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Martin A. Mörsdorf, mam28@hi.is

Academic editor
Patricia Gandini

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.815

Copyright
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ABSTRACT
In ecology, expert knowledge on habitat characteristics is often used to define sam-
pling units such as study sites. Ecologists are especially prone to such approaches
when prior sampling frames are not accessible. Here we ask to what extent can
different approaches to the definition of sampling units influence the conclusions
that are drawn from an ecological study? We do this by comparing a formal versus
a subjective definition of sampling units within a study design which is based on
well-articulated objectives and proper methodology. Both approaches are applied to
tundra plant communities in mesic and snowbed habitats. For the formal approach,
sampling units were first defined for each habitat in concave terrain of suitable slope
using GIS. In the field, these units were only accepted as the targeted habitats if
additional criteria for vegetation cover were fulfilled. For the subjective approach,
sampling units were defined visually in the field, based on typical plant communities
of mesic and snowbed habitats. For each approach, we collected information about
plant community characteristics within a total of 11 mesic and seven snowbed units
distributed between two herding districts of contrasting reindeer density. Results
from the two approaches differed significantly in several plant community charac-
teristics in both mesic and snowbed habitats. Furthermore, differences between the
two approaches were not consistent because their magnitude and direction differed
both between the two habitats and the two reindeer herding districts. Consequently,
we could draw different conclusions on how plant diversity and relative abundance
of functional groups are differentiated between the two habitats depending on the
approach used. We therefore challenge ecologists to formalize the expert knowledge
applied to define sampling units through a set of well-articulated rules, rather than
applying it subjectively. We see this as instrumental for progress in ecology as only
rules based on expert knowledge are transparent and lead to results reproducible by
other ecologists.
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INTRODUCTION
Sampling in ecology can be challenging. Ecological systems are characterized by

complexity (Loehle, 2004) about which there is a paucity of information (Carpenter, 2002).

Hence, ecological sampling is often accompanied by unknown characteristics that may

unintentionally cause estimates to be dependent on the sampling designs, even to the

extent that they “beget conclusions”, as was shown for the impact of the Exxon Valdez

oil spill (Peterson et al., 2001; Peterson et al., 2002). The bases for achieving unbiased

estimates are study- or sampling designs that include well-articulated objectives along with

proper methodology (Olsen et al., 1999; Yoccoz, Nichols & Boulinier, 2001; Albert et al.,

2010). In addition, sampling designs need to be transparent, enabling others to repeat the

study. Accordingly, ecologists have been encouraged to use formal approaches (Legendre

et al., 2002; Edwards et al., 2005; Edwards et al., 2006; Albert et al., 2010). However, whilst

sources of bias and a call for formal rules in sampling designs have received attention, the

seemingly simple task of defining a sampling unit, such as a study site, also merits thorough

consideration, especially in community ecology. Indeed, the definition of sampling units

is often a task that demands expert knowledge. Expert knowledge can be applied in such

a way that sampling units are formally defined but in ecology, expert knowledge implies

often a subjective definition of sampling units before data collection is initiated (Whittaker,

Levin & Root, 1973; Kenkel, Juhász-Nagy & Podani, 1989; Franklin, Noon & George, 2002;

Loehle, 2004; McBride & Burgman, 2012).

In situations where sampling units are not clearly defined, the availability of relevant

sampling units is not known before entering the field, i.e., there is no well-defined

sampling frame and in its vacancy, a subjective definition of sampling units is applied in

order to guide sampling to ecological units that are determined to be suitable in the field. In

principle, the selection of any subjectively defined sampling unit can never be sufficiently

articulated as to enable other researchers to repeat the study, or to allow generalizations of

results to a specific target population (in a statistical sense) (Olsen et al., 1999; Schreuder,

Gregoire & Weyer, 2001). Moreover, in phytosociological studies it has been documented

that individual preferences in selecting sampling units that were defined subjectively can

lead to biased estimates (Chytrý, 2001; Botta-Dukát et al., 2007; Hédl, 2007). The criticism

of using a subjective definition of sampling units is both theoretically and empirically

based, but it may merely reflect a study-specific bias between subjective and more formal

approaches. Therefore, in this study we want to compare a subjective versus a formal

definition of sampling units in the same study system in order to assess whether subjective

definition merely introduces bias, overstating findings, or if the way of defining sampling

units even begets conclusions.

