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ABSTRACT
The carnivorous mammalian fauna from the Uintan (late middle Eocene) of North
America remains relatively poorly documented. This is unfortunate, as this is a critical
interval in the transition from ‘‘creodont’’ to carnivoran dominated carnivore guilds.
This study reports a new species from the Uinta Formation of the Uinta Basin,
Utah, the first North American species of the otherwise Asian hyaenodont genus
Propterodon. The new species, Propterodon witteri, represented by a dentary with M2-3
from the late Uintan Leota Quarry, is larger than the well-known P. morrisi and
P. tongi and has a larger M3 talonid, but is otherwise very similar. A phylogenetic
analysis of hyaenodont interrelationships recovers P. witteri as a hyaenodontine but
is generally poorly resolved. A relationship between Hyaenodontinae andOxyaenoides,
recovered by many recent analyses, is not supported. Among the Asian species of
Propterodon, P. pishigouensis is reidentified as a machaeroidine oxyaenid and recom-
bined as Apataelurus pishigouensis new combination. Isphanatherium ferganensis may
also represent an Asian machaeroidine. Identification of a North American species
of Propterodon and an Asian Apataelurus increases the similarity of North American
Uintan and Asian Irdinmanhan faunas and suggests that there was substantial exchange
of carnivorous fauna during the late middle Eocene.

Subjects Paleontology, Taxonomy
Keywords Eocene, Hyaenodonta, Uinta formation, Phylogenetics, North America, Carnivory,
Mammalian evolution

INTRODUCTION
Hyaenodonts are a significant component of Eocene carnivorous guilds across the
Holarctic and Africa (Gunnell, 1998; Rose, 2006; Lewis & Morlo, 2010). Along with other
‘‘creodonts’’ (e.g., Oxyaenidae), hyaenodonts are distinguished from modern carnivorans
and their fossil relatives (Carnivoraformes) by the presence of multiple carnassial pairs
in the dentition, which results in alternating shearing and crushing/grinding areas in the
dentition, rather than regional separation of the molar series into mesial shearing and distal
crushing/grinding areas. The latter innovation in Carnivoraformes, and convergently in
Viverravidae (Zack, 2019), may have facilitated the ecological diversification of carnivorans
(Friscia & Van Valkenburgh, 2010) ultimately allowing carnivorans to displace hyaenodonts
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over the course of the Paleogene in the northern continents andMiocene in Africa (Wesley-
Hunt, 2005; Friscia & Van Valkenburgh, 2010; Borths & Stevens, 2017).

In North America, hyaenodont diversity was greatest during the earlier half of the
Eocene, particularly the Wasatchian and Bridgerian North American Land Mammal
Ages (NALMAs) (Gunnell, 1998; Van Valkenburgh, 1999; Wesley-Hunt, 2005; Friscia
& Van Valkenburgh, 2010). In the subsequent Uintan NALMA, hyaenodont diversity
declined dramatically. Only four genera, Limnocyon, Mimocyon, Oxyaenodon, and Sinopa,
have been described from Uintan faunas (Matthew, 1899; Matthew, 1909; Peterson, 1919;
Gustafson, 1986), although an additional, small hyaenodont taxon is knownbut undescribed
(Rasmussen et al., 1999; S Zack, pers. obs., 2019). This mid-Eocene decline of hyaenodont
and other ‘‘creodont’’ diversity corresponds with an increase in the diversity of carnivorans
and their immediate relatives (Carnivoraformes) (Van Valkenburgh, 1999; Wesley-Hunt,
2005; Friscia & Van Valkenburgh, 2010), a pattern suggesting some form of replacement
of hyaenodonts by carnivoraform taxa. Understanding the nature of that replacement
requires a detailed record of the diversity of both groups.

Reexamination of existing collections is one key to refining the record of carnivorous
mammals across this critical period, as overlooked or misidentified specimens can shift
the temporal and geographic ranges of known taxa and allow recognition of new forms.
MCZ VPM 19874, the specimen that forms the focus of the present study, is an example
of significant discoveries that can be made in existing collections. The specimen, a dentary
with M2−3, was collected by a Harvard University expedition to the Uinta Basin, Utah
in 1940 (Fig. 1) and has not been described or mentioned in the literature in almost 80
subsequent years. It documents a new hyaenodont taxon from the late Uintan that differs
substantially from known Uintan hyaenodonts, particularly in its possession of a strongly
hypercarnivorous morphology, greater than previously known in Wasatchian through
Uintan North American hyaenodonts. In fact, the affinities of the new taxon appear to lie
with Propterodon, a genus previously known only from eastern Asian faunas correlated
with the Chinese middle Eocene Irdinmanhan and Sharamurunian stages (sensu Wang
et al., 2019). The new taxon increases Uintan hyaenodont diversity and disparity while
providing evidence for interchange of Asian and North American carnivores during this
critical interval in the divergent histories of Hyaenodonta and Carnivoraformes.

MATERIALS & METHODS
Dental terminology followsRana et al. (2015), with two exceptions. ‘‘Mesiobuccal cingulid’’
is used following Zack (2011) instead of ‘‘buccal cingulid’’, as this structure is mesially
restricted in the new species. Following Kay (1977), ‘‘hypocristid’’ is used rather than
‘‘postcristid’’ for the crest connecting the hypoconid and hypoconulid. Measurements
follow Gingerich & Deutsch (1989, fig. 1) and Borths & Seiffert (2017, fig. 1e), with the
addition of a measurement of maximum talonid height. Dental measurements taken are
illustrated in Fig. 2. Mandibular depth wasmeasured lingually belowM3. All measurements
were taken to the nearest tenth of a millimeter with Neiko digital calipers. MCZVPM 19874
was whitened using ammonium chloride prior to being photographed.
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Figure 1 Stratigraphic and geographic position of Leota Quarry. (A) Generalized stratigraphic section
of middle Eocene Uinta Formation in the west-central Uinta Basin showing the position of Leota Quarry
along with biochron boundaries (Prothero, 1996) and geomagnetic polarity chrons (Murphey et al., 2018).
(B) Map of Utah, United States showing the location of Uintah County and map of Uintah County show-
ing the position of Leota Quarry (as indicated by Peterson & Kay, 1931). Orange shading in (B) indicates
outcrop of the Uinta Formation (after Hintze, 1980). Abbreviations: BB Mbr, Brennan Basin Member of
the late middle Eocene Duchesne River Formation; Gr Fm, early middle Eocene Green River Formation.
Drawings by Shawn P. Zack.

Full-size DOI: 10.7717/peerj.8136/fig-1

The electronic version of this article in Portable Document Format (PDF) will represent
a published work according to the International Commission on Zoological Nomenclature
(ICZN), and hence the new names contained in the electronic version are effectively
published under that Code from the electronic edition alone. This published work
and the nomenclatural acts it contains have been registered in ZooBank, the online
registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be
resolved and the associated information viewed through any standard web browser by
appending the LSID to the prefix http://zoobank.org/. The LSID for this publication
is: urn:lsid:zoobank.org:pub:CDA777EE-C052-4922-90DD-AAFD41D3F345. The online
version of this work is archived and available from the following digital repositories: PeerJ,
PubMed Central and CLOCKSS.

