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ABSTRACT
Glaucoma is an age-dependent disease closely related to oxidative stress and is regarded
as the second leading cause of irreversible blindness worldwide. In recent years, many
studies have shown that morphological and functional abnormalities of the trabecular
meshwork (TM) are closely related to glaucoma, especially with respect to oxidative
stress. In this review, the mechanisms of oxidative stress in the TM and treatment
strategies for this condition, including strategies involving antioxidants, noncoding
RNAs and exogenous compounds, are discussed. Although many questions remain to
be answered, the reviewed findings provide insights for further research on oxidative
stress alleviation in glaucoma and suggest new targets for glaucoma prevention.

Subjects Geriatrics, Ophthalmology, Surgery and Surgical Specialties
Keywords Trabecular meshwork, Oxidative stress, Antioxidants, POAG

INTRODUCTION
Glaucoma is an age-dependent disease closely related to oxidative stress and is considered
to be the second leading cause of irreversible human blindness worldwide, especially in the
elderly population (Quigley & Broman, 2006). Oxidative stress can happen in many ocular
cells, such as corneal epithelial cells (CECs), trabecular meshwork (TM) cells (TMCs),
retinal pigment epithelial cells (RPEs) and retinal ganglion cells (RGCs). In particular,
oxidative stress-induced dysfunction of TMCs can obstruct the outflow of the aqueous
humor, leading to pathologically high intraocular pressure (IOP) and contributing to
glaucoma. Several studies have suggested that the progression of primary open-angle
glaucoma (POAG) may be related to reductions in the antioxidant capacity of the TM
(Ammar, Hamweyah & Kahook, 2012a). In this review, we discuss the mechanisms of
oxidative stress and recent research on antioxidative strategies for the TM (Fig. 1).

SURVEY METHODOLOGY
This review focuses on hot topics in glaucoma research: oxidative stress and antioxidants.
All references were retrieved using search engines such as PubMed and Web of Science
using keywords including ‘‘trabecular meshwork cells’’, ‘‘oxidative stress’’, ‘‘antioxidants’’
and ‘‘glaucoma.’’

ROS and oxidative stress
Free radicals are substances with unpaired electrons that are regularly produced through
normal metabolic processes. Free radicals can be divided into oxygen and nonoxygen
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Figure 1 Oxidative stress and antioxidants of trabecular meshwork.
Full-size DOI: 10.7717/peerj.8121/fig-1

radicals, although oxygen free radicals account for 95%of all free radicals (Zhao et al., 2016).
Oxygen radicals include oxygen and highly reactive oxygen molecules, such as hydrogen
peroxide (H2O2), hydroxyl radicals (OH•), peroxide hydroxyl radicals, alkoxy radicals,
superoxide and anionic radicals (O2-), which are collectively referred to as reactive oxygen
species (ROS). The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family
is an enzyme family whose main function is to produce ROS upon stimulation by different
growth factors and cytokines in various cell types (Wulf, 2002; Yun et al., 2011). Important
exogenous stimulants of free radical production include electromagnetic radiation (visible,
ultraviolet (UV), and infrared radiation) and known environmental pollutants such as
tobacco smoke. Endogenous sources of free radicals include mitochondria, which form
superoxide through the respiratory chain, and polynuclear cells in the inflammatory
environment, which perform important functions during the physiological response to
injury.

Oxidative stress is usually caused by imbalance between ROS production and elimination
as a result of biological defense mechanisms, mitochondrial dysfunction, impaired
antioxidant systems or a combination of these factors. Oxidative stress increases the
production of ROS, creating a vicious cycle. Abnormal ROS accumulation can cause
oxidative damage to deoxyribonucleic acid (DNA), proteins, and lipids. DNA damage can
induce apoptosis, autophagy, andmutation, which are associated with cataracts, age-related
macular degeneration (AMD), retinopathies, and glaucoma.