Studies that have compared formal versus subjective sampling have investigated

sampling units based on existing geographical data (e.g., Edwards et al., 2006; Hédl,

2007; Michalcová et al., 2011). A formal a priori definition of sampling unit criteria could

therefore be done before sampling was initiated. However, ecologists might often not have

access to such data which is especially the case when the spatial extent of sampling units is

smaller than the spatial resolution of previously existing geographical data (Roleček et al.,
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2007). As a way of making the definition of units more transparent in such situations, a few

studies used formal criteria for suitable sampling units that are defined a priori to the field

sampling (e.g., Ravolainen et al., 2010).

Habitats are perhaps some of the most difficult sampling units to define (Whittaker,

Levin & Root, 1973; Franklin, Noon & George, 2002), but are central to many conservation

programs such as the “European council directive on the conservation of natural habitats

and of wild fauna and flora” (FFH) (The Council of the European Communities, 1992) or the

International Union for Conservation of Nature (IUCN) Red List of Threatened Species

(IUCN, 2013). Despite the acknowledged importance of habitats, definitions differ greatly

among conservation programs worldwide. Whereas some conservation initiatives rely on

formal definitions of habitat criteria (Jeffers, 1998; Jongman et al., 2006), others rely on a

subjective definition of habitats in the field (Jennings et al., 2009). In this paper, we focus on

habitats and address the question of whether subjective or formal definitions of sampling

units lead to different estimates of habitat properties. We therefore compared a formal

approach, where the final selection of these habitats involved an a priori definition of

sampling units, to an approach involving only a subjective definition (sensu Gilbert, 1987).

For both approaches we aimed at two habitats typical for tundra. These habitats are

characterized by their difference in growing conditions and are found in sloping, concave

terrain. Here, slopes of intermediate steepness provide intermediate moisture conditions

(mesic habitats) and gently inclined slopes have wetter conditions combined with a long

lasting snow cover (snowbed habitats) (Fremstad, 1997). For the formal approach of

defining sampling units, we used explicit criteria of the aforementioned habitat terrain and

a terrain model in order to extract a list of potential sampling units. Because we expected

that some of these would not be suitable for sampling (e.g., because of boulder fields),

we pre-defined additional habitat criteria to be applied in the field. For the subjective

approach of defining sampling units, habitats were solely subjectively selected in the field.

Both approaches were applied within the same sampling design that ensured balanced

sampling with respect to major ecological gradients.

The research questions, i.e., what are the plant community characteristics that describe

mesic and snowbed habitats, and the measurement of plant community characteristics,

were the same in both approaches. For all sampling units, estimates of standing crop of the

most abundant plant species and plant functional groups were assessed as well as within

plant community diversity. Finally, to evaluate whether different approaches to defining

sampling units lead to different estimates of habitat properties, we tested the effect of

using formal versus subjective definition of sampling units on the estimates of these plant

community characteristics.

MATERIALS AND METHODS
Ecosystem characteristics
The field sampling for the current study was conducted during peak growing season

between 20th and 30th of July 2011 on Varanger Peninsula, the north-eastern part of

