
From command-line bioinformatics to
bioGUI
Markus Joppich and Ralf Zimmer

Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany

ABSTRACT
Bioinformatics is a highly interdisciplinary field providing (bioinformatics)
applications for scientists from many disciplines. Installing and starting applications
on the command-line (CL) is inconvenient and/or inefficient for many scientists.
Nonetheless, most methods are implemented with a command-line interface only.
Providing a graphical user interface (GUI) for bioinformatics applications is one step
toward routinely making CL-only applications available to more scientists and, thus,
toward a more effective interdisciplinary work. With our bioGUI framework we
address two main problems of using CL bioinformatics applications: First, many
tools work on UNIX-systems only, while many scientists use Microsoft Windows.
Second, scientists refrain from using CL tools which, however, could well support
them in their research. With bioGUI install modules and templates, installing and
using CL tools is made possible for most scientists—even on Windows, due to
bioGUI’s support for Windows Subsystem for Linux. In addition, bioGUI templates
can easily be created, making the bioGUI framework highly rewarding for developers.
From the bioGUI repository it is possible to download, install and use bioinformatics
tools with just a few clicks.

Subjects Bioinformatics, Science and Medical Education, Human-Computer Interaction,
Computational Science
Keywords Bioinformatics tool, Open-source, Cross-platform, Windows subsystem for Linux,
Bioinformatics, Windows, Graphical user interface, Command-line Interface, Software accessibility

INTRODUCTION
Many advances in bioinformatics rely on sophisticated applications. Examples are Trinity
(Grabherr et al., 2011) for de novo assembly in conjunction with Trimmomatic (Bolger,
Lohse & Usadel, 2014), or the HISAT2, StringTie and Ballgown pipeline for transcript-level
expression analysis (Pertea et al., 2016). These tools have in common, that, locally
installed, only a command-line interface (CLI) is provided, implying a burden for many
non-computer affine users (Morais et al., 2018). Jellyfish (Marçais & Kingsford, 2011),
Glimmer (Delcher et al., 2007) and HMMer (http://hmmer.org) natively run only in
UNIX-environments and require a sophisticated setup on Windows. In addition, the
installation of command-line (CL) tools is a challenge for non-computer specialists, for
example, due to package dependency resolution. This problem has been addressed by
the AlgoRun package (Hosny et al., 2016), providing a Docker-based repository of tools.
Being a web-based service, it is limited to web-applicable data sizes, or local data must be
made available to the Docker container in the cloud. While AlgoRun has the advantage of

How to cite this article Joppich M, Zimmer R. 2019. From command-line bioinformatics to bioGUI. PeerJ 7:e8111
DOI 10.7717/peerj.8111

Submitted 14 January 2019
Accepted 28 October 2019
Published 21 November 2019

Corresponding authors
Markus Joppich,
joppich@bio.ifi.lmu.de
Ralf Zimmer, zimmer@ifi.lmu.de

Academic editor
Joseph Gillespie

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj.8111

Copyright
2019 Joppich and Zimmer

Distributed under
Creative Commons CC-BY 4.0

http://hmmer.org
http://dx.doi.org/10.7717/peerj.8111
mailto:joppich@�bio.�ifi.�lmu.�de
mailto:zimmer@�ifi.�lmu.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8111
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

processing data anywhere, it relies on Docker. Docker may be run either on a local
workstation or in the cloud. On a local workstation it can induce incompatibilities with
existing software (using Hyper-V on Windows). A cloud-based service may conflict
with data privacy guide lines (Schadt, 2012), for example, with respect to a possible
de-anonymization of patient samples (Gymrek et al., 2013). Using Windows Subsystem for
Linux (WSL) is often possible in such a scenario: it is provided as an app from the
Microsoft Store.