Phylogenetic Methods—To test the taxonomic affinities of the new species, it was
added to a substantially modified version of the character taxon matrix used by Rana
et al. (2015). The dental sample used by Rana et al. (2015) was modified to eliminate
non-independent characters (e.g., removing a character describing the number of P3 roots,
which reflects development of a P3 protocone lobe), following the recommendations of
recent authors who have argued that inclusion of non-independent characters can mislead
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Figure 2 Measurements of hyaenodont lower molars. Schematic drawing of a hyaenodont lower molar
in (A) occlusal and (B) buccal views to show measurements taken for this study. Abbreviations: L, max-
imum length; TrL, maximum trigonid length; TrW, maximum trigonid width; TrH, maximum trigonid
height; TaL, maximum talonid length; TaW, maximum talonid width; TaH, maximum talonid height.
Drawings by Shawn P. Zack.

Full-size DOI: 10.7717/peerj.8136/fig-2

phylogenetic analyses that rely heavily on mammalian dental morphology (Sansom, Wills
& Williams, 2017; Billet & Bardin, 2019). Overall, several dental characters were revised,
replaced, combined, or deleted, and one additional character describing the number of
upper incisors was added from Borths & Stevens (2019a). Numerous individual scorings
weremodified to improve scoring consistency, with particular emphasis placed on ensuring
scoring consistency across geographic regions.

While the dental character sample from Rana et al. (2015) was used, the non-dental
character sample used by Rana et al. (2015) which, in turn was derived from Polly (1996),
was largely replaced by the cranial, mandibular, and postcranial character sample used by
Borths & Stevens (2019a), and Borths and Stevens’ scorings were used with some additions
(e.g., postcranial scorings were added for Galecyon chronius and Prototomus martis). One
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character from Rana et al. (2015) describing mandibular symphysis depth was retained
because this variation was not captured by Borths and Stevens’ characters.

In addition to the inclusion of the new species, several changes were made to the
taxonomic composition of the matrix. First, the composite Propterodon spp. OTU used by
Rana et al. (2015) was replaced with separate OTUs for P. morrisi and P. tongi. Reflecting
newly published material, the African ‘‘Sinopa’’ OTU included in Rana et al. (2015) was
replaced by Brychotherium ephalmos, scored from descriptions in Borths, Holroyd & Seiffert
(2016) and accompanying 3Dmodels. Scorings ofAkhnatenavuswere updated to includeA.
nefertiticyon described in the same work, while scorings forMasrasector were updated based
on material ofM. nananubis described by Borths & Seiffert (2017). The Pterodon spp. OTU
was restricted to P. dasyuroides and rescored, given that new evidence indicates Pterodon,
as traditionally defined, is likely polyphyletic (Solé et al., 2015a; Borths & Stevens, 2019a;
Borths & Stevens, 2019b). Three additional taxa were added to the matrix, Boritia duffaudi,
Preregidens langebadrae, andMatthodon menui. These three taxa are either newly described
or newly identified as hyaenodonts, and they significantly enhance the documentation
of early European hyaenodonts (Solé, Falconnet & Yves, 2014; Solé, Falconnet & Vidalenc,
2015).

In addition, six OTUs included in the Rana et al. (2015) matrix were excluded from
the present analysis. As with Pterodon, monophyly of Metapterodon, as used by Rana et
al. (2015), now appears dubious (Morales & Pickford, 2017; Borths & Stevens, 2019b), but,
unlike the well-documented Pterodon dasyuroides, individual species of Metapterodon are
fragmentary and poorly known, contributing little to the broader structure of hyaenodont
interrelationships. Until the composition of Metapterodon is better understood, the genus
is better excluded. A second taxon, Eoproviverra eisenmanni, was removed over concerns
about the permanent versus deciduous status of the type and most informative specimen,
MNHN.F.RI 400. Described as an M2 (Godinot, 1981; Solé et al., 2015b), MNHN.F.RI 400
shows several features that suggest the tooth may instead represent dP4, including a low
paraconid, open trigonid, small talonid, and generally tall, delicate cusp construction. If
this is the case, MNHN.F.RI 400 would likely represent a larger taxon than the remainder
of the hypodigm.

Finally, Tinerhodon disputatum and the three species that have been referred to
Koholiinae (Boualitomus marocanensis,Koholia atlasense, Lahimia selloumi) were excluded.
As briefly noted by Rana et al. (2015), the hyaenodont status of these taxa remains to be
clearly demonstrated. Referral of all four taxa to Hyaenodonta appears to have been
made based on the presence of multiple carnassial pairs and retention of three molars.
As discussed by Zack (2019), this de facto definition of Hyaenodonta combines two
eutherian symplesiomorphies (molar homodonty and three molars) with a trait found
in all carnivorous clades (carnassials). Given this weak evidence, the possibility that some
or all these taxa are not hyaenodonts must be considered. In fact, Tinerhodon disputatum
has not been consistently recovered as a hyaenodont in analyses that do not constrain the
ingroup to monophyly (e.g., Borths & Stevens, 2019b). Among members of the potentially
polyphyletic Koholiinae, two species known exclusively from lower dentitions (Boualitomus
marocanensis and Lahimia selloumi) lack P1, a feature that is unusual for Hyaenodonta but
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typical for members of Tenrecoidea (Gheerbrant et al., 2006; Solé et al., 2009). Combined
with the small size of both species, this raises the possibility that koholiines may actually
represent an endemic African carnivorous radiation prior to an Eocene immigration
of hyaenodonts to Africa. The third koholiine, Koholia atlasense, is known only from a
fragmentary upper dentition, and recent phylogenetic analyses have not recovered it in
a clade with B. marocanensis and L, selloumi (Borths, Holroyd & Seiffert, 2016; Borths &
Seiffert, 2017; Borths & Stevens, 2017; Borths & Stevens, 2019a; Borths & Stevens, 2019b).
The M1 of K. atlasense has a paracone that is distinctly lingual to the metacone, although
this may be exaggerated by damage to the metacone (Crochet, 1988). This morphology is
not characteristic of hyaenodonts but occurs in the early tenrecoids Sperrgale minutus and
Arenagale calcareus (Pickford, 2015). Other aspects of the morphology of K. atlasense are
also unusual for a hyaenodont including the elongate P4 metastyle, strong M1 prevallum
shear, and massive M1 parastyle connected to the preparacrista at its mesial margin. The
overall morphology of K. atlasense is distinctive enough to cast doubt on its hyaenodont
status.

The final matrix includes 48 ingroup taxa and two outgroups scored for 115 characters.
The list of characters and specimens examined are available in the Supplemental
Information. The full matrix is also available on MorphoBank as project P3489
(http://morphobank.org/permalink/?P3489). The matrix was analyzed using parsimony
in TnT version 1.5 (Goloboff & Catalano, 2016). Initial analyses used the Sectorial Search
algorithm under the New Technology search dialog. The matrix was analyzed until trees
of the same minimum length were recovered by 100 replicates of the algorithm, each
beginning from a different starting topology. If a particular replicate identified a tree
shorter than the existing minimum length trees, the process restarted until 100 replicates
had recovered trees of the new minimum length. Novel minimum length trees from each
replicate were retained, up to 10,000. Once this process was completed, resulting trees were
then submitted for branch swapping in the Traditional Search dialog to ensure that all
most parsimonious trees were identified, again with a limit of 10,000 trees in total.