Finnmark County in northern Norway (Fig. 1A). The Varanger Peninsula is delineated
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Figure 1 The figure represents the hierarchical nestedness of the sampling design. (A) The figure
shows the geographical location of the sampling region (Varanger Peninsula, northern Norway) and
nestedness of the sampling design. The shades of gray delimit the districts of contrasting reindeer density.
Open squares show the raster of 2 × 2 km landscape areas where major roads, power lines, glaciers and
large water bodies have been omitted. Black squares correspond to landscape areas that adhered to all
other delimitations in our design (see Materials and Methods section for details). (B) One landscape area
contained up to two study areas (dashed line) which inherited a pair of formally (GPS) and subjectively
(eye) defined sampling units. (C) Each sampling unit contained both a mesic and a snowbed habitat. The
recording of vegetation characteristics within each habitat was conducted along transects (dashed lines
within habitats).
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by the Barents Sea towards the north and birch forests towards the south. Sandstone,

sandstone intermingled with schist, and sandstone intermingled with schist and calcareous

bedrock are among the most common geological parental materials (The Geological

survey of Norway; www.ngu.no). The topography is characterized by a mixture of plateaus

and gently sloping hills (maximum height of approximately 500 m) that are intersected by

river valleys. The plateaus build a border with steep slopes towards the Barents Sea. During

the growing season (July to August) average (monthly) precipitation is 47.7 mm (range

38–55 mm) and temperature is 8.7 ◦C (range 6.2–10.5 ◦C) (30 year averages from 1960 to

1990, Norwegian Meteorological Institute, www.met.no).

We conducted our study in the low alpine zone. The vegetation of the low alpine

zone in this region is generally classified as low shrub tundra (Walker et al., 2005) with

mountain birch (Betula pubescens Ehrh.) forming the tree line (Oksanen & Virtanen,

1995). Topography affecting snow accumulation and moisture conditions creates habitats

that are differentiated into exposed ridges, and steep and gentle parts of slopes, creating a

sequence from xeric to mesic and very moist conditions with increasing duration of snow

cover (Fremstad, 1997). These habitat characteristics give rise to distinct vegetation types

such as ridge, mesic and snowbed vegetation (Fremstad, 1997). In this study we targeted

mesic and snowbed habitats. Commonly occurring plant species in mesic habitats on the

Varanger Peninsula include tall stature forbs (e.g., Alchemilla spp., Geranium sylvaticum

L., Ranunculus acris L., Rhodiola rosea L.) in combination with grasses (e.g., Phleum

alpinum L., Poa pratense ssp. alpigena (Fr.) Hiit., Festuca rubra L.). Snowbed habitats are

characterized by prostrate Salix species (Salix herbacea L.) in combination with other

grasses (e.g., Festuca rubra L., Poa alpina L.) and forbs (e.g., Cerastium sp.) of lower stature.

Mosses such as Dicranum spp. or Polytrichum spp. are also prevalent here.

Semi-domesticated reindeer (Rangifer tarandus L.) that are managed by indigenous

Sami people are the most common large herbivores in eastern Finnmark. In summer,

reindeer herds are kept in the coastal mountains in large districts, which range in area from

about 300 to 4000 km2, with most reindeer migrating inland during winter. Densities of

reindeer have increased during the past two decades in some of these summer grazing

districts, whilst remaining constant in others (see Table 2 in Ravolainen et al., 2010).

This was evident on Varanger Peninsula during the period of our study, with contrasting

reindeer densities observed in the two neighboring districts (Fig. 1). Other large herbivores

present on Varanger peninsula are moose (Alces alces L.) and locally occurring domestic

sheep (Ovis aries L.). Ptarmigans (Lagopus lagopus L. and Lagopus muta Montin),

Norwegian lemming (Lemmus lemmus L.), root vole (Microtus oeconomus Pallas) and

grey-sided vole (Myodes rufocanus Sund.) are also found in the area (Henden et al., 2011).

