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ABSTRACT

Embryo aggregation is a useful method to produce blastocysts with high developmental
competence to generate more offspring in various mammals, but the underlying
mechanism(s) regarding the beneficial effects are largely unknown. In this study,
we investigated the effects of embryo aggregation using 4-cell stage embryos in in
vitro developmental competence and the relationship of stress conditions in porcine
early embryogenesis. We conducted aggregation using the well of the well system
and confirmed that aggregation using two or three embryos was useful for obtaining
blastocysts. Aggregated embryos significantly improved developmental competence,
including blastocyst formation rate, blastomere number, ICM/TE ratio, and cellular
survival rate, compared to non-aggregated embryos. Investigation into the relationship
between embryo aggregation and stress conditions revealed that mitochondrial function
increased, and oxidative and endoplasmic reticulum (ER)-stress decreased compared to
1X (non-aggregated embryos) blastocysts. In addition, 3X (three-embryo aggregated)
blastocysts increased the expression of pluripotency, anti-apoptosis, and implantation
related genes, and decreased expression of pro-apoptosis related genes. Therefore, these
findings indicate that embryo aggregation regulates in vitro stress conditions to increase
developmental competence and contributes to the in vitro production of high-quality
embryos and the large-scale production of transgenic and chimeric pigs.
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INTRODUCTION

Pigs are useful experimental animal models because of their close anatomic, genetic, and
physiological similarities with humans (Lunney, 2007). Furthermore, pigs are advantageous
in biomedical research as disease models (Giraldo, Ball ¢» Bondioli, 2012; Kragh et al., 2009),
xenotransplantation studies (Hemann et al., 2012; Watanabe et al., 2012) and chimeric
models (Wu et al., 2017). Therefore, it is important to produce high-quality blastocysts
to improve the production efficiency of pig models for biomedical research. However, in
vitro-produced (IVP) embryos remain inferior in terms of developmental competence,
including blastocyst formation rate, blastomere number and survival rate, compared to
their in vivo counterparts (Koo et al., 2004).

Low developmental competence of IVP embryos is mainly attributed to stressful
conditions, such as endoplasmic reticulum (ER), oxidative and metabolic stresses during
in vitro culture (Ali et al., 2017). The ER is an organelle with vital functions in protein
folding and secretion and calcium homeostasis (Shiraishi et al., 2006). The accumulation
of unfolded or misfolded proteins causes ER stress, which activates cumulative cellular
damage including cellular dysfunction and ultimately leads to cell death (Kaneko ¢
Nomura, 2003). Studies have demonstrated that ER stress induces detrimental effects on
blastocyst formation and cellular survival in pigs (Kim et al., 2012; Lin et al., 2016). Reactive
oxygen species (ROS) are the byproduct of cellular energy metabolism, and induce cellular
damage and apoptosis (Halliwell ¢ Aruoma, 1991). ROS-induced developmental arrest
and apoptosis in embryo development results in reduced pre-implantation developmental
competence and subsequently delayed post-implantation development in bovine (Bain,
Madan & Betts, 2011). To overcome ROS-induced stress, researchers have investigated
the use of ROS scavengers, such as vitamin C (Jeong et al., 2006), glutathione (Li et al.,
2014), and fetal bovine serum (Mun et al., 2017), to enhance developmental competence
by decreasing ROS levels. Mitochondria-mediated metabolic stress can also create stressful
conditions. Mitochondria are key regulators of cellular energy and act as storage facilities for
calcium ions. They are also associated with eukaryotic cellular differentiation, cell death,
and growth (McBride, Neuspiel & Wasiak, 2006). Furthermore, mitochondrial number
greatly impacts oocyte maturation, fertilization, and embryo development (Babayev ¢ Seli,
2015; Dumollard, Duchen ¢ Carroll, 2007). For instance, the addition of resveratrol with
MGI132, a proteasomal inhibitor, in porcine in vitro maturation medium replenished and
improved mitochondrial function and embryo development by activating the expressions of
sirt], the gene associated with mitochondrial number (Sato et al., 2014). Other studies have
demonstrated that mitochondrial membrane potential, an indicator of cellular metabolic
activity, is an important determinant for fertilization and pre-implantation embryonic
development in pigs and mice (Romek et al., 2011; Wakefield, Lane ¢ Mitchell, 2011).