TM oxidative stress and glaucoma
Patients with POAG are susceptible to oxidative damage because their total reactive
antioxidant capacity is 60%–70% lower than that of healthy individuals (Ferreira et al.,
2004; Tanito et al., 2015). POAG patients’ serum samples always exhibit low levels of
circulating glutathione (Doina et al., 2005), total antioxidant capacity (TAC), advanced
oxidation protein products (AOPPs), superoxide dismutase (SOD), glutathione peroxidase
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(Gpx) (Engin et al., 2010) and catalase (CAT) (Majstereka et al., 2011) but high levels
of malondialdehyde (MDA). Interestingly, results obtained from serum samples are
consistent with those obtained from aqueous humor samples (Nucci et al., 2013; Sorkhabi
et al., 2011), indicating that systemic antioxidant capacity can reflect local ocular redox
status. Various studies have shown that TMCs are some of the most ROS-sensitive cells
in the anterior chamber (Alberto et al., 2009) and serve as regulators of aqueous humor
outflow. The TM structure can sustain oxidative stress due to the effects of UV-based
oxidative byproducts of aqueous, corneal and crystalline epithelial cells (Stamer & Clark,
2017). ROS-mediated damage to the TM has been shown to impair the structural and
functional components of mtDNA in TMCs and to damage proteins and membrane lipids
(Abu-Amero, Jose & Bosley, 2006), increasing aqueous humor outflow resistance (Izzotti
et al., 2003). Furthermore, elevations in IOP may accelerate oxidative adduct formation,
which is greatest near neuronal cell bodies, resulting in a positive feedback loop (Weinreb
& Tee, 2004). In vitro studies have shown that oxidative stress is often induced by hydrogen
peroxide at different concentrations (Ammar, Hamweyah & Kahook, 2012b; Liu & Zhang,
2019; Lu &Wang, 2017; Zhao et al., 2019a) or by homocysteine (You et al., 2018) and
rotenone (He et al., 2019). In addition, oxygen free radical generation in TMCs may
increase with age, leading to gradual increases in oxidative damage, extracellular matrix
(ECM) accumulation, cytoskeletal changes, apoptosis and changes in the structures and
functions of plasmids and lysosomes (Gabelt & Kaufman, 2005).
(1) Imbalance between oxidation and antioxidation in the anterior chamber

Imbalance between oxidants and antioxidants or excessive ROS accumulation can
cause oxidative stress (Aydin Yaz et al., 2019). Under conditions of oxidative stress, TMCs
express a variety of reductases, such as SOD, glutathione S-transferase (GS-T), and GPx,
that neutralize the active substances, and total antioxidant status (TAS) (Abu-Amero et
al., 2011), CAT, vitamin C (Ferreira & Lerner, 2008), paraoxonase, and arylesterase can
be measured as antioxidant markers. Furthermore, total oxidative stress (TOS) (Dursun
et al., 2015), MDA (D’Azy et al., 2016) (16, 17), 8-hydroxydeoxyguanosine (8-OHdG)
(Sorkhabi et al., 2011), 4-hydroxynonenal (4-HNE), protein carbonyl (PC) (Mesut et al.,
2011), and nitric oxide (NO) have beenmeasured as pro-oxidantmarkers in various studies.
Other inflammatory markers, such as interleukin-1 α (IL-1 α) and endothelial leukocyte
adhesion molecule (ELAM)-1, have been evaluated in animals and TMCs (Avotri, Eatman
& Russell-Randall, 2019). Imbalance between oxidants and antioxidants can lead to ROS
accumulation, TMC structural remodeling, TM enlargement or TM collapse. In addition,
oxidative stress stimulates the migration of human TMCs in vitro, resulting in thickening,
enlargement and fusion of the TM (Hogg et al., 2000)
(2) Genes andmutations
CyP1B1