Sampling design
We employed a hierarchical, nested sampling design. Our protocol for selecting sampling

units that corresponded to the habitats of interest involved several levels of selection

(Fig. 1). Using the Varanger Peninsula as the sampling region (Fig. 1A) we covered both

districts of contrasting reindeer density. We used information retrieved from a digital ele-
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vation model (DEM) to locate landscape areas that had potential sampling units represent-

ing the habitats of interest: Using GIS (ESRI ArcGIS with ArcMap. Version 8.3.0) we placed

a raster of 2 × 2 km landscape areas over a 25 × 25 m pixel DEM (produced by Norwegian

Mapping Authorities on the basis of elevation contour lines) covering the entire peninsula

(Fig. 1A). Potential sampling units needed to have at least two 25×25 m neighboring pixels

of concave topography with a mean slope between 5 ◦and 30 ◦. We restricted sampling to

units that were a minimum distance of 500 m from birch forests and to an altitude of below

350 m above sea level in order to stay within the low alpine tundra. Finally we avoided

lakes, glaciers, major roads and power lines, and only considered units that were within

a one day’s walking distance from a road in order to be accessible. We then only selected

landscape areas that according to the DEM included at least three potential sampling units

that followed these criteria. This limited us to a total of 21 landscape areas over the whole

peninsula. Out of time constraints we ultimately sampled nine of these landscape areas,

divided between the two reindeer districts and with a good geographic spread (Fig. 1A).

Within each landscape area, the selection of sampling units was based on two different

approaches of defining them (Fig. 1B). In the first approach (formal approach), we applied

expert knowledge by defining a priori criteria in two steps. First, we defined topographical

criteria to locate habitats in GIS (as described above). However, the spatial resolution of

our DEM was too coarse for an a priori distinction of the two target habitats. Therefore,

secondly, we defined additional criteria to be evaluated in the field. Here, the sampling

unit had to show characteristics indicating both target habitats (i.e., mesic and snowbed)

to be present. This criterion corresponded to a visible shift in plant species composition.

In addition, the visually estimated vegetation cover had to be higher than 75%, and the

habitat’s grain size had to be large enough to include a minimum of two transects for vege-

tation measurements (with at least one transect having a length of 10 m and every transect

being 5 m apart; see more details below). If a potential sampling unit failed to meet any

of these criteria, it was discarded and the next most accessible potential sampling unit was

visited and inspected for possible field analyses. The sampling units of the formal approach

correspond to the sampled habitats in González et al. (2010) and Ravolainen et al. (2010).

In the second approach (subjective approach), we based the selection of sampling units

on a subjective definition as follows. As we entered the landscape areas, we subjectively

assessed topography to locate sloping, concave terrain for the habitats of interest. When

a typical plant community that either indicated a mesic or a snowbed habitat was found,

it was considered as part of a sampling unit and it was analyzed as long as habitat size

complied to the additional field criteria used in the formal approach (i.e., a vegetation

cover of minimum 75% over a habitat area large enough to include a minimum of two

transects, with at least one of them being 10 m long and each transect being horizontally

spaced 5 m apart from each other). For both approaches, the final study unit was delineated

either by convex areas of heath vegetation or a maximum transect length of 50 m.

Sometimes we sampled two sampling units per approach within one landscape area, in

which case the closest set of sampling units, i.e., one from each of the two approaches, were

termed “study area” being nested within landscape area (Fig. 1B).
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Table 1 The sample sizes are presented for each of the hierarchical levels of the sampling design, for
each of the two approaches and their summarized sample size. The formal and the subjective approach
share samples at both levels above the level of sampling units.

Nested hierarchy Replication of units

Formal Subjective Total for both
approaches

Landscape area 9 9 9

Study area 11 11 11

Habitats/sampling units 11 11 22

Transects 30 25 55

Mesic habitat

Plots 199 152 351

Landscape area 6 6 6

Study area 7 7 7

Habitats/sampling units 7 7 14

Transects 18 16 34

Snowbed habitat

Plots 85 103 188

Measurement of plant community characteristics
Within each selected habitat, measurement of plant community characteristics was

identical for both approaches, except for the placement of transects. In the formal

approach, the starting point of each transect was given by the initial GPS coordinates;

in the subjective approach, starting points were chosen subjectively so that transects would

cover the longest spatial extent of the targeted habitats (Fig. 1C). For both approaches,

each transect was marked with a measuring tape running downslope from the starting

point, with 5 m in horizontal distance between transects. Depending on the spatial

extent of the habitats, we sampled between 2 and 5 transects with lengths varying from

4 m to 32 m. Thereafter, we recorded plant species abundance using the point intercept

method according to Bråthen & Hagberg (2004). A frame of 40 cm × 40 cm with 5 pins

of 2 mm diameter attached, one to each of the four frame corners and one to the center

(see Ravolainen et al., 2010), was placed at fixed intervals of 2 m along the measuring tape.