The aggregation of several embryos has been shown to be a useful method to improve
pre- and post-implantation embryo development. Embryo aggregation was first used
to produce chimeric mice (Nagy et al., 1993) and aggregated embryos showed enhanced
blastocyst formation rates and total cell numbers in mice (Boiani et al., 2003; Tang ¢ West,
2000), and other animal species, with many benefits to embryo development being reported
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in equine (Gambini et al., 2014), feline (Moro et al., 2015) and bovine (Zhou et al., 2008).
In the porcine model, aggregation increases the total cell number, ICM/TE ratio, oct4
gene expression in blastocysts (Lee et al., 2007; Terashita et al., 2011), and the efficiency of
establishing embryonic stem cell lines (Saadeldin, Kim ¢ Lee, 2015; Siriboon et al., 2015).
Despite previous research into embryo aggregation, its relationship with stress conditions
remains unclear.

In this study, we hypothesized that embryo aggregation could improve developmental
competence by reducing stress conditions during porcine early embryogenesis. To address
this, we demonstrated that porcine embryo aggregation using 4-cell stage embryos
significantly enhanced developmental competence, including blastocyst formation rate,
total cell number, ICM/TE ratio, cellular survival rate, and gene expression. Importantly,
our findings confirm that stress conditions, such as ER, oxidative and metabolic stress
associated with the mitochondria, are reduced in aggregated blastocysts. These findings
may help improve the production of IVP blastocysts with high developmental competence
and contribute significantly to biomedical research.

MATERIALS & METHODS

Chemicals
All chemicals were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA),
unless otherwise noted.

Oocyte Collection and in vitro maturation (IVM)

Porcine ovaries were collected from a nearby local abattoir in 0.9% saline containing
50 pg/mL streptomycin sulfate and 75 pg/mL potassium penicillin G at 38.5 °C within 2 h.
Cumulus-oocyte complexes (COCs) were retrieved from follicles (3—7 mm in diameter)
using an 18-gauge needle fixed to a disposable 10 mL syringe. COCs were washed three
times with Tyrode’s Albumin Lactate Pyruvate-HEPES medium (Funahashi et al., 1994).
Next, 50 COCs were cultured in 500 wL IVM medium, which consisted of tissue culture
medium 199 containing 10% porcine follicular fluid, 10 ng/mL B-mercaptoethanol,
0.57 mM cysteine, 10 ng/mL epidermal growth factor, 10 IU/mL pregnant mare serum
gonadotropin (PMSG) and 10 IU/mL human chorionic gonadotropin (hCG) in a 4-well
multi-dish (Nunc, Roskilde, Denmark) for 22 h at 38.5 °C in 5% CQO; in air. After the first
22 h of IVM, the COCs were transferred in to fresh maturation medium without PMSG
and hCG for additional 22 h at 38.5 °C in 5% CO, in air.

Parthenogenetic activation (PA)

Metaphase II (MII) oocytes were placed in a 1 mm gab wire chamber (CUY 5000P1;
Nepa Gene, Chiba, Japan) added with 280 mM mannitol containing 0.5 mM HEPES,
0.1 mM CaCl,-2H,0, 0.1 mM MgSO4-7H,0 and 0.01% polyvinyl alcohol (PVA) (Beebe,
Mcllfatrick ¢ Nottle, 2009). MII oocytes were promptly activated by one direct current
pulse of 1.8 kV/cm for 50 ps using an Electro Cell Fusion Generator (LF 101; Nepa
gene) and then cultured in porcine zygote medium-3 (PZM-3) supplemented with 2mM
6-dimethylaminopurine and 5 mg/mL cytochalasin B for 4 h at 38.5 °C in 5% CO; in air.
Activated oocytes were washed and cultured in PZM-3 at 38.5 °C in 5% CO;, in air.
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In vitro fertilization (IVF)

