
tumor metabolism (Davis et al., 2012; Liu et al., 2013), whereas we only concentrated on
the early stages of ESCC. A number of amino acid and amino acid derivatives consumed
in the blood possibly represent cachexia-induced skeletal muscle protein breakdown in the
early stages of ESCC. Compared with CTRL, we found that valine levels were significantly
reduced in patients with ESCC. Valine is a branched-chain amino acid, which are essential
amino acids that serve as nitrogen donors for nonessential amino acids and are important
for energy consumption (Jin et al., 2014). The decreased valine levels in ESCC patients
indicate the need for glutamine biosynthesis, related to the TCA cycle, in response to
higher energy requirements for tumour proliferation. We also observed that DHT levels
decreased more remarkably in early stage ESCC than in CTRL. DHT was identified by
spiking because the discovery of this metabolite is one of the essential results of our study.
DHT is an intermediate decomposition product of thymine (Pero, Johnson & Olsson,
1984). DNA replication in tumour cells rapidly exhausts thymine levels; hence, decreased
DHT could be a feasible new biomarker associated with tumour occurrence (Hasim et al.,
2012). Tumour burden can inhibit and lower the body’s immune function, and further
promote the development of cancer. The results indicate that tumour burden causes
the reprogramming of serum metabolites in ESCC patients. Understanding how these
metabolite profiles differ should provide insight into early stage ESCC and identify new
targets for treatment.

CONCLUSIONS
The present study manifested the serum metabolic alterations of early stage of ESCC by
NMR-based metabolomics method, which has convincingly contributed in both aiding
diagnosis and affording new insights in regard to pathological mechanisms in ESCC. NMR
has been proven to be a well-established, robust, and reproducible tool for non-invasive
methods, and has provided valuable diagnostic information, and potential therapeutic
targets for clinical therapeutics. However, it still has a relatively low sensitivity and a
narrow dynamic range compared to other platforms (such as mass spectrometry). We
did not achieve absolute quantification of metabolites in our experiment as the lipids and
protein were not removed. In the future, using a combination of multiple metabolomic
analysis platforms could give us a detailed picture of metabolic changes in ESCC patients
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compared with CTRL. Furthermore, understanding the molecular pathogenesis of serum
metabolic alterations in ESCC could offer a new field for individualized cancer therapy and
prognostic prediction. In the future, a large number of independent cohorts of patients
with different varieties of cancer, along with CTRL, will be recruited to screen for potential
biomarkers and to verify the findings reported here.
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