A frequent argument for not providing a graphical user interface (GUI) is the overhead
for developing it and the effort to make it really “user centered.” Often GUIs are simply
deemed unnecessary by application developers. However, one can be sceptical whether
non-computer-affine scientists can efficiently use CLIs in their research. In fact, Albert
(2016) notes that “Bioinformatics, unfortunately, has quite the number of methods that
represent the disconnect of the Ivory Tower.” Pavelin et al. (2012) note that software is
often developed without a focus on usability of interfaces (for end-users). While this does
not imply that any GUI is helpful, we argue that without a GUI, the otherwise highly
sophisticated CL applications are not very useful for some scientists. Besides, a GUI is often
more convenient and helps to avoid using wrong parameters, especially if a software is not
yet routinely used in a lab. Smith (2013) also states that GUI-driven applications make
daily work in biology or medical labs easier. Smith remarks that many end-users have a
“penchant for point and click,” not being able to effectively use CL tools. Still they should
have the ability to access and analyse their own data. Many proprietary software
solutions address this demand: they allow GUI-based data management, while also being
extensible via plug-ins. Smith (2015) points out that one of the biggest advantages of
such plugins is to combine the power of peer-reviewed algorithms with a user-friendly
GUI. Thus, providing a GUI is an important step toward the applicability of methods by
end-users. Visne et al. (2009) present a universal GUI for R aiming to close the gap between
R developers and GUI-dependent users with limited R scripting skills. Additionally,
web-based workflow systems, like Galaxy (Afgan et al., 2016) or Yabi (Hunter et al., 2012)
provide means to easily execute (bioinformatics) applications, but aim at more complex
workflows. However, both Galaxy and Yabi are designed to be run and maintained by
bioinformaticians for several users and are not meant to run on a single, individual
basis, like in small labs. More recently Morais et al. (2018) stated that the accessibility of
bioinformatics applications is one of the main challenges of contemporary biology, and
that one of the main problems for users is the struggle of using CLIs. While a GUI does
not make an application user-friendly per se, it helps to make it more accessible by
lowering the burden to use it (Xu et al., 2014; Visne et al., 2009; Anslan et al., 2017;
Morais et al., 2018; Větrovský, Baldrian & Morais, 2018).

In recent Microsoft Windows operating systems the WSL feature can be activated.
This feature provides a native, non-virtualized Ubuntu environment on Windows,
allowing to run most applications that also run on Ubuntu. This solves the problems of
running unix-tools on Windows. Remaining problems for scientists aiming to run
bioinformatics applications thus might be the installation and usage of CL applications.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 2/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Here, bioGUI, an open-source cross-platform framework for making CL applications
more accessible via a GUI, is presented. It uses a XML-based domain-specific language
(DSL) for template definition, which lowers the initial effort to create a GUI. bioGUI
templates for CL applications can easily be scripted. Combined with install modules
they provide an efficient and convenient method to deploy bioinformatics applications
on Microsoft Windows (via WSL), Mac OS and Linux. bioGUI also addresses
protocol/parameter management by saving filled out templates, enabling easy
reproducibility of data analyses (Fig. 1).

METHODS
This section first summarizes existing GUI-based systems, then covers the use-case study
we performed and goes into detail of how bioGUI works.

Existing (workflow) systems
There are several (workflow) systems already available. Most prominent in bioinformatics
are the Galaxy server and Yabi. In addition, workflow specification languages such as
the common workflow language (CWL) or Nextflow exist. These workflows do not directly
compare to bioGUI because they (usually) require a server infrastructure and are not aimed
to run on a local computer. However, they have in common that no CLI is needed to
run (bioinformatics) applications.