IVF was carried out as described previously (Jeong et al., 2017). IVF was performed in
modified Tris-buffered medium (mTBM) containing 113.1 mM NaCl, 3 mM KCl, 7.5
mM CaCl,-2H,0, 20 mM Tris (Fisher Scientific, Fair Lawn, NJ, USA), 11 mM glucose,
and 5 mM sodium pyruvate, with no antibiotics. MII oocytes were washed three times in
mTBM containing 2.5 mM caffeine sodium benzoate and 1 mg/mL bovine serum albumin
(BSA), and 10-15 oocytes were placed into 48 wL droplets of IVF medium under mineral
oil pre-equilibrated at 38.5 °C in 5% CO, in air. To prepare the spermatozoa using the
swim-up method before fertilization, freshly ejaculated semen was washed three times with
sperm washing medium (Dulbecco’s phosphate-buffered saline [DPBS; Gibco-BRL, Grand
Island, NY, USA] supplemented with 1 mg/mL BSA, 100 pg/mL penicillin G, and 75 pg/mL
streptomycin sulfate). After washing, 2 mL of sperm washing medium was gently added
to the spermatozoa pellet and incubated for 15 min at 38.5 °C in 5% CO; in air. After
incubation, the supernatant was washed with mTBM, and then resuspended with 1 mL of
mTBM. Then, 2 nL of diluted spermatozoa was added to 48 wL of mTBM containing 10-15
oocytes to a final concentration of 1.5 x 10° spermatozoa/mL. Oocytes were co-incubated
with the spermatozoa for 6 h at 38.5 °C in 5% CO; in air. After 6 h, oocytes were stripped
by gentle pipetting and transferred to PZM-3 for culture at 38.5 °C in 5% CO; in air.

Embryo aggregation method and in vitro tracing

Embryo aggregation method was carried out as described previously (Lee et al., 2007). The
zona pellucida of 4-cell stage embryos was removed using acidic Tyrode’s solution. Clusters
of depressions were generated in the bottom of a culture dish using gentle pressure with
a darning needle (BLS, Budapest, Hungary), covered with PZM-3, overlaid with paraffin
oil (Junsei, Tokyo, Japan). For embryo aggregation, zona-free embryos were placed into
each microwell. Zona-intact (negative control; NC), non-aggregated (1X), two-embryo
aggregated (2X), and three-embryo aggregated (3X) 4-cell stage embryos were cultured in
parallel in separate drops within the same dish. The aggregates were cultured in PZM-3
for 2 days and then were cultured in PZM-3 supplemented with 10% fetal bovine serum
(Gibco-BRL) for 2 days at 38.5 °C in 5% CO; in air (Mun et al., 2017).

To confirm the possibility of embryo aggregation, zona-free 4 cell stage embryos were
labeled with fluorescent carbocyanine dye (Dil; red, DiO; green, Takara bio Inc., Shiga,
Japan). Zona-free 4 cell stage embryos were washed DPBS containing 4mg/mL BSA
and placed in 1% Dil or DiO for 10 min, and then washed with PZM-3 and cultured
in aggregation microwells with the darning needle. Fluorescence was observed under a
fluorescence microscope (Olympus, Tokyo, Japan).