CytochromeP450 family 1 subfamily Bmember 1 (CYP1B1) is part of theCYP450 family,
whose main function is to catalyze reactions of exogenous and endogenous molecules
through NADPH (Savas et al., 1994). Mutations in CYP1B1 have been found in patients
with congenital glaucoma. Appropriate expression of periostin (Postn) helps to maintain
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the structural integrity of TM tissue, and the expression of this molecule is influenced by
Cyp1b1 (Yun et al., 2013)
LTBP2 (https://www.ncbi.nlm.nih.gov/gene/4053)

The latent transforming growth factor (TGF)- β binding protein (LTBP) 2 gene encodes
the protein LTBP2, which is closely connected with ECM molecules including fibrillin
proteins and other LTBPs (Rifkin, 2005). Knockdown of LTBP2 affects not only the ECM
but also TMC apoptosis through a mechanism that may be mediated by the TGF β and
BMP signaling pathways; these effects are similar to those induced by oxidative stress (Suri,
Yazdani & Elahi, 2018).
MYOC

Myocilin (MYOC) is the first gene whose mutations were demonstrated to cause familial
forms of glaucoma (Stone et al., 1997). One mutation in MYOC activates the IL-1/NF- κB
pathway, significantly stimulating IL1A and IL1B expression, which may be associated with
POAG (Itakura, Peters & Fini, 2015).
8-OHdG

8-OHdG, a product of oxidative damage to DNA, is produced by reaction of hydroxyl
radicals with deoxyguanosine, which causes c-8-hydroxylation (Sun, 2016). As an
endogenous mutagenic agent, 8-OHdG can cause a G:C→ T:A mutation. One study
using 8-OHdG as a marker of oxidative stress revealed that oxidative DNA damage is
significantly elevated in TMCs of patients with POAG compared to TMCs of healthy
individuals (Sacca et al., 2005). Further analysis revealed a significant positive correlation
of 8-OHdG levels in the TM with visual field defects and increased IOP (Sergio Claudio et
al., 2005).
TXNRD2

The thioredoxin reductase 2 (TXNRD2) gene encodes a mitochondrial protein of the
same name that belongs to the pyridine nucleotide-disulfide oxidoreductase family and
is a member of the Trx system. This protein is necessary for reducing damaging ROS
generated by oxidative phosphorylation (OXPHOS) and other mitochondrial functions
(Chen, Cai & Jones, 2006). A genome-wide association analysis reported that TXNRD2
loci are significantly associated with POAG (Shiga et al., 2018). Additionally, Bailey et al
revealed that TXNRD2 loci are significantly associated with IOP in another genome-wide
association study (Bailey et al., 2016).
(3) Humor outflow impairment and the ECM

Excessive accumulation of ECM proteins (e.g., collagen, fibronectin (FN), and laminin)
in the TM may induce elevations in IOP. In vitro induction of oxidative stress in TMCs
leads to typical POAG-like changes (ECM accumulation, cell death, cytoskeletal disorders,
inflammatorymarker release, etc.), which can be significantly reduced by pretreatment with
antioxidants and vasopressors (prostaglandin analogs and carbonic anhydride inhibitors)
(Welge-Lussen & Birke, 2010). The levels of FN, an ECM component, are significantly
increased in the context of POAG. Increased FN concentrations can not only cause TMC
dysfunction but also reduce the numbers of TMCs, thus affecting normal aqueous filtration
(Hogg et al., 2000). FN can also change the structures of TMCs, causing dysfunction (Padma
et al., 2012). In addition, FN can change other ECM characteristics, increasing the outflow
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resistance of the aqueous humor. With regard to DNA damage, continuous oxidative
stress decreases the function of miR-29b, which negatively regulates the expression of
ECM-related genes, thereby promoting the deposition of ECM in the TM and impeding
the flow of water out of the chamber (Luna et al., 2009).
(4) Mitochondrial oxidative damage in TMCs