Figure 1 Only little human interaction is needed to run a CL application from a bioGUI template. An
(install) template has to be submitted to the bioGUI repository by a developer (blue). The bioGUI
application (cyan) allows users (yellow) to download templates or install modules and install and use
bioinformatics applications. After the user selected/set the input for the (bioinformatics) application
using the GUI, the CL arguments to run it are constructed from this input. The application’s output (text
or images) can be directly displayed in bioGUI. Full-size DOI: 10.7717/peerj.8111/fig-1

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 3/27

http://dx.doi.org/10.7717/peerj.8111/fig-1
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

With the R Gui Generator (RGG) a general GUI framework for R already exists.
Recently, specialised GUI frameworks, like SEED 2 (Větrovský, Baldrian & Morais, 2018)
or RNA CoMPASS (Xu et al., 2014), have been presented.

Galaxy and Yabi
The Galaxy server is a well known workflow system in bioinformatics (Afgan et al., 2016).
While bioGUI does not aim to be a workflow system like Galaxy, for example, allowing
data management, there are similarities. For instance, Galaxy also provides a (web-based)
GUI for its workflows. However, all data to be processed by Galaxy must either be on
the server itself or uploaded to a location that is reachable by the server. Galaxy can access
cloud storages, but classified data may not be uploaded to such storages as pointed out in
the introduction. Additionally, Galaxy requires UNIX knowledge to be installed and
does not provide a binary for installation. Galaxy is not cross-platform compatible
(Microsoft Windows is supported through WSL but still requires UNIX knowledge).
Galaxy users provide Docker containers for Galaxy, where a local storage can be mounted.

Another framework providing similar options is Yabi (Hunter et al., 2012). Yabi is only
distributed using a Docker container.

Nextflow and DolphinNext
The combination of Nextflow https://www.nextflow.io/ and DolphinNext https://github.
com/UMMS-Biocore/dolphinnext is similar to Galaxy or Yabi. While Nextflow is a DSL
for describing general workflows (lacking a GUI definition), DolphinNext provides the
web-based user interface (UI) which enables a convenient usage of Nextflow workflows.
Nextflow requires a POSIX system architecture and may or may not run on Microsoft
Windows using Cygwin (2019). DolphinNext resembles a lot the Galaxy framework, which
can make use of CWL workflows, however, focuses on a deployment in a cluster
environment. It is unknown whether or not both systems work on WSL.

Common workflow language

The CWL (Amstutz et al., 2016) is a new standard for workflow definition and defines a
DSL. In this language, inputs, input-types as well as the corresponding parameters are
stored. Additionally, inputs can have a help text included.

Using the bio.tools ToolDog software (Hillion et al., 2017), CWL workflows can be
generated and exported for many bioinformatics applications. An advantage of using
bio.tools is the automatic annotation and description of input and outputs. Unfortunately,
for many packages no CWL workflows have been deposited.

SEED 2 and bioinformatics through windows
In contrast to the previously mentioned tools, SEED 2 (Větrovský, Baldrian & Morais,
2018) and Bioinformatics through windows (BTW) (Morais et al., 2018) do not focus on
running complex workflows in a cluster environment. Instead, these focus on specific
tasks which can be run on regular laptop computers. SEED 2 focuses on amplicon
high-throughput sequencing data analyses. On the other hand BTW follows the same
concept, but focuses on the analysis of marker gene data and does not provide a GUI for

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 4/27

https://www.nextflow.io/
https://github.com/UMMS-Biocore/dolphinnext
https://github.com/UMMS-Biocore/dolphinnext
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

this task. SEED 2 provides a GUI to perform the relevant analyses fast and conveniently,
while BTW focuses on the usability of UNIX CL tools on Windows.

RGG & AutoIt
RGG was developed as a general GUI framework for R applications (Visne et al., 2009).
It uses XML files to specify the input fields for the graphical representation. When the user
has set all options, the GUI is translated into an R script for execution. The execution
output can also be retrieved from the RGGRunner application. The RGG software is
limited to R scripts, but still the authors expressed their hope that providing GUI for
analytical pipelines could “help to bridge the gap between the R developer community and
GUI-dependent users” (Visne et al., 2009).