RESULTS
Systematic paleontology

MAMMALIA Linnaeus, 1758
EUTHERIA Huxley, 1880
HYAENODONTA Van Valen, 1967 (sensu Solé, 2013)
HYAENODONTIDAE Leidy, 1869
HYAENODONTINAE (Leidy, 1869)
PROPTERODON Martin, 1906

Comments—Propterodon was named by Martin (1906) without designation of a
type species. In 1925, Matthew and Granger named a new species that they referred
to Propterodon, P. irdinensis. In the absence of any prior referral of a species to Propterodon,
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P. irdinensis became, by default, the type species, a situation that spawned considerable
taxonomic confusion and was ultimately resolved by Polly & Lange-Badré (1993).Matthew
& Granger (1925) named Propterodon irdinensis based on jaw fragments, not certainly
associated, from Inner Mongolian exposures of the middle Eocene Irdin Manha Formation
(Irdinmanhan stage) (Fig. 3). The previous year,Matthew & Granger (1924) had described
Paracynohyaenodon morrisi from the same beds, and most recent workers have regarded
the two species as conspecific, with Propterodon morrisi the appropriate name for this
taxon (Dashzeveg, 1985; Polly & Lange-Badré, 1993; Morlo & Habersetzer, 1999). Dashzeveg
(1985) named an additional hyaenodont taxon, Pterodon rechetovi, for two maxillae
from the Irdin Manha-equivalent Khaichin Ula 2 fauna from the Khaichin Formation
of Mongolia. This species was subsequently made the type species of a new genus,
Neoparapterodon, by Lavrov (1996), butMorlo & Habersetzer (1999), noting that the upper
dentition of Propterodon morrisi is essentially identical to that of N. rechetovi, placed the
latter genus and species in synonymy with the former. In addition to P. morrisi, three other
species of Propterodon have been named. Propterodon pishigouensis was named by Tong &
Lei (1986) for a dentary preserving P4-M1 from the Hetaoyuan Formation (Irdinmanhan),
Henan Province, China (Fig. 3). As is discussed below, the affinities of P. pishigouensis, do
not appear to lie with either Propterodon or with Hyaenodonta generally. An additional
Chinese species, P. tongi was named by Liu & Huang (2002) for a dentary with P1-M3

from the Huoshipo locality, Yuli Member of the Hedi Formation (Irdinmanhan), Shanxi
Province. This species differs from P. morrisi in being slightly smaller and in having a
more strongly hypercarnivorous morphology, with metaconids lacking at least on M2−3,
trigonids more open, and talonids more reduced, especially on M3. Most recently, Bonis
et al. (2018) named Propterodon panganensis for a dentary preserving P4-M1 from the
Sharamurunian equivalent Pondaung Formation of Myanmar (Fig. 3). This species has
some unusual features (symmetric P4 protoconid, P4 and M1 similar in size, very reduced
M1 talonid) that suggest its relationship to other Propterodon requires confirmation, but it
is clearly a hypercarnivorous hyaenodont.

PROPTERODONWITTERI, sp. nov. urn:lsid:zoobank.org:act:4D88F815-E7BE-4997-
890F-59BC65A06A28

(Fig. 4, Table 1)
Holotype—MCZ VPM 19874, left dentary preserving M2−3, the back of the horizontal

ramus and almost all of the ascending ramus.
Etymology—Named for R. V. Witter, whose party collected the type and only known

specimen in 1940.
Type Locality—Leota Quarry, Uinta Basin, Uintah County, Utah (Fig. 1B).
Stratigraphy and Age—Myton Member of the Uinta Formation (Uinta C, Fig. 1A),

late Uintan (Ui3) North American Land Mammal Age (NALMA), late middle Eocene
(Prothero, 1996) (Fig. 3).

Diagnosis—Largest known species of Propterodon, with M2 and M3 lengths
approximately 11 and 13 mm, respectively, and dentary depth approximately 25 mm
beneath M3. Talonid on M3 relatively large, comparable to M2 talonid. Metaconids on
M2−3 present but extremely reduced.
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Figure 3 Temporal distribution of significant taxa discussed in this work.Geomagnetic polarity chrons
follow Ogg, Ogg & Gradstein (2016). North American Land Mammal Age (NALMA) boundaries follow
Tsukui & Clyde (2012) andMurphey et al. (2018). Chinese stage boundaries followWang et al. (2019). Age
ranges for hyaenodont and oxyaenodont taxa follow Prothero (1996), Gunnell et al. (2009), Liu & Huang
(2002), Tomiya (2013), Zaw et al. (2014), Solé, Falconnet & Vidalenc (2015), Solé et al. (2016),Wang et
al. (2019), and personal observation of Pyrocyon spp. Abbreviations: Ar, Arshantan; Br, Bridgerian; Du,
Duchesnean; Ir, Irdinmanhan; Li, Lingchan; Sh, Sharamurunian; Ui, Uintan; Wa, Wasatchian. Drawings
by Shawn P. Zack.

Full-size DOI: 10.7717/peerj.8136/fig-3

Differential Diagnosis—Differs from P. panganensis in substantially larger size, with
dentary more than 100% deeper. Differs from P. morrisi in larger size, approximately
40% longer M2−3, more reduced metaconids on M2−3, and a relatively larger talonid
on M3. Differs from P. tongi in larger size, approximately 50% longer M2−3, retention
of rudimentary metaconids on M2−3, larger talonids on M2−3, and a less recumbent M3

protoconid.
Description—The preserved portion of the horizontal ramus of the dentary is deep

and transversely compressed beneath M3 (Figs. 4A–4B). Posterior to the tooth row, the
coronoid process forms an approximately 60-degree angle with the alveolar margin. The
process is elongate and extends well above the tooth row, although its dorsal extremity is
lacking. The posterior margin of the coronoid process is concave, and the process appears
to have overhung the mandibular condyle. On the ventral margin of the dentary, there is a
slight concavity between the horizontal ramus and the angular process. The angular process
itself is directed posteriorly, with no meaningful ventral or medial inflection. The process
is relatively thick, with no medial excavation between the angular process and condyle.
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Figure 4 Holotype of Propterodon witteri sp. nov. (MCZ VPM 19874). Right dentary with M2−3 in (A)
buccal, (B) lingual, and (C) occlusal views. Scale bars are 10 mm. Photographs by Shawn P. Zack.

Full-size DOI: 10.7717/peerj.8136/fig-4

The tip of the process extends posterior to the mandibular condyle and has a slight dorsal
curvature. The mandibular condyle is positioned at the level of the alveolar border. The
condyle is flush with the ascending ramus, with no development of a neck. The visible
portion of the condyle is deepest at its medial margin, tapering dorsolaterally. The bone of
the ascending ramus is thickest in a low, broad ridge extending anteriorly and somewhat
ventrally from the condyle. Just inferior to this ridge, near mid-length of the ascending
ramus is the opening of the mandibular canal.

M2 is complete, aside from slight damage to the apex of the paraconid and the buccal
base of the talonid (Figs. 4A–4C). The trigonid is much longer and more than twice the
height of the talonid. It would likely have been taller, but a large, vertical wear facet on
the buccal surface of the paracristid has removed the apex of the protoconid and likely the
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Table 1 Measurements (mm) of the holotype of Propterodon witteri.

Specimen Number Locus L TrL TrW TrH TaL TaW TaH

MCZ VPM 19874 M2 11.5 7.8 5.4 9.7 3.8 4.0 4.8
M3 13.5 10.3 6.2 12.2 3.2 3.7 4.8

Dentary depth 24.7

Notes.
Abbreviations as in Fig. 2.

paraconid. The facet extends nearly to the base of the crown and, occlusally, has exposed
dentine of both cusps.

The protoconid is the largest and tallest trigonid cusp. The paracristid descends relatively
steeply and directly mesially from its apex to meet the paraconid portion of the paracristid
in a deep carnassial notch that is continued lingually as a horizontal groove between
the paraconid and protoconid. At the distolingual corner of the protoconid, the vertical
protocristid is indistinct near the apex of the cusp, becoming better-defined basally and
meeting the metaconid in a small carnassial notch.