Mitochondria are important sites of intracellular aerobic respiration that play vital
roles in maintaining cell homeostasis by regulating processes including oxidative energy
metabolism, intracellular calcium balance, neuronal excitability and synaptic transmission,
and apoptosis (Chan, 2006). Mitochondrial dysfunction can decrease intracellular ATP
synthesis and inhibit mitochondrial OXPHOS, inducing excessive ROS production.
Excessive accumulation of ROS leads to mitochondrial DNA damage, which further
damages mitochondrial structure and function and in turn generates additional ROS. In
recent years, increasing evidence has shown that mitochondrial injury and oxidative stress
are involved in TMC damage in glaucoma (Zhao et al., 2016). Mitochondrial complex
I defects have been reported to be associated with the degradation of TMCs in POAG
patients (Yuan et al., 2008). In addition, patients with POAG are more likely to have a
maternal family history than a paternal family history, suggesting a role for mitochondrial
inheritance (Paul et al., 2002). Abu-Amero et al. (2011) found 27 nonsynonymous mtDNA
mutations in POAG patients, 22 of which were potentially pathogenic, while no such
mutations were found in a healthy control group. Mean mitochondrial respiratory activity
was decreased in 24 cases, further indicating that oxidative stress and mitochondrial
dysfunction contribute significantly to POAG. Chen, Cai & Jones (2006) found that
the redox status of mitochondrial thioredoxin (mtTrx) underlies the vulnerability of
mitochondria to oxidative injury. These findings indicate that glaucoma is a mitochondrial
neurodegenerative disease and thus may suggest new options for glaucoma treatment.
(5) Inflammatory response to oxidative stress

Previous results (Li et al., 2007a) have revealed that the pathological changes induced by
oxidative stress include cell death, intracellular ROS production, proinflammatory factor
induction, senescencemarker activation, PC accumulation, proteasome activity promotion,
and apoptosis promotion, all of which are hallmarks of glaucoma. Inflammatory cells
release active substances at inflammatory sites, leading to excessive oxidative stress (Li
et al., 2007b). Reactive oxygen and nitrogen species (RONS) can activate the expression
of proinflammatory genes through intracellular signaling cascades (Yang et al., 2012).
For example, ROS can activate the NF-κB pathway, whose downstream target genes
include components of mitogen-activated protein kinase (MAPK) signaling pathways,
phosphoinositide 3-kinase (PI3K)-Akt, extracellular signal-regulated kinase (ERK) and
p38 (Li et al., 2007b), which may alter TM mobility and cause contractile dysfunction.
Additionally, oxidative stress can increase the expression of some inflammatory mediators,
including IL-1α, IL-6, IL-8 and ELAM-1, not only in glaucomatous TMCs but also in vivo
(Tourtas et al., 2012). This effect is further exacerbated by upregulation of the expression
of ELAMs due to oxidative stress and activation of the inflammatory cytokine IL-1.
Sirtuin 1 (SIRT1) is a member of the sirtuin family of nicotinamide adenine dinucleotide
(NAD+)-dependent histone deacetylases; this protein helps to regulate lifespan in several
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organisms and may provide protection against diseases related to oxidative stress-induced
ocular damage. In the case of glaucoma, such protection is likely to occur through the
interaction of SIRT1 with endothelial nitric oxide synthase (eNOS) (Thomas et al., 2002),
which regulates inflow and outflow pathways of TMCs.
(6) Aging and oxidative stress