Immunocytochemistry

Blastocysts were fixed in 4% paraformaldehyde overnight at 4 °C and washed three
times in DPBS with 0.1% PVA (DPBS-PVA). The fixed blastocysts were treated with
DPBS containing 0.5% Triton X-100 for 1 h at room temperature (RT), then washed
in DPBS-PVA. Next, the blastocysts were incubated in DPBS-PVA supplemented with
1 mg/mL BSA (DPBS-PVA-BSA) at 4 °C overnight and were stored with 10% normal
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goat serum for 1 h at RT. Primary antibody was used mouse monoclonal anti-Cdx2 (an
undiluted solution; Biogenex Laboratories Inc., San Ramon, CA, USA) for overnight at
4 °C. After washed three times with DPBS-PVA-BSA for 10 min and incubated for 1 h
at RT with conjugated secondary antibodies, Alexa-Fluor-488-labeled goat anti-mouse
IgG (1:200). After washed three times in DPBS-PVA-BSA for 10 min and stained with
2 pg/mL 4, 6'-diamidino-2-phenylindole (DAPI). DAPI-labeled or Cdx2-positive nuclei
were observed using a fluorescence microscope (Olympus).

Terminal deoxynucleotidyl transferase-mediated dUTP-digoxygenin
nick end-labeling (TUNEL) Assay

TUNEL assay was carried out using an in-situ cell death detection kit (Roche, Basel,
Switzerland). The blastocysts were washed three times in DPBS-PVA and fixed in 4%
paraformaldehyde overnight at 4 °C. Fixed blastocysts were permeabilized in DPBS
containing 0.5% Triton X-100 at RT for 1 h. Subsequently, blastocysts were washed
three times with DPBS-PVA and stained with fluorescein-conjugated dUTP and terminal
deoxynucleotidyl transferase for 1 h at 38.5 °C. The blastocysts were washed three times with
DPBS-PVA and mounted on clean glass slides with DAPI. DAPI-labeled or TUNEL-positive
nuclei were observed under a fluorescence microscope (Olympus).

Mitochondrial distribution (MitoTracker), mitochondrial membrane
potential (JC-1) analysis

The MitoTracker and JC-1 staining were modified carried out as described previously (Yang
et al., 2018). Blastocysts were washed with DPBS-PVA and fixed in 4% paraformaldehyde
overnight at 4 °C. Fixed blastocysts were washed three times and stained with 0.8 uM
MitoTracker green (Invitrogen, CA, USA) and JC-1 (100:1) (Cayman Chemical, MI, USA)
for 30 min at 38.5 °C. JC-1 staining expresses two types of fluorescence. The aggregated
form (J-aggregate; favoured at high membrane potential) of mitochondria indicated red
fluorescence, whereas and the monomers form (J-monomer; favoured at low membrane
potential) indicated green fluorescence. Therefore, it is possible to use the ratio of red to
green fluorescence to determine mitochondrial membrane potential. After the blastocysts
were washed three times in DPBS-PVA for 10 min. each, the DNA was stained with 2 pg/mL
DAPI. DAPI-labeled nuclei or MitoTracker or JC-1 were observed using a fluorescence
microscope (Olympus). The quantification of fluorescence levels was measured using
Image] software (version 1.47; National Institute of Health, Bethesda, MD, USA) after
normalization through subtraction of the background intensity from each embryo size.

Measurement of intracellular ROS

Measurement of ROS levels in embryos were carried out as described previously (Mun et
al., 2017). Intracellular ROS levels were detected by 5 pM 5-(and-6)-chloromethyl-2',7’-
dichlorodihydro-fluorescein diacetate, acetyl ester (CM-H2DCFDA; Invitrogen) and the
blastocysts were washed three times with DPBS-PVA. Fluorescence was observed under

a fluorescence microscope (DMI 4000B; Leica, Wetzlar, Germany) with ultraviolet filters
(460 nm). The quantification of fluorescence levels was measured using Image] software
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after normalization through subtraction of the background intensity from each embryo
size.