Mesially, the paraconid is approximately two-thirds the height of the protoconid. The
paraconid portion of the paracristid forms an angle of approximately 45 degrees to the
long axis of the crown. From its junction with the protoconid portion, it rises slightly
towards the paraconid apex. At the mesial margin of the tooth, the paraconid forms a
mesial keel that helps define a flattened, diamond-shaped lingual surface. Lingually, the
paraconid and protoconid are fused to a level close to three quarters the height of the
former cusp. Buccally, the paraconid supports a strong, vertical mesiobuccal cingulid that
extends distally, even with the carnassial notch and projects further mesially than themesial
keel. Together, the cingulid and mesial keel form a well-defined embrasure for the back of
the talonid of M1.

The metaconid of M2 is a tiny but distinct cusp positioned high on the protoconid, just
below the level of the paraconid apex. The metaconid is fused with the protoconid to a
level above the level of fusion of the paraconid and protoconid. The apex of the metaconid
is directed slightly distally as well as lingually and bears a distinct crest that meets the
protoconid portion of the protocristid.

The talonid is dominated by the hypoconid. The apex of the cusp is worn away but
was likely flat topped, as in M3. Buccally, the talonid falls away steeply from the apex
of the hypoconid and a wear facet occupies most of the buccal surface of the talonid.
Lingually, there is a gentler slope, forming a flat, inclined surface. The cristid obliqua is
nearly longitudinal in orientation, meeting the base of the trigonid in a small carnassial
notch. The contact is buccal to the level of the metaconid, but still well lingual of the buccal
margin of the protoconid, resulting in a shallow hypoflexid.

Near the distal margin of the lingual side of the talonid is a shallow groove that appears
to separate the hypoconid from a much smaller, lower hypoconulid. There is no entoconid
or entocristid. Aside from the mesiobuccal cingulid, there is no development of cingulids.
Buccal enamel extends slightly more basally than lingual enamel.

Zack (2019), PeerJ, DOI 10.7717/peerj.8136 10/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.8136


M3 is larger than M2 and almost unworn but is otherwise quite similar in gross
morphology (Figs. 4A–4C). The unworn protoconid of M3 is slightly recumbent and
the protoconid portion of the paracristid is modestly more elongate than the paraconid
portion. The mesial keel of the paraconid is stronger than on M2 and projects further than
the mesiobuccal cingulid. The M3 metaconid is even smaller than on M2, reduced to a
projection at the end of the almost vertical protocristid. Even in this rudimentary state,
a tiny carnassial notch still separates the cusp from the protoconid, but there is no distal
projection of the metaconid, unlike M2.

The talonid is shorter than on M2 and, unlike on the latter tooth, is noticeably
narrower distally, with its lingual margin running distobuccally from the lingual base
of the protoconid. As on M2, the largest cusp on the M3 talonid is the hypoconid. The
unworn M3 hypoconid is flat-topped, but the lingual enamel appears to be thickest near
its distal margin, indicating a distal position for the hypoconid apex. As on M2, the
cristid obliqua meets the trigonid in a small carnassial notch buccal to the level of the
metaconid. From that point, the cristid obliqua continues briefly as a vertical crest that
ascends the trigonid, reaching approximately one third of the height of the protoconid.
The hypoconulid of M3 is small but better defined than on M2, being separated from the
hypoconid by a carnassial notch. At the lingual margin of the talonid, opposite the apex of
the hypoconid, is a linear thickening of enamel that suggests the presence of a very weak
entocristid.

Comparisons—The strongly hypercarnivorous morphology of P. witteri distinguishes
the new species from known Uintan and older North American hyaenodonts. Among
named Uintan hyaenodonts (Matthew, 1899; Matthew, 1909; Hay, 1902; Peterson, 1919;
Gustafson, 1986), Mimocyon longipes and Sinopa major differ dramatically from the new
species, with relatively low, closed trigonids, unreduced metaconids, and large, deeply
basined talonids. The limnocyonines Limnocyon potens and Oxyaenodon dysodus show
greater carnivorous adaptation than Mimocyon or Sinopa, but both have more closed
trigonids, larger metaconids, and broader, better-developed talonids than P. witteri.

Wasatchian Pyrocyon and Bridgerian Tritemnodon (Fig. 3) more closely approach the
morphology of the new species, but with less developed hypercarnivorous adaptation.
M2−3 in species of Pyrocyon (P. dioctetus, P. strenuus) and in Tritemnodon agilis resembles
Propterodon witteri in having open trigonids (that is, with the paraconid apex well mesial
to the apices of the protoconid and, if present, metaconid) with elongate prevallid shearing
blades, reduced metaconids, strong mesiobuccal cingulids (particularly in T. agilis),
small, narrow talonids, and reduced hypoconulids. However, in all of these features,
the morphology of P. witteri is more extreme, with more open trigonids with more
elongate prevallids, much more reduced metaconids, mesiobuccal cingulids that are
stronger and more vertical, and more simplified talonids with a very weak to absent
entoconid/entocristid complex, which is retained in both Pyrocyon and Tritemnodon. In
addition, in both Pyrocyon and Tritemnodon, M3 is subequal to M2, while in P. witteri, it is
substantially larger. Tritemnodon agilis further differs from P. witteri in having a shallower,
more gracile dentary and a more inclined (less vertical) coronoid process.
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The temporal gap between Propterodon witteri and species of Pyrocyon and Tritemnodon
is also problematic (Fig. 3). Pyrocyon is well-known known from mid-Wasatchian faunas
(Gingerich & Deutsch, 1989) but does not appear to persist until the end of the interval.
In the Willwood Formation of the Bighorn Basin, Pyrocyon disappears from the record
during Wa6, well before the end of the densely sampled portion of the Willwood record
(Chew, 2009), and the genus is unknown from Wa7 through Uintan faunas. Tritemnodon
is well-documented from the earlier portion of the Bridgerian, particularly Br2, but has
a limited record from Br3 and no record from the earlier portions of the Uintan (Ui1−2)
(Eaton, 1982; Gunnell et al., 2009). A close relationship of P. witteri to either genus would
imply substantial gaps in the hyaenodont record.

Hypercarnivorous hyaenodonts are also present in mid-Eocene faunas from Africa
(Furodon), Asia (Propterodon), and Europe (Oxyaenoides) (Matthew & Granger, 1924;
Matthew & Granger, 1925; Lange-Badré & Haubold, 1990; Lavrov, 1996; Liu & Huang,
2002; Solé et al., 2014; Solé, Falconnet & Vidalenc, 2015; Solé et al., 2016; Godinot et al.,
2018) (Fig. 3). Unlike Pyrocyon or Tritemnodon, M3 is distinctly larger than M2 in these
taxa, a similarity shared with P. witteri. A link to one or more of these taxa would have
implications for the origins of the Uinta form and for intercontinental dispersals of
hyaenodonts more generally.

Compared to Propterodon witteri the M2−3 trigonids of species of EuropeanOxyaenoides
(O. bicuspidens, O. lindgreni, O. schlosseri) are more closed, with a shorter paraconid
portion of the paracristid (Lange-Badré & Haubold, 1990; Solé, Falconnet & Yves, 2014;
Solé, Falconnet & Vidalenc, 2015; Godinot et al., 2018) (Figs. 5C–5D). Oxyaenoides has
completely lost metaconids on all molars, while P. witteri retains small metaconids on
M2−3. In Oxyaenoides, the protoconid and paraconid are separated to a level close to the
base of the crown, contrasting with P. witteri, where these cusps are fused to approximately
mid-height. Both taxa have a distinct mesiobuccal cingulid, but it is much lower in
Oxyaenoides. While both have reduced talonids, the hypoconulid is relatively larger in
Oxyaenoides and a more distinct entoconid/entocristid complex is retained, even in the
derivedO. schlosseri.Oxyaenoides talonids are alsomuch shorter relative to their width than
in P. witteri. Overall, Propterodon witteri displays a mixture of more derived morphologies
(open trigonids, trenchant talonids) and less derived morphologies (retained metaconids,
elongate talonids) in comparison to Oxyaenoides. This pattern is suggestive of parallel
developments in lineages assembling a hypercarnivorous morphology independently.