In contrast to RGG, AutoIt (2018) is a general automation framework which, similar to
bioGUI, allows the definition of a GUI as well as a task that is executed according to this
input. In contrast to AutoIt, bioGUI is cross-platform compatible, supports WSL and
provides install modules for bioinformatics applications.

Comparison to bioGUI
bioGUI is not a classical workflow system like Galaxy, CWL or DolphinNext with
Nextflow. bioGUI is not meant to run many tasks nor to run in a cluster environment.
Moreover, bioGUI does not share the philosophy of having a (compute) cluster setup to
run analyses in a repeated fashion. bioGUI is meant to enable the user to perform
bioinformatics analysis at their work place.With bioGUI we aim to provide low effort usage
of bioinformatics applications, without the need to setup a complicated environment.
Finally this allows to easily compare different methods on collected experimental data.

bioGUI finds its niche as a generalisation of the concepts introduced by Větrovský,
Baldrian & Morais (2018) and Morais et al. (2018). SEED 2 provides a GUI such that a
broad public has access to sophisticated and well-known bioinformatics CL applications in
the context of amplicon analysis. Similar concepts, yet differently implemented, are
provided by RNA CoMPASS (Xu et al., 2014) for pathogen-host transcriptome analysis or
PipeCraft (Anslan et al., 2017). Here, custom (web-)UIs let the user interact with their
specialised pipelines. RGG (Visne et al., 2009) offers a general GUI framework for R
applications only. bioGUI offers a similar framework, which is applicable to any (Unix)
application. In both, RGG and bioGUI, users/developers specify the visual elements in a
XML file. This XML file is then interpreted and translated into a GUI within an application
(RGGRunner or bioGUI, respectively) which also shows the output of the script.

The bioGUI framework extends the concepts presented by RGG and SEED 2, for
instance, to general applications, and improves accessibility to these applications by
providing install modules.

Use-case study
One of the main goals we had in mind when developing bioGUI is to create a powerful
framework, which is easy-to-use for scientists/users and which does not create significant
overhead for the application developer. In order to study this, we introduce two classes
of possible users: The first class represents a general user of the software who generally

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 5/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

prefers a GUI for performing a research task, for example, data analysis after sequencing.
The second class describes a software developer releasing an application of a new
algorithm to solve the alignment of sequencing reads. This class thus depicts a typical
developer.

From these two use-cases (see also Appendix section “Use-cases”) we identify several
requirements/goals for bioGUI:

(1) installing new programs must be simple and should not require system administrators

(2) creating a GUI for a program must not take a lot of time

(3) templates must bring a basic GUI to run the programs, output must not be interpreted

(4) templates must be saveable for later re-use and reference, and also searchable

(5) the system must be lightweight (runtime overhead, disk-space) to even run on laptops

(6) installing a program may require additional (protected) external files

Finally, we developed a paper mockup with which we went through the anticipated
workflow of the user. We identified several input components and features the bioGUI
program has to include (Fig. A1).

bioGUI approach
“The accessibility of bioinformatics applications is crucial and a challenge of contemporary
biology” (Morais et al., 2018). Particularly the usage of CLIs poses a problem. Since
most bioinformatics applications require the execution of commands on the CL for
installation (such as for compilation, adding dependencies to the path variable, etc.),
we estimate that also the installation poses a problem.

During the use-case study, and interviews with wet-lab scientists without a
computational background (Q Emslander, 2019, personal communication; L Jimenez,
2019, personal communication), we found two main problems with bioinformatics
applications for scientists which we want to address with bioGUI: first the installation of
potentially useful applications and second its usage. Both problems have in common, that
they are expected to be performed on the CL. A GUI for achieving the respective tasks
in bioinformatics (and beyond) is missing.