Quantitative real-time polymerase chain reaction (QRT-PCR)

Poly(A) mRNAs were extracted using the Dynabeads mRNA Direct kit (Invitrogen) from
20 blastocysts according to the manufacturer’s protocol. The resulting poly(A) mRNAs
were reverse transcribed in 20 wL reactions containing 5 x RT buffer (containing 25 mM
Mg?T), oligo(dT),9, 10 mM mixture of dNTPs and 10 U of the RNase inhibitor ReverTra
Ace (Toyobo, Osaka, Japan). The following PCR conditions were used: 95 °C for 30 s,
60 °C for 30 s and 72 °C for 30 s, followed by extension at 72 °C for 5 min. qRT-PCR
were performed with SYBR premix Ex Taq (Takara Bio Inc.) using Mx3000P QPCR
system (Agilent, Santa Clara, CA, USA). The sample delta Ct (SACTY yalue was calculated
from the difference between the Ct values of GAPDH the target genes. The relative gene
expression levels between the samples and the controls were determined using the formula
2~(SACT=CACT) 'The primers used in the present study are listed in Table S1.

Analysis of mitochondrial DNA copy humber

Analysis of mitochondrial DNA copy number was carried out as described previously
(Itami et al., 2018). The mitochondrial DNA copy number from 10 blastocysts
represents the average mitochondrial DNA copy number of an individual donor
blastocyst. The mitochondrial DNA copy number was determined by DNA extraction
and qRT-PCR using a Mx3000P QPCR system (Agilent) with the primer set (5'-
CGAGAAAGCACTTTCCAAGG-3' and 5'-CTAATTCGGGTGTTGGTGCT-3'). The
primers were designed using Primer3Plus and the sequence data for porcine mitochondria
(Accession number AF304202) to amplify a 151-base pair. Melting curve was analyzed to
verify the specificity of the PCR products, followed by electrophoresis to determine the
product size. As an external standard, the PCR product of the corresponding gene was
cloned into a vector using the Zero Blunt TOPO PCR cloning kit (Invitrogen). The product
was sequenced for confirmation before use.

Statistical analysis

The blastocyst formation rate (blastocyst formation number per cultured embryos) and
proportion of blastocysts by diameter (blastocyst number of each indicated size per total
blastocysts) were recorded as the percentage. The cell numbers within the blastocysts
were counted by DAPI- labeled or Cdx2- positive nuclei (Cdx2 expressing cell is TE, and
opposite is ICM). Apoptosis (apoptotic cell number per total cell number by TUNEL
assay) was recorded as the percentage. The number of independent replicates (Re) of each
experiment is shown in the figure legends. Data are expressed as the mean = standard error
of the mean (SEM). Data were compared using analysis of variance (ANOVA), followed
by Duncan’s multiple range test using SigmaStat Software (Systat Software Inc., San Jose,
CA, USA). P-values less than 0.05 were considered to indicate statistical significance.
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RESULTS

Production of aggregated blastocysts using porcine 4-cell stage
embryos

To confirm that the PA embryos could aggregate, we cultured zona-intact (negative control;
NC), two-embryo aggregated (2X) and three-embryo aggregated (3X) using only 4-cell
stage embryos, respectively. The zona pellucida of 4-cell stage embryos was removed by
treatment with acidic Tyrode’s solution, and then differentially incubated with Dil (red)
or DiO (green) for membrane staining. Embryo aggregation was observed in the morula
and blastocyst stages derived from 2X and 3X embryos (Figs. IM-1X and Figs. 2A-2L).
Fluorescence of Dil or DiO was observed during the 4-cell, morula and blastocyst stages in
2X and 3X, but not in the negative control (Figs. 1A—1X and Figs. 2A-21). Fluorescence of
Dil and DiO was observed separately in the 4-cell and morula stages (Figs. 1A—1X), while
Dil and DiO overlapping fluorescence was observed in the blastocyst stage (Figs. 2A-2L).
To confirm the precise Dil or DiO patterns, aggregation-derived blastocysts were fixed
and observed; however, no consistent pattern by two fluorescent markers was confirmed,
indicating that two or three embryos were randomly aggregated (Figs. 2M—2X). These
results indicated that blastocysts could be obtained via aggregation using two or three PA
embryos.