Aging refers to the gradual loss of tissue and organ functions over time (Losordo &
Henry, 2016). Aging, in which oxidative stress plays a major role, is a risk factor frequently
associated with various degenerative diseases. Age-related structural damage and functional
loss are due to the accumulation of oxidative damage in macromolecules (lipids, DNA
and proteins) mediated by electrons (Beckman & Ames, 1998). The TM shows striking
morphological decay during aging; its cellularity diminishes in a linear manner with
age. The exact mechanism by which oxidative stress induces senescence is unclear, but
increased RONS levels are known to cause cellular senescence. Autophagy plays a critical
role in the removal of aged or damaged intracellular organelles and in the delivery of
damaged organelles to lysosomes for degradation (Cuervo et al., 2005). Aging promotes
TM senescence due to increased oxidative stress, and this process is paralleled by increased
autophagy (Pulliero et al., 2014). Furthermore, production of advanced glycation end
products (AGEs) is induced by nonenzymatic reactions between sugars and proteins under
conditions of abnormally increased glucose concentrations, especially in aged patients or in
patients with diabetes mellitus (Bucala, Tracey & Cerami, 1991); AGEs can enhance TMC
senescence and increase oxidative stress (Park & Kim, 2012).

Antioxidative strategies
(1) Physiological antioxidative defense mechanisms
Physiological antioxidative defense mechanisms involve a number of enzymes, such

as SOD, CAT, GPx, GS-T, and the thioredoxin (TRX) system (Rokicki et al., 2016).
Nonenzymatic antioxidants include endogenously produced GSH and dietary compounds,
such as vitamins C and E (Zanon-Moreno et al., 2013); vitamin-like antioxidant
compounds, including polyphenols and oligoelements; and certain metalloreductases.
The function of these antioxidants is to capture free radicals by accepting and transferring
unpaired electrons or through UV light absorption. In addition to the antioxidants
described above, TMCs have been shown to be able to synthesize β-crystalline as a
molecular chaperone to prevent oxidative damage (Pinazo-Durãn et al., 2017).
(2) Genes and proteins
FOXC1

Forkhead box C1 (FOXC1) is a member of the Forkhead Box or FOX class of
transcription factors. The FOX class regulates cellular functions, the development of
many organ systems, energy homeostasis and oncogenesis (Carlsson & Mahlapuu, 2002;
Lehmann et al., 2003). FOXC1 is essential for the survival of TMCs under conditions of
oxidative stress (Berry et al., 2008).
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Prdx6
Peroxiredoxin 6 (Prdx6), a protective protein together with GPx and acidic calcium-

independent phospholipase A2, acts as a rheostat to regulate cellular physiology by clearing
ROS (Singh et al., 2016). ROS accumulation and pathobiological changes in aging or
glaucomatous TMCs are partly due to the loss of Prdx6 (Chhunchha et al., 2017) and are
correlated with increases in senescence markers and reductions in telomerase activity.
HES1

Hairy and enhancer of split 1 (HES1), which belongs to the basic helix-loop-helix family
of transcription factors, is a transcriptional repressor. HES1 regulates the development
of cells in the nervous and digestive systems by functioning downstream of the Notch
signaling pathway (Kageyama, Ohtsuka & Kobayashi, 2007). Xu et al. found that HES1
promotes ECM expression and inhibits TMC proliferation and migration under oxidative
stress (Xu et al., 2017). More importantly, HES1 short hairpin RNA (shRNA) has been
shown to attenuate ECM protein upregulation and functional defects caused by oxidative
stress.
TGF-β2

TGF-β2 in the aqueous humor may cause molecular changes and increase outflow
resistance in POAG (Inatani et al., 2001; Junglas et al., 2009). The effect of connective tissue
growth factor (CTGF) in oxidative stress is associated with ECM synthesis and increased
contractility of the TM, contributing to a decrease in aqueous humor outflow facility and an
increase in IOP (Sabrina et al., 2015). A recent study showed that mitochondrial-targeted
antioxidants (XJB-5-131 and MitoQ) can attenuate TGF- β2/Smad signaling in TMCs
through processes including reductions in CTGF and collagen isoform gene and protein
expression (Rao et al., 2019).
NRF2