African Furodon crocheti has more closed trigonids than Propterodon witteri (Solé et
al., 2014) (Figs. 5E–5F). However, the length of the paraconid portion of the prevallid
blade is similar, resulting in the paraconid overhanging the lingual margin of the crown
in F. crocheti. The metaconid is larger in F. crocheti than in P. witteri. However, whereas in
P. witteri, the metaconid is positioned high on the protoconid, almost at the same height
as the paraconid apex, it is positioned much lower in F. crocheti. As a result, despite its
size, the metaconid apex is substantially lower than the paraconid apex. The talonids of
F. crocheti are relatively larger than in P. witteri, particularly on M2, and the M2 talonid is
much wider as well. The M2 hypoconid has a mesial apex in F. crocheti, with a subequal
cristid obliqua and hypocristid. In P. witteri, the apex of the hypoconid is distal and there
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Figure 5 Comparison of M2−3 of Propterodon witteri sp. nov. with other middle Eocene hypercarniv-
orous hyaenodonts. Left M2−3 of Propterodon witteri, MCZ VPM 19874, in (A) lingual and (B) occlusal
views. Right M2−3 (reversed) of Oxyaenoides schlosseri, MNHN.F.ERH 429, in (C) lingual and (D) occlusal
views. Left M2−3 of Furodon crocheti, HGL 50bis-56, in (E) lingual and (F) occlusal views. Right M2−3 (re-
versed) of Propterodon morrisi, AMNH FM 21553, in (G) lingual and (H) occlusal views. Left M2−3 of
Propterodon tongi, IVPP V12612, in (I) lingual and (J) occlusal views. All scale bars are 10 mm. Draw-
ings by Shawn P. Zack. (A–B) and (G–H) drawn from photographs by Shawn P. Zack. (C-D) drawn from
Solé, Falconnet & Vidalenc (2015, fig. 4). (E–F) drawn from Solé et al. (2014, fig. 2). (I–J) drawn from pho-
tographs provided by M. Borths.

Full-size DOI: 10.7717/peerj.8136/fig-5
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is no hypocristid to speak of. While the hypoconulid appears to be small in F. crocheti,
the entoconid/entocristid complex remains prominent, contrasting with the trenchant
morphology present in P. witteri. Finally, on the dentary of F. crocheti, the ventral margin
of the angular process grades smoothly into the horizontal ramus, lacking the distinct
inflection that occurs in P. witteri.

Some of the features that distinguish F. crocheti from P. witteri are shared with other,
less hypercarnivorous taxa from Africa and South Asia. The paraconid overhang is present
in African Brychotherium and South Asian Indohyaenodontinae (Kumar, 1992; Egi et
al., 2005; Rana et al., 2015; Borths, Holroyd & Seiffert, 2016), while the low placement of
the metaconid is shared with these taxa as well as African Glibzegdouia and Masrasector
Solé et al., 2014; Borths & Seiffert, 2017). A mesially positioned hypoconid apex occurs
in Glibzegdouia, Masrasector, and the indohyaenodontines Kyawdawia and Yarshea (Egi
et al., 2004; Egi et al., 2005; Solé et al., 2014; Borths & Seiffert, 2017). These similarities
are consistent with phylogenetic analyses that link Furodon to African and South Asian
hyaenodonts (Rana et al., 2015; Borths, Holroyd & Seiffert, 2016; Borths & Seiffert, 2017;
Borths & Stevens, 2019a; Borths & Stevens, 2019b). Their absence in Propterodon witteri
indicate that its affinities lie elsewhere.

The morphology of the two best known species of Asian Propterodon, P. morrisi (senior
synonym of the type species, P. irdinensis) (Figs. 5G–5H) and P. tongi (Figs. 5I–5J), is quite
similar to that of P. witteri (Matthew & Granger, 1924; Matthew & Granger, 1925; Liu &
Huang, 2002). Trigonid proportions of M2−3 in P. morrisi (e.g., AMNH FM 21553) are
nearly identical to P. witteri, while P. tongi has slightly more open trigonids than either
species. In P. morrisi, the metaconids of M2−3 are reduced but remain slightly larger than in
P. witteri. The opposite is true of P. tongi, with bothM2 andM3 lacking definedmetaconids.
In P. morrisi, the metaconids are positioned high on the protoconid, comparable to
P. witteri. Both Asian species have well-developed, vertical mesiobuccal cingulids that
extend high up on the paraconid. Talonid structure is also closely comparable, at least
on M2. The Asian species have small talonids (smaller in P. tongi) with distal hypoconid
apices, rudimentary hypoconulids positioned directly distal to the hypoconid, and no
entoconid/entocristid complex, all identical to the morphology on M2 of P. witteri. The
M3 talonid is more reduced in the Asian forms than in the North American taxon. In the
case of P. tongi, it is reduced to a cuspule on the distal end of the trigonid. The talonid is
larger in P. morrisi, but still smaller than in P. witteri. As in the North American form, there
does appear to be a trace of an entocristid on the M3’s of AMNH FM 20128 and 21553.
Taken together, the morphology of Propterodon witteri is closely comparable to P. morrisi
and P. tongi, particularly the former. The most significant morphological distinction is the
relative size of the M3 talonid, which is relatively larger in P. witteri than in either Asian
species. Despite this contrast, Asian Propterodon species are clearly the closest matches to
P. witteri among relevant taxa, and referral of the new species to Propterodon can be made
with confidence.

Phylogenetic Results—Analysis of the matrix described in Materials & Methods
produced 145 most parsimonious trees (L= 510, CI = 0.294, RI = 0.615), the majority
rules consensus of which is shown in Fig. 6. Resolution is poor, even using the
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Figure 6 Phylogenetic position of Propterodon witteri sp. nov. Majority rule consensus of 145 most
parsimonious trees (L= 510, CI= 0.294, RI= 0.615) showing the inferred phylogenetic position of
Propterodon witteri sp. nov. Numbers below branches indicate percent support, where less than 100
percent. Subfamilies mentioned in the text are labelled. Taxa included in Proviverrinae follows Solé
et al. (2015). Abbreviations: Apt, Apterodontinae; Hyd, Hyaenodontinae; Hyl, Hyainailourinae; Ind,
Indohyaenodontinae; Lim, Limnocyoninae; Prov, Proviverrinae; Ter, Teratodontinae. Drawings by Shawn
P. Zack.
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majority rules rather than a strict consensus. The largest clade unites a paraphyletic
Indohyaenodontinae with the three primary African subfamilies (Hyainailourinae,
Apterodontinae, Teratodontinae). A second major clade comprises most members of
Proviverrinae along withArfia, which is unexpectedly deeply nested within Proviverrinae as
the sister taxon of Proviverra and Leonhardtina. Smaller groupings include Limnocyoninae,
Hyaenodontinae, and groupings of the North American Sinopa and Gazinocyon and the
European hypercarnivorous genera Oxyaenoides andMatthodon. All of these clades form a
massive polytomy at the base of the ingroup, along with numerous genera and species of
early and middle Eocene hyaenodont.