Effect of embryo aggregation on developmental competence in
porcine IVP embryos

To investigate the effect of aggregation on the developmental competence of porcine
embryos, PA embryos (NC, 1X, 2X and 3X) were tested for aggregation in microwells.
Compared to the NC, 1X embryos showed no detrimental effect on blastocyst formation
upon removal of the zona pellucida. Meanwhile, 2X and 3X aggregated embryos showed
significant increases in blastocyst formation rate (Figs. 3A—3E; Table S2) and blastocyst
diameter (Fig. 3F; Table S3) compared to the NC and 1X groups. Next, we assessed the
quality of the aggregated embryos using Cdx2 staining and the TUNEL assay. Blastocysts
derived from 2X and 3X embryos showed significantly increased total ICM and TE

cell numbers, and the ratio of ICM cells against TE cells was significantly higher in

the 3X group (Figs. 3G=3N; Table 54). The 3X group also exhibited a markedly decreased
apoptotic cell rate (Figs. 30-35; Table S5). To define whether embryo aggregation enhanced
developmental competence in IVF embryos, we conducted aggregation using 4-cell stage
embryos derived from IVF, which were cultured to the blastocyst stage. Consistent with
the developmental results of the PA embryos, 3X aggregated embryos showed significantly
improved blastocyst formation rates and blastocyst diameters compared to 1X embryos
(Figs. SIA-S1D; Tables S6 and S7). Moreover, the total cell number and ICM/TE ratio
increased markedly in the 3X group (Figs. SIE-S1J; Table S8), along with cellular survival
(SIK=S1M; Table S9). These findings confirmed that aggregation of 4-cell stage embryos
derived from both IVF and PA could improve the developmental competence in porcine
early embryogenesis. Therefore, we conducted subsequent experiments using PA embryos
for embryo aggregation to prevent variations in embryo aggregation due to sperm factors
associated with IVF, such as polyspermy.
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Figure 1 Aggregation of porcine PA embryos at 4-cell stage. Morphological and fluorescent images
showing the aggregation between the used embryos after (A-L) 24 h and (M—X) 48 h. Green and red flu-
orescence indicate used embryos labeled with fluorescent carbocyanine dye Dil or DiO, respectively. Bar
= 50 um. For all panels, n indicates number of embryos examined. Re = 3. NC; negative control (zona-
intact), 2X; two zona-free embryos, 3X; three zona-free embryos.

Full-size Gal DOL: 10.7717/peer;j.8143/fig-1

Regulation of intracellular ROS levels and mitochondrial function by
embryo aggregation

To investigate changes in intracellular ROS and mitochondrial function that affected
developmental competence by embryo aggregation, intracellular ROS levels were measured
in blastocysts derived from 1X and 3X embryos using CM-H,DCFDA staining and
fluorescence microscopy. ROS levels were markedly lower in the 3X than 1X group (Figs.
4A—4E). We also assessed the distribution and membrane potential of mitochondria

in blastocysts to confirm that the increase in ROS was associated with mitochondrial
dysfunction, as described in previous studies (Niu ef al., 2017). Mitochondria were
evenly distributed in the blastocysts (Figs. 4F—4I), and MitoTracker staining confirmed
that fluorescence intensity was significantly higher in the 3X than 1X group (Fig. 4]).
These results are consistent with the significant increase in mitochondria DNA copy
number (Fig. 4K). Moreover, the J-aggregate (high membrane potential)/J-monomer (low
membrane potential) ratio, which indicates mitochondrial membrane potential, was higher
in the 3X than 1X group (Figs. 4F—4R). This further confirmed that embryo aggregation
prominently improved intracellular ROS levels and elevation of the mitochondrial function
in porcine embryos.
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Figure 2 Blastocysts derived from two or three 4-cell stage embryos at 72 h after aggregation. (A-L)
Representative photographs of blastocysts derived from 2X and 3X embryos labeled with fluorescent car-
bocyanine dye Dil or DiO, respectively. Bar = 50 um. (M-X) Aggregation pattern of used embryo for
blastocysts formation. Nuclear staining of blastocysts aggregated with 2X and 3X embryo labeled with
fluorescent carbocyanine dye Dil or DiO, respectively. Bar = 50 um. For all panels, # indicates number
of embryos examined. Re = 3. NC; negative control (zona-intact), 2X; two zona-free embryos, 3X; three
zona-free embryos.