Especially the first task, installing bioinformatics applications on a user’s machine, poses
a few problems. Most bioinformatics applications are written for a UNIX operating system,
like Linux or Mac OS, while in general Microsoft Windows is the dominant operating
system. In order to overcome this problem, bioGUImakes use of WSL on Windows. Even
if the user’s OS is already Unix-like, using the CL to install software might be strugglesome.
Thus, in order to support all users, bioGUI uses a cross-platform approach. bioGUI is
developed in C++ using the Qt framework.

The general workflow for any program using bioGUI is shown in Fig. 1. Given a CL
application, the software developer (blue) writes the specific template in a XML-based DSL
and can then make this template available, for example, in the bioGUI repository
(cyan). Such templates can be automatically retrieved by bioGUI. Upon selection of a
template by the user, bioGUI displays the input mask as defined in the template. When the

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 6/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

user (yellow) has filled in all parameters, the parameters are collected by bioGUI and
assembled into CL arguments which are used to execute the original CL-only application.
Upon completion, simple results (like text-output or images) can be shown in bioGUI
directly, or an external application is opened.

Install modules
Install modules are designed to install applications such that bioGUI can access them.
Essentially, install modules are bash scripts which allow an automatic installation of
applications into a predefined location. For this purpose, install modules receive several
arguments from bioGUI when launched, for example, where to install the application to,
the sudo password to fetch packages via a system’s package manager (e.g., aptitude,
conda, : : :), whether the application should be made available to the user via the system’s
PATH variable, etc. Install modules download and install applications and make them
available to the user and bioGUI. However, some applications cannot be simply
downloaded, but are distributed by installers. For this purpose, the install module template
can be extended by further input fields. These must be specified by bioGUI elements and
their values are added to the end of the CL arguments of the install module. An install
module can then execute the referenced installer.

Finally, an install module should contain the specification of its bioGUI template and
could hard-code the path to the installed application. Other constant values, which can
already be derived during the installation (e.g., absolute paths to dependencies), could also
be defined in the template during this stage.

bioGUI templates
bioGUI templates are the actual end-user-interface to programs. A bioGUI template
defines the look and functions of the UI. Thus it can define how the CL-application is
called (with corresponding parameters).

Each bioGUI template consists of two parts (Fig. A2). The first part (<window> model)
defines the visual appearance of the GUI. The second part (<execution> model) defines
the processing logic of the template. Input values from the GUI components are collected
and assembled (e.g., pre-/post-processing steps) to call CL applications. As part of this
assembly, input values from the GUI may be transformed using (multiple) predefined
nodes. Concatenations are possible using the <add> node, and constant values can be
inserted using the <const> node. System environment properties, such as the operating
system, the computer’s IP address or specific directories can be collected using the <env>
node. If the regular nodes are not sufficient, for example, because more complex string
manipulations should be made (see use-case study), script nodes may also accept functions
written in LUA (Lua, 2019) or JavaScript (JavaScript, 2019).

In general, the execution part infers a network with inputs (e.g., GUI elements, other
nodes within the execution part) and actions (if, add, : : :). For example, the execution
network for an application with many sub-commands is exemplarily shown in Fig. A3.

The time to template varies with the application as well as the number of options to be
included. A simple template, like the one for MS-EmpiRe (Ammar et al., 2019), can be

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 7/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

created within 10 min. More comprehensive templates, like the one for HISAT2, usually
take about 30 min. Time can be saved if only the most important command line options
are shown in the GUI. This can be achieved by adding an “optional parameters” input
field, where users can insert CL arguments themselves. This is, for instance, shown in the
wtdbg2 (Ruan & Li, 2019) and spades (Bankevich et al., 2012) templates. Adding the
install part to a template usually can be done within 15–30 min, depending on how detailed
the build process is documented. The creation of an install module thus takes
approximately 1 h.

bioGUI integration with CWL and argparse
The CWL (Amstutz et al., 2016) only describes the CL workflow and neither provides a
GUI nor means to install the desired tool. Due to this more general specification, CWL fits
most problems, but specific annotations of inputs, explanations or the embedding of
images is not supported in CWL.