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) plays a key role in regulating
cellular oxidation reactions through oxidative stress defense mechanisms (Sachdeva, Cano
& Handa, 2014). After exposure to ROS, Kelch-like ECH-associated protein 1 (Keap1)
undergoes conformational changes, translocating NRF2 into the nucleus, binding to the
antioxidant response element (ARE) region, and initiating the transcription of targets,
including heme oxygenase-1 (HO-1) (Batliwala et al., 2017; Suzuki & Yamamoto, 2015)
and NAD (P)H:quinone oxidoreductase1 (NQO1). Recently, many NRF2 activators,
including the antioxidants sulforaphane (SFN), quercetin, and resveratrol (RSV), have
been intensively studied and show great potential for protection against oxidative stress;
these findings may offer new strategies for glaucoma treatment.
Rho kinase family members and their inhibitors

The Rho family kinases (Pinazo-Durãn et al., 2017) and their inhibitors (AMA0076,
AR-13324, K-115, PG324, Y-39983, RKI-983, H-1152 recoverin and Y-27632) (Fujimoto
et al., 2017) modulate signal transduction pathways; actin cytoskeleton function; and
TMC, canal of Schlemm and ciliary muscle cell motility. In vivo, inhibition of p38 MAPK
phosphorylation decreases tert-butyl hydroperoxide-induced apoptosis in TMCs.
(3) Noncoding RNAs
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MicroRNAs are a class of small noncoding RNAs (19–25 nucleotides in length) that
regulate a wide range of cellular processes by repressing the transcription or translation
of their target genes (Van Rooij, 2011). MiRNAs are abundantly present in biological
fluids and are reliable diagnostic and predictive biomarkers (Weber et al., 2010). Long
noncoding RNAs are >200 nucleotide-long RNA molecules that lack or have limited
protein-coding potential but can regulate miRNAs or protein formation through several
different mechanisms (Wawrzyniak et al., 2018). Recently, noncoding RNAs have become
popular subjects of glaucoma research (Table 1), providing attractive opportunities to
defend against oxidative stress and to identify novel biomarkers for the diagnosis and
prognosis of glaucoma.
(4) PUFAs
Polyunsaturated fatty acids (PUFAs) have numerous anti-inflammatory and antioxidant

properties (Sacca et al., 2018) that can influencemitochondrial energy production; improve
mitochondrial function (Putti et al., 2015); influence cellular energy metabolism, neuronal
plasticity, and membrane homeostasis (Dyall, 2017); and improve synaptic function.
Omega-3 and omega-6 fatty acids exert preventative effects against oxidative stress in
TMCs by abolishing the stimulation of NF-κB and IL-6. Therefore, the physiological basis
of the PUFA-mediated protection of TMCs from oxidative stress has been revealed, which
may provide new targets for antioxidation treatment (Tourtas et al., 2012).
(5) Exogenous compounds
Due to the association between oxidative stress and age-related disease, many types of

phytochemicals, including polyphenols and terpenoids, which have anti-inflammatory
and antioxidant properties, have been reported to be potential preventative treatments
for ocular diseases. Additionally, other compounds, including rapamycin (He et al., 2019),
ethyl pyruvate (Famili, Ammar & Kahook, 2013), and 1α,25-dihydroxyvitamin D3 (Lv et
al., 2019), exert protective effects against oxidative stress through different pathways. The
functions and mechanisms of these compounds are shown in Table 2. Studies investigating
exogenous compounds have revealed new treatment options for oxidative stress.
(6) Systemic antioxidant administration for glaucoma treatment