While disappointing, the poor resolution of the consensus tree is consistent with
a lack of clarity in other recent analyses of hyaenodont phylogeny. While the consensus
topology is better resolved, most clades recovered by Rana et al. (2015) have poor bootstrap
support. This is also true in other recent analyses using parsimony (Borths, Holroyd &
Seiffert, 2016; Borths & Seiffert, 2017). Most nodes in Bayesian trees recovered by Borths
and colleagues (Borths, Holroyd & Seiffert, 2016; Borths & Seiffert, 2017; Borths & Stevens,
2017; Borths & Stevens, 2019a; Borths & Stevens, 2019b) have similarly low posterior
probabilities, and there are substantial topological differences between analyses with
different assumptions concerning character evolution (e.g., Prionogalidae in Borths &
Stevens, 2019a, supplementary fig. 1 versus 2). Simply put, many relationships within
Hyaenodonta are neither stable nor well-resolved.

With regard to Propterodon witteri, two conclusions can be made. First, all trees recover
a clade linking the new species to Propterodon morrisi, P. tongi, andHyaenodon. Monophyly
of Propterodon is not recovered, with a majority of trees linking P. tongi and P. witterimore
closely to Hyaenodon than to P. morrisi on the basis of greater metaconid and entoconid
reduction in the former species. These results indicate that Propterodon is paraphyletic and
is likely to be directly ancestral toHyaenodon, although further support would be desirable,
particularly as metaconid and entoconid reduction have occurred convergently in many
different lineages of carnivorous mammal (e.g.,Muizon & Lange-Badré, 1997).

In addition, the position of Hyaenodontinae within Hyaenodonta is not well-resolved.
While hyaenodontine monophyly is supported in all shortest trees, the subfamily
is recovered in the large polytomy at the base of the ingroup. This contrasts with
recent analyses that have consistently supported some form of a link to European
hyaenodonts (Rana et al., 2015; Borths, Holroyd & Seiffert, 2016; Borths & Seiffert, 2017;
Solé & Mennecart, 2019; Borths & Stevens, 2019a; Borths & Stevens, 2019b), particularly the
hypercarnivorousOxyaenoides. The implications of this aspect of the topology are discussed
below

One other result that warrants brief comment is that the two recently described European
hyaenodont genera, both described as potential proviverrines (Solé, Falconnet & Yves, 2014;
Solé, Falconnet & Vidalenc, 2015), Boritia and Preregidens, are not recovered in proximity to
Proviverrinae. Instead, many individual trees recover these genera in positions proximate
to species of Prototomus (specifically P. martis and P. minimus) and Pyrocyon. This includes
trees in which the European genera are successive sister taxa to Pyrocyon and trees in which
Preregidens is the sister taxon of Prototomus minimus (with P. martis as sister taxon to
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this clade). Consistent with this result, both genera lack the distinctive enlarged, bulbous
entoconid typical of proviverrinemolar talonids (e.g., Solé, 2013). Of the two, Boritia is very
similar to several early Eocene North American hyaenodonts (Prototomus martis, Pyrocyon
spp.), and it may represent a parallel development from an early European species of
Prototomus (e.g., P. girardoti). Alternatively, it may document evidence of faunal exchange
between North America and Europe after the Paleocene-Eocene Thermal Maximum,
consistent with evidence from the Abbey Wood fauna (Hooker, 2010).

OXYAENODONTA Van Valen, 1971
OXYAENIDAE Cope, 1877
MACHAEROIDINAEMatthew, 1909
APATAELURUS Scott, 1937
APATAELURUS PISHIGOUENSIS Tong & Lei, 1986, comb. nov.
(Fig. 7)
?Propterodon pishigouensis Tong & Lei, 1986:212, Fig. 2, pl. 1.3
?Propterodon shipigouensis Tong, 1997:6 (lapsus calami)

Holotype—IVPP V7997, left dentary preserving P4-M1.
Type Locality—Shipigou, Liguanqiao Basin, Xichuan County, Henan Province, China.
Stratigraphy and Age—Hetaoyuan Formation, Irdinmanhan stage (Wang et al., 2019).
Revised Diagnosis—Smallest known species of Apataelurus, with P4 and M1 lengths

approximately 10 and 9 mm, respectively.
Comparisons and Discussion—Tong & Lei (1986) described IVPP V7997 as a new

species of Propterodon, P. pishigouensis. Compared to other species referred to Propterodon,
the most distinctive feature of ‘‘P’’. pishigouensis is the shape of the dentary, which is
ventrally deflected anteriorly, beginning below the anterior root of P4 (Tong & Lei, 1986),
indicating the presence of an anterior flange (Fig. 7A). In contrast, the symphysial region
is shallow in P. morrisi and P. tongi and tapers anteriorly. In fact, an anterior dentary
flange has not been documented in any hyaenodont. The only middle Eocene carnivorous
mammals known to possess such a flange are machaeroidines (Scott, 1938;Matthew, 1909;
Gazin, 1946; Dawson et al., 1986), a small clade of North American Wasatchian through
Uintan carnivores recently supported as oxyaenids (Zack, 2019).

Machaeroidines, particularly the Uintan Apataelurus kayi, share substantial similarities
with the type specimen of ‘‘Propterodon’’ pishigouensis, including features that distinguish
the latter species from other Propterodon (Fig. 7). On P4, both A. kayi and pishigouensis
have a well-developed paraconid that is nearly as tall as the talonid (Scott, 1938; Tong & Lei,
1986). The paraconid is absent on P4 in P. tongi (Liu & Huang, 2002). In P. panganensis it
is low and weakly developed (Bonis et al., 2018). While all relevant species have simple P4
talonids dominated by a tall hypoconid, in pishigouensis and A. kayi, the talonid is distinctly
broader than the remainder of the crown (Scott, 1938; Tong & Lei, 1986). In contrast, P4
width is uniformly narrow in P. panganensis and P. tongi (Liu & Huang, 2002; Bonis et al.,
2018). In Propterodon tongi and, to judge the roots of P4, P. morrisi, P4 is enlarged relative
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Figure 7 Comparison of Apataelurus pishigouensis comb. nov. with A. kayi. (A) Apataelurus
pishigouensis, IVPP V7997, left dentary with P4-M1; (B) Apataelurus kayi, CM 11920, right dentary with
P3-M2 (reversed). Both images show the dentary in buccal view. Arrows indicate the ventral deflection of
the dentaries of both specimens. Note that the apparently greater height of the protoconids on P4 and M1

and paraconid on M1 in A. pishigouensis reflects much heavier wear in A. kayi. All scale bars are 10 mm.
Drawings by Shawn P. Zack. (A) drawn from Tong & Lei (1986, pl. 1). (B) drawn from a photograph by
Shawn P. Zack.

Full-size DOI: 10.7717/peerj.8136/fig-7

to M1 (Matthew & Granger, 1925; Liu & Huang, 2002). In pishigouensis and A. kayi, along
with P. panganensis, the two teeth are subequal in size (Scott, 1938; Tong & Lei, 1986; Bonis
et al., 2018).

On M1, a defined metaconid is lacking in pishigouensis and A. kayi (Scott, 1938; Tong
& Lei, 1986), again along with P. panganensis (Bonis et al., 2018), but retained in P. morrisi
(e.g., AMNH FM 21553), with M1 of P. tongi too worn to assess. The primary difference
in M1 morphology is in the talonid. The talonids of P. morrisi, P. tongi, and P. panganensis
are short and much lower than the paraconid (Matthew & Granger, 1925; Liu & Huang,
2002; Bonis et al., 2018; pers. obs. of AMNH FM 21553). In pishigouensis and A. kayi, the
talonid is relatively elongate and nearly as tall as the paraconid (Scott, 1938; Tong & Lei,
1986). Talonid morphology is simplified in both pishigouensis and A. kayi, with both taxa
only retaining a hypoconid. In P. morrisi and P. tongi, some lingual structure is retained,
although the extremely reduced talonid of P. panganensis is also simplified.