Full-size &4 DOI: 10.7717/peer;j.8143/fig-2

Regulation of transcription levels related to stress conditions and
embryonic development by embryo aggregation

To investigate the molecular mechanism underlying the increase in developmental
competence by embryo aggregation, we examined the transcription levels of key modulators
of stress conditions, such as ER-stress (Gupta et al., 2010), ROS (Mun et al., 2017; Yoon
et al., 2014) and mitochondrial function (Spikings, Alderson ¢ St John, 2007), using real-
time PCR. Embryo aggregation resulted in a significant downregulation of ER stress-
related genes, such as ATF4, CHOP and IREI (Fig. 5A), and significant upregulation

of antioxidant-related genes, such as SOD1, SOD2, and catalase (Fig. 5B). In addition,
the expression of mitochondrial function-related genes was significantly upregulated

in the 3X group compared to the 1X group (Fig. 5C). Next, we investigated whether
embryo aggregation modulated mRNA expression of embryonic development-related
genes, such as pluripotency (Wu ¢ Scholer, 2014), apoptosis (Gupta et al., 2010), and
implantation (Guzeloglu-Kayisli, Kayisli & Taylor, 2009). Expression of pluripotency and
anti-apoptosis related genes were significantly upregulated and pro-apoptosis-related genes
were downregulated in the 3X group (Figs. 6A and 6B). Moreover, the mRNA expression
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of implantation related genes was considerably increased by aggregation (Fig. 6C).
Taken together, these results demonstrate that embryo aggregation significantly increased
embryonic development by reducing stress conditions in porcine early embryogenesis.

DISCUSSION

IVP embryos with high developmental competence are necessary to generate transgenic
pigs. Therefore, much attention has focused on improving the quality of IVP embryos.
Despite these efforts, the developmental competence of IVP embryos remains low, and
consequently, the pregnancy rates and yields of live-born offspring is relatively low. To
overcome these problems, we demonstrated that developmental competence increased
in porcine IVP embryos by embryo aggregation via reducing the stress conditions and
improving mitochondrial function.
Embryo aggregation is widely used in the production of transgenic and chimeric

animals in various mammals, including mice (Yamaguchi et al., 2017), bovine (Simmet et
al., 2015) and monkeys (Tachibana et al., 2012), to improve the production efficiency by
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compensating for the developmental deficiency of IVP embryos. In particular, pigs have
been reported to respond positively to embryo aggregation, with increases in blastocyst
formation rate, total cell number, ICM/TE ratio, and cellular survival (Lee et al., 2007;
Terashita et al., 2011). Also, the blastocysts derived from embryo aggregation promoted
the efficiency of pluripotent embryonic stem cells (Lee et al., 2015). Recently, chimeric pigs
were produced by aggregation using cloned 4-cell stage embryos (Huang et al., 2016). We
showed similar results in which the embryo aggregation method was adequate for 4-cell
stage embryos, significantly enhancing key parameters of developmental competence,
such as blastocyst formation rate, total cell number, ICM/TE ratio, cellular survival and
expression of pluripotency, apoptosis, and implantation related genes. Thus, we propose
that embryo aggregation helps to increase the quality of pre-implantation embryos, leading
to successful post-implantation development in pigs.