As described in the section ‘‘TM oxidative stress and glaucoma’’, systemic antioxidant
capacity can reflect local ocular redox status. Some researchers have hypothesized and
verified that increases in systemic antioxidant levels due to long-term antioxidant intake
can increase local antioxidant levels, but the evidence is limited. Intake of vitamins C, A, and
E is not significantly associated with the risk of POAG (Kang et al., 2003; Wang, Singh &
Lin, 2013). Notably, in the case of glaucoma, systemic drugs have greater difficulty crossing
the blood-retinal barrier than local drugs (Lin, Ciolino & Pasquale, 2017); in addition,
systemic drugs have more systemic side effects and lower bioavailability than local drugs.
These differences remain challenges to be solved. Many new drug delivery systems (such
as in situ gels, liposomes, niosomes, hydrogels, dendrimers, nanoparticles, and solid lipid
nanoparticles) are in clinical trials. The goal of related research is to improve drug delivery
in appropriate recipients, which may improve efficacy and compliance and reduce side
effects (Yadav, Rajpurohit & Sharma, 2019).
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Table 1 Role of antioxidative stress of miRNAs and lncRNAs.

Name Functions andMechanisms References

miR-1 Regulates TMCs under oxidative stress by targeting FN expression. Guo et al. (2019)
miR-29b Downregulated by TGF-β2 and oxidative stress. Negatively regulates the expression of multi-

ple genes involved in the synthesis and deposition of ECM proteins, including SPARC (secreted
protein, acidic, and rich in cysteine), FBN1, laminin, collagens, BMP1, ADAM12, NKIRAS2,
and SP1.

Guadalupe et al. (2011),
Li et al. (2009),
Luna et al. (2009),
Srikumar et al. (2008),
Zhaoyong et al. (2009)

miR-21 Increases the production of the ECM by silencing its target gene PTEN and by regulating TGF-
β2 expression.

Dang (2017)

miR-181a Inhibits the TMCs apoptosis induced by H2O2 through the suppression of the NF-κB and JNK
pathways.

Wang et al. (2018)

miR-1298 Protects TMCs against the damage caused by chronic oxidative stress (COS) via inhibiting the
TGF- β2/Smad4 pathway and activating the canonical Wnt pathway.

Ruibin et al. (2018)

miR-483-3p Inhibits the ECM after oxidative stress by targeting Smad4. Shen et al. (2015)
miR-24 Regulates TGF β1 during cyclic mechanical stress by targeting FURIN. Coralia et al. (2011)
miR-200c Inhibits the expression of genes (ZEB1, ZEB2, FHOD1, LPAR1/EDG2, ETAR, and RHOA) re-

lated to the contraction of TMCs.
Luna et al. (2012)

miR-146a Modulates inflammatory markers. Guorong et al. (2010)
miR-204 Affects the sensitivity of TMCs to apoptosis and the number of cells. Acts as a direct target of

AP1S2, Bcl2l2, BIRC2, EDEM1, EZR, FZD1, M6PR, RAB22A, RAB40B, SERP1, TCF12, TCF4,
CLOCK, PLEKHG5, and ITGB1 MEIS2 and as a potential target of FOXC1.

Guorong et al. (2011),
Matthew et al. (2012),
Paylakhi et al. (2013),
Redis et al. (2012)

miR-155 Regulates the ECM though interacting with the TGF β pathway. Bjoern et al. (2006),
Johannes et al. (2004)

miR-184 Regulates the growth, apoptosis and cytotoxicity by inhibiting HIF-l α. Wang et al. (2017)
miR-93 Inhibits the viability and induces the apoptosis via the suppression of NRF2. Wang, Li & Wang (2016)
miR-175p MiR-17-5p was downregulated in TMCs under oxidative conditions, and may regulate the

apoptosis of TMCs by targeting PTEN
Wang et al. (2019)

miR-27a Regulates Nrf2 expression at the posttranscriptional level. Salidroside (Sal) mitigates hydrogen
peroxide-induced injury by activating the PI3K/AKT and Wnt/b-catenin pathways by increas-
ing miR-27a.

Zhao et al. (2019a)

miR-199-5p Targets the 3’-UTR of TGF β2. The increase in TGF β2expression induced by oxidative stress
may be related to the downregulation of mir-199-5p expression.

Feng (2014)

miR-182 MiR-182 expression is upregulated in primary TMCs with stress-induced premature senes-
cence. The overexpression of miR-182 contributes to the phenotypic alterations of senescent
cells.