Taken together, the mandibular and dental morphology of ‘‘Propterodon’’ pishigouensis
differs substantially from other species of Propterodon, particularly P. morrisi and P. tongi,
but closely matches the morphology of the North American machaeroidine Apataelurus
kayi. Accordingly, Propterodon pishigouensis is recombined as Apataelurus pishigouensis.
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As a species of Apataelurus, A. pishigouensis differs from A. kayi primarily in its somewhat
smaller size. The talonid of A. pishigouensis may be smaller than that of A. kayi, but this
is complicated by heavier wear in the type and only described specimen of the North
American form. Referral of pishigouensis to Machaeroidinae represents the first clear
record of a machaeroidine in Asia.

There may be an additional, older Asian machaeroidine, also initially described as a
hyaenodont. Isphanatherium ferganensis was named for an isolated upper molar from
the Andarak-2 fauna (Lavrov & Averianov, 1998). The morphology of I. ferganensis is
strikingly derived for an early hyaenodont, with an extremely elongate, longitudinally
oriented postvallum blade and a strongly reduced protocone. Both of these features would
be consistent with a machaeroidine identity. The overall morphology of the type of I.
ferganensis is closely comparable to M1 of Machaeroides spp. from the early and middle
Eocene of North America (Gazin, 1946; Dawson et al., 1986). They share development and
orientation of the metastylar blade, protocone reduction without mesiodistal compression,
fusion of the paracone and metacone to a point close to their apices, with the metacone
taller than the paracone, and the presence of a low but distinct parastyle that is continuous
with a buccal cingulum that is restricted to the mesial portion of the crown. A specific
similarity shared by I. ferganensis and M. simpsoni (S Zack, pers. obs., 2019 of CM 45115)
is the presence of contrasting compression of the paracone and metacone, with the former
compressed mesiodistally while the latter is compressed transversely. More material is
needed to be certain, but the age and morphology of Isphanatherium ferganensis supports
the tentative reidentification of the species as a machaeroidine and of the holotype as an
M1 rather than an M2.

DISCUSSION
Hyaenodontine Origins—Recent assessments of hyaenodont biogeography (Borths,
Holroyd & Seiffert, 2016; Borths & Stevens, 2017) have supported a European divergence
of Hyaenodontinae from Oxyaenoides, which was recovered as the sister taxon of
Hyaenodontinae in both analyses. This grouping is nested within a broader assemblage
of European hyaenodonts comprising taxa referred to Proviverrinae by Solé (2013) and
Solé et al. (2015). More recent studies (Borths & Stevens, 2019a; Borths & Stevens, 2019b;
Solé & Mennecart, 2019) complicate this scenario slightly by recovering Prionogalidae and
Thereutherium within the clade defined byOxyaenoides and Hyaenodontinae, but the basic
biogeographic scenario is unchanged, with Hyaenodontinae deeply nested within a clade
of European hyaenodonts. As was noted by Borths & Stevens (2019a) with regard to the
position of Prionogalidae, the character support uniting Oxyaenoides, Thereutherium,
Prionogalidae, and Hyaenodontinae consists primarily of features associated with
hypercarnivory, specifically reduction of the metaconids and talonids on lower molariform
teeth. Hypercarnivory has evolved iteratively in diverse carnivorous mammalian clades
and homoplasy in features associated with hypercarnivory is well-documented (Muizon &
Lange-Badré, 1997;Holliday & Steppan, 2004; Solé & Ladevèze, 2017). Accordingly, support
for a close relationship between Oxyaenoides and Hyaenodontinae should be regarded
cautiously, despite its recovery in several analyses.
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In contrast to the analyses just discussed, results of the current phylogenetic analysis
do not place Hyaenodontinae phylogenetically proximate to Oxyaenoides, nor do the
results of the Rana et al. (2015) analysis. While the position of Hyaenodontinae is not
consistently resolved in the present study, a sister taxon relationship to Oxyaenoides is not
present in any most parsimonious tree. Some most parsimonious trees (MPTs) do recover
Hyaenodontinae as the sister taxon of Proviverrinae, as used by Solé (2013) and Solé et
al. (2015b). However, other MPTs recover Hyaenodontinae as the sister taxon of North
American and European Galecyon or to a clade comprising Galecyon plus Holarctic Arfia.
Still other MPTs place Hyaenodontinae at the base of a diverse grouping that includes
all sampled taxa excepting Arfia and Proviverrinae, with Asian and North American
Limnocyoninae the next diverging clade. There is no particular support in this analysis for
a European origin for Hyaenodontinae.

In fact, a European origin appears unlikely. Unlike Oxyaenoides, which shares some
distinctive dental features with other proviverrines, including a double-rooted P1 and
molar talonids with three, more or less equally developed and equidistantly spaced cusps,
hyaenodontine dental morphology has little in common with proviverrines. The relatively
large P1 remains single-rooted in P. morrisi and P. tongi (Matthew & Granger, 1925; Liu &
Huang, 2002), while the entoconid and hypoconulid are weakly developed in all species of
Propterodon. With the exception of a reduced metacingulum on M1−2, other distinctive
proviverrine dental features enumerated by Solé (2013) (entoconids on P3−4, prominent
paraconids on P2−3 and parastyle on P4, M1−2 with metacones taller than paracones) are
absent in Propterodon (Matthew & Granger, 1925; Lavrov, 1996; Liu & Huang, 2002).

Biogeographic evidence also suggests that derivation of hyaenodontines from within the
European Eocene hyaenodont radiation is unlikely. From the late early Eocene through the
Eocene/Oligocene transition, Europe was an island isolated from the rest of Holarctica (e.g.,
Meulenkamp & Sissingh, 2003), resulting in the evolution of a diverse endemic mammalian
fauna (Hooker, 1989; Badiola et al., 2009; Danilo et al., 2013). This period encompasses
the radiation of proviverrine hyaenodonts (sensu Solé, 2013), which formed the dominant
carnivorous element of this endemic European fauna. There is little evidence ofmammalian
dispersal from Europe to Asia during this interval.

In fact, there is some evidence from the fossil record consistent with an earlier Asian
record of Hyaenodontinae. The ?Arshantan fauna from Andarak-2, Khaichin Formation,
Kyrgyzstan, includes a fragmentary hyaenodont dentition (ZIN 34494) described by Lavrov
& Averianov (1998) as similar to Neoparapterodon rechetovi, the latter a likely synonym
of Propterodon morrisi according to Morlo & Habersetzer (1999). If correctly identified,
this would extend the Asian record of Hyaenodontinae back to the early part of the
middle Eocene and would support an Asian origin for the subfamily. Unfortunately, the
hyaenodont record from both the Arshantan and the preceding Lingchan (equivalent to
the Bumbanian) is very poor. Aside from ZIN 34494, the published hyaenodont record
from the Arshantan is limited to the type specimen of Isphanatherium ferganensis (Lavrov
& Averianov, 1998), which may not be a hyaenodont (see above). Lingchan hyaenodont
records comprise two specimens referred to distinct species of Arfia and two specimens
referred to ?Prototomus sp. (Lavrov & Lopatin, 2004; Tong & Wang, 2006;Morlo et al., 2014;
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Solé, Gheerbrant & Godinot, 2013). Until early and early middle Eocene hyaenodonts from
Asia are better documented, it is difficult to determine what role, if any, Asia played in the
origin of Hyaenodontinae.