While developers can always create templates manually, bioGUI supports developers by
offering a template generator from CWL templates or python3 argparse CL parsers. Since
there are already many CWL templates available for bioinformatics CL applications,
CWL files can be used as a base to automatically generate bioGUI templates from. Using
the bioGUI template generator for argparse, it is also possible to automatically generate
templates from CWL files (making use of the cwl2argparse program provided by CWL).
Our generator takes as input the argparse parser or CWL file and creates input elements
for all elements. In case the type of an input is unclear or not supported, the generator falls
back to a regular text-input element.

RESULTS
bioGUI templates
Currently more than 25 (install) modules exist for bioGUI. These represent basically
three groups of bioinformatics tasks: next-generation sequencing data analysis and
transcriptomics, long read sequencing analysis and assembly as well as more general
sequence analysis. In general these install modules will install the respective application on
the local machine. The Circlator (Hunt et al., 2015) template allows to pull and use the
corresponding Docker image. The available tools, as well as their respective categorization,
are listed in Table 1.

Benchmarking bioGUI templates
Our benchmark comprises of four tasks. The first task is to assemble a bacterial genome
from Oxford Nanopore long reads, for which the Minimap2 (Li, 2018)/miniasm (Li, 2016)/
Racon (Vaser et al., 2017) pipeline (available as install module from bioGUI) is used.
The second task is the quantification of reads from a yeast mRNA sequencing project using
Oxford Nanpore Reads and Illumina Reads (EMBL ENA studies PRJNA398797 (MinION)
and SAMN00849440 (Illumina)). The quantification is performed using featureCounts
from the subread package (Liao, Smyth & Shi, 2014). The third task uses these results to
compute differential gene expression. Differential gene expression analysis is performed

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 8/27

https://www.ebi.ac.uk/ena/data/view/PRJNA398797
https://www.ebi.ac.uk/ena/data/view/SAMN00849440
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

using MS-EmpiRe in R (install module available, Ammar et al. (2019)). Finally the
fourth task uses RNAhybrid to predict miRNA binding sites (1,978 murine miRNAs) in
170 sequences of each 200 nt.

The results are shown in Table 2. The given runtimes are wall clock times. The peak
RAM consumption has been sampled from the process viewer on the given operating
systems (Task Manager on Windows, top on Linux and Mac OS).

DISCUSSION
bioGUI is a framework for easy GUI-based usage of CL applications in the life sciences.
Using bioGUI, high-quality CL applications can be made accessible to as many researchers

Table 1 List of available templates and install modules (starting with Install) for bioGUI.