Several studies have reported that ROS accumulation decreases the developmental
competence of porcine embryos by inducing DNA damage and pro-apoptotic gene
expression (Bain, Madan & Betts, 2011; Takahashi, 2012). Furthermore, increased ROS
levels cause mitochondrial dysfunction, which reduces mitochondrial membrane potential
(Chen, Chomyn & Chan, 2005). It has been shown that mitochondrial DNA is associated
with fertilization outcome and early porcine embryogenesis, and mitochondrial DNA
deficiency has a negative effect on normal oocyte maturation, with impaired oocytes
being restored by mitochondrial supplementation (Cagnone et al., 2016). In addition,
mitochondrial membrane potential is required not only for pre-implantation embryo
development but also for post-implantation outcomes (Wakefield, Lane & Mitchell, 2011).
In this study, ROS levels were significantly lower in 3X than 1X blastocysts. These results
are consistent with the increased mitochondrial DNA copy numbers and increased
mitochondrial membrane potential in aggregated blastocysts. In particular, our results
demonstrated that the expression of SODI1, SOD2 and catalase, genes related to ROS,
were substantially increased in 3X blastocysts, and the mRNA quantity of mitochondrial
membrane potential-related genes was significantly increased compared to 1X blastocysts.
These results strongly suggest that embryo aggregation can enhance porcine embryo
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development through the reduction of intracellular ROS levels and the promotion of
mitochondrial function.

Unwanted stress conditions, especially ER stress, generally act as developmental barriers
in IVP embryo development. Studies have shown that embryo development is blocked
by treatment with tunicamycin (an ER stress activator) but restored by treatment with
tauroursodeoxycholic acid (TUDCA; an ER stress inhibitor) (Kim et al., 2012; Zhang et al.,
2012). In this study, we observed that 3X blastocysts decreased transcription of ER stress-
related genes, including ATF4, CHOP, and IRE1, compared to 1X blastocysts. Interestingly,
TUDCA treatment increased the ICM/TE ratio in porcine IVP blastocysts (Kim et al., 2012;
Zhang et al., 2012). Previous studies showed that aggregation-derived blastocysts increased
the ICM/TE ratio and oct4 transcripts; however, the underlying reasons for this remain
unknown (Buemo et al., 2016; Siriboon et al., 2014; Terashita et al., 2011). Similarly, we
showed that 3X blastocysts significantly improved not only the ICM/TE ratio, but also oct4
transcripts. Therefore, embryo aggregation may affect ER stress reduction, which induces
the improvement of developmental competence in porcine early embryogenesis.

Interactions between the ER and mitochondria have been reported to be related to
the regulation of the Ca** signaling pathway, energy metabolism, and cellular survival
(Berridge, 2002). Changes in cellular Ca?* occur as a result of ER stress, thereby increasing
ROS production and decreasing the mitochondrial membrane potential. It was recently
shown that mitochondrial permeability transition (MPT) involved the ER stress-induced
apoptosis signaling pathway, including the Bcl-2 family via the release of cytochrome C
(Wu et al., 2012). The Bcl-2 protein family are known to localize in both the ER and the
mitochondria, because they contain shared Bcl-2 homology (BH) domains. Anti-apoptotic
proteins such as Bcl-2 and Bcl-xl prevent ER stress-induced mitochondrial damage by
transducing the BH4 domain (Gupta et al., 2010). Meanwhile, Bax and Bak, which are pro-
apoptotic proteins that share a BH3 domain, induce MPT, resulting in ER stress-induced
mitochondrial damage and cell death (Gupta et al., 2010). In this study, we demonstrated
embryo aggregation as an effective method to reduce the expression of Bax and Bak and
increase Bcl-2 and Bcl, as confirmed by the reduction in apoptosis related to ER stress,
ROS, and mitochondrial function.

CONCLUSIONS

Embryo aggregation significantly reduced stress conditions, such as ER, oxidative, and
metabolic stress, indicating an improvement in developmental competence during porcine
early embryogenesis. Furthermore, improved developmental competence by embryo
aggregation enhanced the expression of pluripotency, anti-apoptosis, and implantation-
related genes, which improved post-implantation development potential. Our findings
suggest that embryo aggregation is a valuable tool for producing IVP embryos with high
developmental competence, thereby aiding the production of chimeric and transgenic pigs
for biomedical research.
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