Liu et al. (2016)

miR-183 Decreases the expression of laminin, gel, and type I collagen by targeting ITG β1 without a 3’-
UTR.

Li et al. (2010)

miR-450 Influences the shrinkage of TMCs by targeting the MyoD family of proteins. Sun et al. (2014)
miR-107 Regulates Nestin expression and counteracts the apoptosis of TMCs. Xue et al. (2006)
miR-144-3p The over-expression of miR-144-3p promotes the proliferation and invasion of TMCs by in-

hibiting the expression of FN-1 in oxidative stress TMCs
Yin & Chen (2019)

LncRNA-RP11-820 Promotes ECM production via regulating miR-3178/MYOD1 Shen et al. (2019)
LncRNA antisense
noncoding RNA in
the INK4 locus
(ANRIL)

Down-regulates microRNA-7 to protect TMCs in an experimental model for glaucoma Zhao et al. (2019b)
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Table 2 Role of antioxidative exogenous compounds.

Name Functions andMechanisms References

Resveratrol Increases mitochondrial mass and mitochondrial DNA. Activates SIRT1 and upregulates
NO and eNOS. Activates Nrf2 pathways.

Avotri, Eatman &
Russell-Randall (2019),
Coralia et al. (2011)

Lycium barbarum
polysaccharides
(LBP)

Activates the PI3K/AKT and ERK signaling pathways by upregulating miR-4295. Liu & Zhang (2019)

Curcumin Inhibits proinflammatory factors, including IL-6, ELAM-1, IL-1α, and IL-8, decreases the
activities of the senescence marker SA-β-gal, and lowers the levels of carbonylated pro-
teins and the number of apoptotic cells.

Lin, Ciolino & Pasquale (2017)

Baicalin Increases cell survival and decreases iROS production. Inhibits the production of IL-1α
and ELAM-1, decreases the activity of senescence-associated SA-β-gal, and lowers the level
of carbonylated proteins.

Gong & Zhu (2018)

Sulforaphane Attenuates H2O2-induced oxidative stress via PI3K/AKT-mediated NRF2 signaling activa-
tion.

Liu & Zhang (2019)

Quercetin Upregulates antioxidant peroxiredoxins through the activation of the NRF2/NRF1 tran-
scription pathway and protects against oxidative stress-induced ocular disease.

Naoya et al. (2011)

Procyanidins Decreases the apoptotic rate of TMCs under oxidative stress and reduces the release of cy-
tochrome C.

Shi & Wang (2017)

Salidroside Protects TMCs against H2O2-induced oxidative damage by activating the PI3K/AKT and
Wnt/β-catenin pathways by increasing miR-27a.

Zhao et al. (2019a),
Zhao et al. (2019b)

Polyphenols
(derived from
red wine,
tea and dark
chocolate)

Targets eNOS and induces the accumulation of NRF2. Mann et al. (2007),
Upadhyay & Dixit (2015)

Rapamycin Protects TM-1 cells from COS by inhibiting mTOR and inducing autophagy. In addition,
removes damaged mitochondria.

He et al. (2019)

Ethyl pyruvate Able to nonenzymatically reduce hydrogen peroxide and scavenge hydroxyl radicals. Dobsak et al. (1999),
Famili, Ammar & Kahook (2013)

1α,25-
dihydroxyvitamin
D3

Attenuates OS-induced damage in TMCs by inhibiting TGFβ-SMAD3-VDR pathway Lv et al. (2019)

CONCLUSION
Various studies on humans and laboratory animals have demonstrated that a variety of
antioxidants, particularly noncoding RNAs and exogenous compounds, help to regulate
IOP and protect TMCs from oxidative stress. Based on these studies, it is believed that new
methods with broad applicability and promise for the treatment of oxidative stress and
glaucoma will be developed in the near future.
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