For each placement of the frame (i.e., for each plot), intercepts between pins and above

ground vascular plant parts were recorded for each species separately. Species within the

frame that were not hit by a pin were recorded with the value of 0.1. Table 1 presents a list of

replication of all study units according to the spatial hierarchy of our design.

Response variables for data analyses
We converted point intercept data into biomass (g/plot) using weighted linear regression

(Bråthen & Hagberg, 2004) and established calibration models (see Table S1 in Ravolainen

et al., 2010), after which plant community measures were calculated for each plot in the

data set. First we calculated three commonly used measures of within community (alpha-)

diversity (Gini-Simpson index, Shannon entropy and species richness). Then we calculated

biomass of the most dominant species (Betula nana L., Empetrum nigrum L. Hagerup.

and Vaccinium myrtillus L.) and biomass of plant functional groups (as in Bråthen et al.,
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Table 2 Major plant functional groups and their associated species encountered in mesic and snowbed habitats. The letters “M” (mesic) and “S”
(snowbed) indicate the occurrence of each species within the respective target habitat. The nomenclature follows the Pan Arctic Flora (http://nhm2.
uio.no/paf/).

Forbs Grasses

Alchemilla alpina (M,S) Ranunculus acris (M, S) Agrostis mertensii (M, S) Juncus filiformis (M, S)

Antennaria alpina (M) Rhodiola rosea (M, S) Anthoxanthum nipponicum (M, S) Luzula multiflora (M, S)

Antennaria dioica (M, S) Rubus chamaemorus (M, S) Avenella flexuosa (M, S) Luzula spicata (M, S)

Bartsia alpina (M, S) Rumex acetosa (M, S) Calamagrostis neglecta (M, S) Luzula wahlenbergii (S)

Bistorta vivipara (M, S) Sagina saginoides (S) Calamagrostis phragmitoides (M)

Caltha palustris (M) Saussurea alpina (M, S) Festuca ovina (M, S) Deciduous woody plants

Chamaepericlymenum suecicum (M) Saxifraga cespitosa (M) Festuca rubra (M, S) Arctous alpina (M)

Campanula rotundifolia (M, S) Sibbaldia procumbens (M, S) Phleum alpinum (M, S) Vaccinium uliginosum (M, S)

Comarum palustre (M) Silene acaulis (M) Poa alpina (M, S)

Draba glabella (M) Solidago virgaurea (M, S) Poa pratensis (M) Evergreen woody plants

Epilobium anagallidifolium (S) Stellaria nemorum (S) Vahlodea atropurpurea (M) Andromeda polifolia (M)

Epilobium hornemannii (M) Taraxacum croceum aggregate (M, S) Dryas octopetala (M)

Euphrasia frigida (M,S) Thalictrum alpinum (M, S) Silica rich grasses Harrimanellahypnoides (M, S)

Euphrasia wettsteinii (M, S) Trientalis europaea (M, S) Deschampsia cespitosa (M, S) Juniperus communis (M)

Geranium sylvaticum (M, S) Trollius europaeus (M, S) Nardus stricta (M, S) Kalmia procumbens (M, S)

Geum rivale (M) Veronica alpina (M, S) Linnaea borealis (M)

Listera cordata (M) Viola biflora (M, S) Sedges/Rushes Orthilia secunda (M)

Melampyrum sylvaticum (M) Viola palustris (M) Carex aquatilis (S) Phyllodoce caerulea (M)