Module name Task Install module

WSL and Ubuntu Mac OS

First Time Mac OS Setup Initialisation – ✓

First Time Ubuntu/WSL/apt-get Setup Initialisation ✓ –

Install Ballgown v1.0.1 (Pertea et al., 2016) NGS transcriptomics ✓

Install Bowtie1 (Langmead et al., 2009) NGS ✓

Install Bowtie2 v2.2.9 (Langmead & Salzberg, 2012) NGS ✓ ✓

Install bwa v0.7.17 (Li & Durbin, 2009) NGS ✓ ✓

Install canu (gitHub, Koren et al. (2017) Assembly ✓

Install featureCounts (Liao, Smyth & Shi, 2014) NGS transcriptomics ✓ ✓

Install glimmer302b (Delcher et al., 2007) Genome annotation ✓

Install graphmap (Sovi�c et al., 2016) Long read sequencing ✓ ✓

Install albacore (pip wheel, ONT) Long read sequencing ✓

Install guppy (linux tar.gz, ONT) Long read sequencing ✓

Install hisat2 (Kim et al., 2019) NGS transcriptomics ✓ ✓

Install hmmer-3.1b2 (Wheeler & Eddy, 2013) Sequence analysis ✓

Install jellyfish-2.2.6 (Marçais & Kingsford, 2011) NGS ✓

Install minimap2/miniasm/racon (gitHub) Assembly (long-read) ✓ ✓

Install MS-EmpiRe (Ammar et al., 2019) NGS transcriptomics ✓ ✓

Install PureSeqTM (Wang et al., 2019) Sequence analysis ✓

Install rMATS-3.2.5 (Shen et al., 2014) NGS transcriptomics ✓

Install rnahybrid (Rehmsmeier et al., 2004) Sequence analysis ✓ ✓

Install RSEM v1.3.0 (Li & Dewey, 2014) NGS transcriptomics ✓

Install samtools-1.3.1 (Li et al., 2009) NGS ✓ ✓

Install SPAdes v3.13.0 (Bankevich et al., 2012) Assembly (hybrid) ✓ ✓

Install StringTie v1.3.0 (Pertea et al., 2016) NGS transcriptomics ✓

Install Top Monitor (ssh example) Technical demo ✓ ✓

Install Trimmomatic v0.36 (Bolger, Lohse & Usadel, 2014) NGS ✓

Install wtdbg2 (Ruan & Li, 2019) Assembly (long-read) ✓ �
Template Circlator (Hunt et al., 2015) Assembly ✓ ✓

Note:
Tools marked with ✓ provide an install module for the operating system of the respective column.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 9/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

as possible. This is achieved by lowering the hurdles to overcome for using bioinformatics
applications, particularly on Windows.

Use-case analysis
Our use-case analysis (Appendix section “Use-cases”) has revealed several requirements
for bioGUI (see the section “Methods”) to enable the user to perform the sequencing
analysis and to allow the developer a fast template creation (Fig. 2).

An easy installation (goal 1) is given through the availability of install modules, which
can be downloaded from the bioGUI repository and started via a GUI. These also allow
additional inputs (e.g., Python wheels for albacore, goal 6).

The install modules combine the installation of an application and the creation of
the actual GUI template. If the developers employ automatic testing of their software
(e.g., build checks with Travis (https://travis-ci.org/)), the install part resembles a Travis
container setup (goal 2): dependencies and the application itself are installed into an
operating system. Even if not, most bioinformaticians extensively use Ubuntu and/or
bash-scripts. Thus writing a script to install dependencies is not a significantly hard
workload. We have reached a seamless and time-efficient creation of templates using an
XML-based DSL. XML is particularly helpful as it allows to specify hierarchies and
attributes to objects. Using our template generator for CWL and python3-argparse,
bioGUI templates can be created even faster (goal 2). The templates are highly flexible in
the creation of CL parameters, also due to providing script nodes. By providing install
modules and templates, high-quality open-source bioinformatics applications become
more accessible to the community.

The bioGUI application is cross-platform compatible and only requires few MBs of
disk space (goal 5). bioGUI implements several possibilities to execute applications
(see Fig. A4). In general, the only runtime overhead involved is the creation of a
bash-process which starts the actual program with the assembled CL arguments (goal 5).
bioGUI, being a local stand-alone application, has the possibility to target both, locally
installed and web-based applications, reachable within a controlled environment and with
large data. In addition, bioGUI also supports the use of Docker containers, for cases where
all other options fail.

Table 2 Benchmarking results for the four selected tasks (see Benchmarking bioGUI templates within the Results section) on the described
hardware (see Table A1). All runs are started via bioGUI.