Late Uintan Carnivore Dispersals—In addition to Propterodon, several other
carnivorous taxa that first appear in the late Uintan (Ui2−3) have a potential origin
outside western North America. Among hyaenodonts, the limnocyonine Oxyaenodon
dysodus is quite distinct from Limnocyon potens, the only limnocyonine known from the
early Uintan. Compared to L. potens, O. dysodus is smaller and more hypercarnivorously
adapted, with smaller, less basined talonids and a longer M2 prevallid blade. Oxyaenodon
dysodus also retains a full complement of relatively uniform incisors, while L. potens
has enlarged I2 and lost I3 (Denison, 1938). While Morlo & Gunnell (2005) recovered O.
dysodus and L. potens as sister taxa in a phylogenetic analysis of limnocyonines, an earlier
analysis of a nearly identical matrix (Morlo & Gunnell, 2003) recovered O. dysodus as
the sister taxon of Bridgerian Thinocyon medius, outside of a monophyletic Limnocyon
(note that the consensus tree shown in Morlo & Gunnell (2005, fig. 1) is in error; all four
shortest trees found by analyzing the published matrix without modification recover
Thinocyon medius rather than Bridgerian Limnocyon as the sister taxon of L. potens plus
O. dysodus). Both Morlo & Gunnell (2003) and Tong & Lei (1986) have noted similarities
to the Irdinmanhan Chinese taxon Prolaena parva. Taken together, it is plausible that the
appearance of Oxyaenodon in the late Uintan reflects immigration from Asia, similar to
the pattern hypothesized for P. witteri. A full assessment of the affinities of Oxyaenodon is
beyond the scope of this study. Published descriptions and illustrations of material of O.
dysodus are inadequate to confidently score the species, and substantial additional material
remains unpublished (Friscia & Dunn, 2016).

The affinities of another late Uintan hyaenodont, the small undescribed taxon or taxa
referenced above are unclear at present, but small hyaenodontid material from the Mission
Valley Formation appear to document a non-limnocyonine with a narrow M1 talonid (S
Zack, pers. obs., 2019), very divergent from both Limnocyon or Sinopa, the only hyaenodont
genera known from the early Uintan.

Other carnivorous groups show a similar pattern. At least two machaeroidine taxa are
present in late Uintan faunas (Scott, 1937; Scott, 1938; Rasmussen et al., 1999;Wagner, 1999;
Zack, 2019), but none is known from Ui1. Among miacids, several taxa appear in the late
Uintan without obvious Ui1 antecedents, including Tapocyon spp., ‘‘Miacis’’ uintensis, and
‘‘M.’’ hookwayi (Wesley & Flynn, 2003; Spaulding & Flynn, 2009;Tomiya, 2013). Finally, the
enigmatic carnivorous mammal Simidectes first appears in the late Uintan, again without
obvious early Uintan relatives (Coombs, 1971).

The lack of an early Uintan ancestry for some taxa may reflect limited data from the
Ui1 interval, which remains relatively poorly sampled. With this caveat, the discovery of
Propterodon witteri is evidence of a potential Asian origin for many of the carnivorous taxa
that first appear in the late Uintan. Referral of Propterodon pishigouensis to Apataelurus
documents an additional tie between the carnivorous faunas of the Irdinmanhan and
Uintan. In addition, both the hyaenodont Sinopa and the mesonychid Harpagolestes
are shared by Irdinmanhan and Uintan faunas (Jin, 2005; Jin, 2012; Morlo et al., 2014;
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Robson et al., 2019). The Huadian Formation fauna containing S. jilinia was considered
post-Irdinmanhan in age by Morlo et al. (2014) based on the stage of evolution of the
omomyid Asiomomys, but the presence of Zelomys, a genus otherwise known from the
Irdinmanhan Yuli Member of the Hedi Formation (Dawson et al., 2003) suggests an older
age. Carnivore dispersals from Asia to North America during the later Uintan would be
concordant with evidence for dispersal of other mammals from Asia to North America
during this interval, including the chalicotheroid perissodactylGrangeria and the omomyid
primate Macrotarsius in Ui2 (Woodburne, 2004). Ui3 sees additional dispersals including
several brontotheriid perissodactyls, and Mytonolagus, the oldest known North American
lagomorph (Woodburne, 2004;Mihlbachler, 2008).

A complicating factor is the poor quality of the Asianmiddle Eocene carnivore record. As
discussed above, the Lingchan and Arshantan record of hyaenodonts is extremely poor, and
other carnivorous clades are also poorly sampled in both intervals. The Irdinmanhan record
is somewhat better but remains inadequate. Among non-mesonychians, Irdinmanhan
hyaenodonts include two species of Propterodon, P. morrisi and P. tongi, the sinopanine
Sinopa jilinia, and the limnocyonine Prolaena parva (Matthew & Granger, 1924; Matthew
& Granger, 1925; Xu et al., 1979; Tong & Lei, 1986; Lavrov, 1996; Liu & Huang, 2002;Morlo
et al., 2014). In addition to the machaeroidine Apataelurus pishigouensis, the last recorded
oxyaenine, Sarkastodon hetangensis, occurs in the Irdinmanhan (Tong & Lei, 1986). Finally,
Irdinmanhan miacoids are represented by three species, all questionably referred toMiacis:
M. boqinghensis, M. invictus, and M. lushiensis (Matthew & Granger, 1925; Chow, 1975;
Tong & Lei, 1986; Qi, Zong & Wang, 1991; Huang, Tong & Wang, 1999). Of these, only
Propterodon morrisi and Miacis lushiensis are represented by multiple specimens (this may
be in error for M. lushiensis as the size and morphology of referred material suggests the
presence of multiple species).

Considering the limited nature of the Asian record, the presence of four genera shared
betweenUintan and Irdinmanhan faunas (Harpagolestes,Apataelurus, Sinopa, Propterodon)
constitutes clear evidence for substantial exchange of carnivorous mammals during this
interval. As noted above, Prolaena can be potentially added to this list although Morlo &
Gunnell (2003)were skeptical of a relationship betweenAsianProlaena andNorthAmerican
Oxyaenodon. Despite the assignment of species on both continents to a wastebasket
‘‘Miacis’’, there is less obvious overlap between miacoids, although ‘‘Miacis’’ lushiensis
has been compared with Bridgerian ‘‘M’’. hargeri (Tong & Lei, 1986). Further study will be
required to confirm this possibility and assess the potential forNorth American connections
for other Irdinmanhan ‘‘Miacis’’. For the present, it is clear that investigations into the
decline in North American hyaenodont diversity and coincident rise in carnivoraform
diversity must consider the role of immigration in shaping the North American carnivore
guild during the Uintan.

CONCLUSIONS
The new species described in this work, Propterodon witteri, is the first known North
American representative of the genus Propterodon. Comparisons of the new species with
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other early and middle Eocene hypercarnivorous hyaenodonts support a link to Asian
Propterodon and Hyaenodontinae more generally, a conclusion supported by the results
of the phylogenetic analysis. The broader relationships of Hyaenodontinae are not well-
resolved. Despite being supported by several phylogenetic assessments, a link to European
Oxyaenoides is unlikely. An Asian origin for Hyaenodontinae is more likely, but better
material of poorly known Linchan and Arshantan hyaenodonts is needed to test this
hypothesis. Recognition of a Uintan hyaenodontine and an Irdinmanhan machaeroidine
increases the evidence for dispersal of carnivorous mammals between Asia and North
America during the late middle Eocene. Much of the apparent shift in North American
carnivorous guilds, from ‘‘creodont’’ to carnivoramorphan dominated, may ultimately
reflect the effects of this immigration rather than intrinsic processes within North American
faunas.
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