Omalotheca norvegica (M, S) Carex bigelowii (M, S) Pyrola minor (M, S)

Omalotheca supina (M, S) Prostrate Salix species Carex brunnescens (M) Pyrola grandiflora (M, S)

Oxyria digyna (S) Salix herbacea (M, S) Carex canescens (M, S) Vaccinium vitis-idaea (M, S)

Parnassia palustris (M, S) Salix reticulata (M) Carex lachenalii (M, S)

Pedicularis lapponica (M, S) Carex vaginata (M, S) Dominant plant species

Pinguicula vulgaris (M) Eriophorum angustifolium (M) Betula nana (M, S)

Potentilla crantzii (M) Eriophorum vaginatum (M) Empetrum nigrum (M, S)

Potentilla erecta (M) Juncus arcticus (S) Vaccinium myrtillus (M, S)

2007). Certain plant functional groups such as hemi-parasites had very low abundance

and were therefore merged into the group of forbs (Table 2). Species and plant functional

groups differed between the two habitats of interest, reflecting the fact that the mesic and

the snowbed habitats were generally different in their species composition.

Statistical analysis
We analyzed the three measures of (within-) community diversity and the biomass of

different species and plant functional groups as response variables separately for each

habitat type. When fitting linear mixed effect models, the approach to defining sampling

units (formal versus subjective), the reindeer district (east versus west) and their interaction

were used as fixed factors in the models. Bedrock type was included as a factor with three

levels (sandstone; sandstone intermingled with schist; sandstone intermingled with schist

and calcareous rock) and used as a co-variate (Table S2). The landscape areas and the study

areas were set as random factors to account for spatial autocorrelation within areas. For
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some of the response variables we had to exclude study areas from the random effects

structure because data existed for one study area per landscape area only. Models that had

biomass of dominant plant species or biomass of functional groups as response variable

were loge(x + v) transformed in order to assure model assumptions, with (v) representing

the smallest biomass value of the sampled data in order to avoid negative values for

plots with zero abundance. Diversity measures were not transformed. We used standard

diagnostics to assess constancy and normality of residuals and controlled for outliers.

All models were run using the lme function as part of the nlme package (Pinheiro et al.,

2012) in R (version 2.12.1; R Development Team, 2010). A list of all models, containing

Akaike’s Information Criterion and test statistics for the used fixed factors, can be found in

Tables S3 and S4.

RESULTS
Mesic habitat
The approach to defining sampling units affected almost all estimates of plant community

diversity in the mesic habitat (Figs. 2A–2C). The estimates of the diversity indices were

in most cases significantly higher in the subjective compared with the formal approach.

However, for one of the indices (Gini-Simpson), estimates were only higher in the western

district (Fig. 2A).

Estimates of plant functional group biomass and biomass of dominant plant species

were significantly different between the two approaches (Fig. 2D). The biomass of forbs

was estimated to be consistently higher when using the subjective approach in both

districts. However, there were interaction effects between the approach type and the

reindeer district. For many response variables, differences between the two approaches

were only significant in one of the two districts (prostrate Salix, grasses, evergreens,

deciduous woody species, Vaccinium myrtillus, Empetrum nigrum L.). Biomass estimates

of other response variables (silica rich grasses and Betula nana) were lower in the eastern,

but higher in the western district when the subjective approach was used.

Snowbed habitat
The approach to defining sampling units also had significant effects on the diversity

estimates for the snowbed habitat (Figs. 3A–3C). For both Shannon entropy and species

richness, the subjective approach revealed higher estimates in the eastern but lower

estimates in the western district (Figs. 3B and 3C).

Significant differences between the two approaches were also found for the biomass

estimates of dominant plant species and of different plant functional groups (Fig. 3D).

Similar to the mesic habitat, there were significant interaction effects between the approach

to define sampling units and the reindeer district. Biomass estimates of some plant

functional groups were only affected by the approach in one of the two districts (forbs,

grasses, silica rich grasses). For prostrate Salix, we found opposite effects of the approach

between the two districts. The biomass was estimated to be significantly lower in the

eastern, but significantly higher in the western district when using the subjective approach.
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Figure 2 The figure represents all model estimates for the mesic habitat. Effect sizes (mean ±95%
confidence interval) of the response difference between the subjective and the formal approach of defining
sampling units within the mesic habitat are shown for estimates of diversity (A, B, C) and estimates of
biomass of dominant plant species and functional groups (D). Effect sizes above or below the dotted line
can be interpreted as the subjective approach having higher or lower estimates than the formal approach.
Effect sizes of biomass estimates are back transformed values from a logarithmic scale, using the exponen-
tial on effect sizes from our model, and may be interpreted as the ratio of the subjective/formal approach.
The numbers at the base of each figure represent estimates of the respective diversity index (A, B, C) and
the geometric mean of the biomass estimates (D) from the formal approach for each respective response
variable. Geometric means can be interpreted as approximate biomass estimates for the respective district.

DISCUSSION
Differences in defining sampling units affect community estimates
depending on ecological context
In our study, the sampling approach based on a subjective definition of sampling units

revealed significant effects on many of our response variables in comparison to the

approach based on formal rules.
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Figure 3 The figure represents all model estimates for the snowbed habitat. Effect sizes (mean ± 95%
confidence interval) of the response difference between the subjective and the formal approach of
defining sampling units within the snowbed habitat are shown for estimates of diversity (A, B, C) and
estimates of biomass of dominant plant species and functional groups (D). Effect sizes above or below
the dotted line can be interpreted as the subjective approach having higher or lower estimates than
the formal approach. Effect sizes of biomass estimates are back transformed values from a logarithmic
scale, using the exponential on effect sizes from our model, and may be interpreted as the ratio of the
subjective/formal approach. The numbers at the base of each figure represent estimates of the respective
diversity index (A, B, C) and the geometric mean of the biomass estimates (D) from the formal approach
for each respective response variable. Geometric means can be interpreted as approximate biomass
estimates for the respective district, hence the slightly negative value for Empetrum nigrum which had
very low biomass recordings in the eastern district.

For instance, from our subjective approach our conclusion would be that mesic and

snowbed habitats had very low but comparable biomass of silica rich grasses within the

two reindeer districts where data were collected. In contrast, our results based on a formal

definition of sampling units show a considerably higher abundance of silica rich grasses

in the eastern district where also reindeer density is higher. The role of silicate rich plants

in plant herbivore interactions (Vicari & Bazely, 1993) indicate that the acceptance of one

conclusion or the other could lead to very different ecological outcomes and highlight the

need for careful consideration in the definition of sampling units in ecological studies.
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Hence, the way sampling units were defined begets ecological conclusions to be drawn

(Peterson et al., 2001).

Previous studies have documented how individual preferences for certain sampling

units could result in biased estimates, with for instance higher estimates of species richness

compared to probabilistic sampling approaches (Chytrý, 2001; Botta-Dukát et al., 2007;

Diekmann, Kühne & Isermann, 2007). However, the subjective selection in this study only

rendered constantly higher estimates of species richness in the mesic habitats, while species

richness in the snowbed habitats was only increased by the subjective approach in the

eastern district. We can only speculate on the reasons for this lack of consistency. For

the mesic habitat, the consistently higher estimates of species richness in the subjective

approach might be due to the fact that we focused on habitats with many indicator

species that can be easily distinguished visually, such as different forb species (see Fig. 2D).

Such a preference could also explain the higher estimates of species richness and forbs of

snowbeds in the eastern district, where high reindeer abundance might lead to generally

low abundance of facilitating plant species such as forbs (Bråthen et al., 2007). The

lower species richness estimates of the snowbed habitat in the western district might be

due to a preference of the sampling units that were visually more strongly impacted by

snow, causing a higher probability of selecting for late snowbeds as opposed to earlier

snowbeds. Late emergence from snow causes marginal growing conditions for vascular

plants and reduced species richness (Björk & Molau, 2007). However, the fact that these

interpretations would only account for one specific district shows that the bias caused

by the subjective definition of sampling units in species richness depends on ecological

context. We found similar context dependencies for other diversity indices and for many of

the biomass response variables in our study (Figs. 2 and 3).

How to define sampling units to ensure comparability between
studies?
Context dependency of the differences in estimates between the two approaches could also

have relevance to the comparability of ecological studies. Idiosyncratic results from work

on similar study systems are often found in ecological research (Chase et al., 2000; Hedlund

et al., 2003; Badano & Cavieres, 2006). Our results indicate that idiosyncratic results within

studies or among different studies may have their roots in the way sampling units have

been defined. With context dependency being one of the greatest challenges of ecology

today (Wardle et al., 2011), additional context dependency enforced by the way ecological

sampling units are defined will make it even more difficult to tackle this challenge (see

e.g., Franklin, Noon & George, 2002).

The definition of sampling units in our formal approach involved abiotic characteristics

known to represent the habitats in question (e.g., slope and curvature). Such terrain

criteria were applied in a way that allowed us to accurately document each sampling unit

characteristic, although at the coarse scale of the DEM. In contrast, we did not apply

biotic criteria such as the usage of indicator plant species or indicator functional groups

in an a priori way in this approach, for two reasons. First, plant composition was largely

unknown across the potential sampling units of the two habitats, reflecting the absence
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of vegetation maps (at the grain size of our habitats) for the study area. Secondly, any

preference for plant indicators was likely to interfere with the outcome of our research

question (Ewald, 2003), i.e., what are the plant community characteristics of mesic and

snowbed habitats? However, because our focus was on plants, simple biotic criteria of

vegetation cover and a visual shift in type of plant community were not considered to

interfere with our conclusions. Although the rules applied in the formal approach were

quite simple, they were considered relevant to the research questions set. Clearly, more

specific research questions would demand more refined formal rules.

For applications in ecology, the reproducibility of studies and the comparison

between studies are essential (Shrader-Frechette & McCoy, 1994). Therefore, for any true

comparison between studies to be made, discrete sampling units such as habitats must

be defined in the same way (Loehle, 2004). Our study shows that even slight deviations

in the definition of sampling units could affect the comparability of results, even within

the same study system. That is, only the formal approach to defining sampling units is

concomitantly transparent (i.e., by the set of formal rules applied), and produced results

that fulfill the premise on which further ecological understanding can be developed.

Hence, as sampling procedures that allow reproducibility and comparisons between

studies are essential, so are the sampling procedures to allow accumulation of ecological

knowledge. Therefore, we believe that the call for formal approaches in study designs

(Legendre et al., 2002; Edwards et al., 2005; Edwards et al., 2006; Albert et al., 2010) should

also be extended to formal approaches to the definition of sampling units.

The application of expert knowledge is a matter of discussion in several fields of ecology.

There are a number of studies that address ways of eliciting expert knowledge for decision

making in conservation or landscape ecology (Burgman et al., 2011; Martin et al., 2011;

McBride & Burgman, 2012), including the use of expert opinion for modeling (Booker

& McNamara, 2004; Kuhnert, Martin & Griffiths, 2010; Martin et al., 2011). In landscape

ecology, the use of expert knowledge has recently been challenged to adhere to the same

scientific rigor as other sampling approaches (Morgan, 2014). We believe the application

of expert knowledge deserves equal attention in terms of the definition of sampling units,

and especially in the definition of habitats, which should be done in a transparent way

(Whittaker, Levin & Root, 1973; Franklin, Noon & George, 2002).
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2003. Plant species diversity, plant biomass and responses of the soil community on
abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103:45–58
DOI 10.1034/j.1600-0706.2003.12511.x.
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