Task Linux server Lenovo T470 Surface book MacBook air

Time Peak RAM Time Peak RAM Time Peak RAM Time Peak RAM

Assembly 10:12 min 6.8 GB 23:00 min 6.5 GB 30:00 min 6.5 GB 44:30 min 6.5 GB

featureCounts (MinION) 00:38 min 20 MB 00:54 min 18 MB 01:12 min 18 MB 01:30 min 18 MB

featureCounts (Illumina) 01:13 min 28 MB 01:41 min 25 MB 02:02 min 25 MB 02:30 min 25 MB

DE quantification (MinION) 00:19 min 0.7 GB 00:25 min 0.6 GB 00:28 min 0.6 GB 00:42 min 0.6 GB

DE quantification (Illumina) 00:14 min 0.5 GB 00:19 min 0.4 GB 00:20 min 0.4 GB 00:31 min 0.4 GB

RNAhybrid 07:35 min 19 MB 23:00 min 18 MB 13:00 min 18 MB 16:55 min 18 MB

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 10/27

https://travis-ci.org/
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

The UI can be made easily understandable (goal 3). Using text-labels, the user can get
help on inputs (if specified by the developer), links can be used to provide further
information and most importantly tool-tips could also hint the user to which information
is needed at a certain step.

Finally, filled out templates can be saved via the Save Template button in bioGUI, and
all available templates can be filtered (goal 4). This enables to keep track of performed
analyses, and makes results more reproducible, because parameters are saved. Having
the possibility to save templates also allows to easily repeat analysis with the same
parameters. Additionally, using the bioGUI repository, templates can easily be shared
among users, making it easier to standardize runs among different users or even
institutes.

An anonymous survey (with 10 participants) about common problems in using
bioinformatics software has been conducted among colleagues (n = 4) and under-graduate

Figure 2 bioGUI use-case study, from a developer’s and user’s perspective, performed on an exemplary RNAseq analysis workflow. The
dark-gray underlayed tasks represent the developer’s tasks, and the bright-yellow part represents the analysis pipeline the user wants to execute.
Tasks requiring user-action are shown as rectangles and intermediate results are shown in ellipses. Cyan ellipses denote solutions/results (e.g.,
template repository) offered by bioGUI. bioGUI starts sub-processes for each task, such that the overhead for any started processes is as small as
possible. Upon finishing a task or pipeline, bioGUI can display a notification and open generated output.

Full-size DOI: 10.7717/peerj.8111/fig-2

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 11/27

http://dx.doi.org/10.7717/peerj.8111/fig-2
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

students or collaborators from life sciences (n = 6, short: collaborators). The results are
available in the Appendix section “User Survey.”

We asked “What were the most struggle-some tasks in accessing and using the
software?” referring to recently used bioinformatics software by the participants. Eight of
the 10 participants answered that finding parameters or using the software has been
strugglesome. This shows that the selected goals for bioGUI address actual problems faced
by both experts and regular users. We further asked the participants to install and use
graphmap (Sovi�c et al., 2016), which has been selected because it is reasonably easy to
install and use. First the participants were asked to install the tool using the CLI as well as
via bioGUI. For this task, all instructions have been provided. The question “Has the
installation process been easy?” (0 = No, 5 = Yes) has been answered with an average score
of 4.4 for the CLI and 4.8 for bioGUI. Then the participants were asked to align the given
reads against a given reference genome—this time without giving the instructions.
Again we asked “Has it been easy to align the reads?” (0 = No, 5 = Yes). Here the CLI
scored a 3.5 on average and bioGUI a 4.9. (Fig. A6). This coincidences with the answer to
our question “Overall: Which interface was easier to use in your opinion?” (0 = CLI,
5 = GUI). Here the average score has been 4. Bioinformaticians and collaborators answered
differently: the average bioinformatician has been undecided on which interface has been
easier to use (average 3), but non-bioinformaticians preferred the GUI over the CLI
(average 4.5).

The survey indicates that there are problems with bioinformatics software regarding
installation and usage of CLI tools. These problems can be reduced by providing a
GUI for these programs. The more experienced a user is on the CL, the less impact a
GUI has. But particularly for non-experts on the CL, a GUI makes it easier to use
a program.

bioGUI repository
We provide a repository of preconfigured templates on our website (Fig. A5),
where authors and users can search for and browse existing templates, or submit new
ones. bioGUI can access uploaded templates and save them directly for use.
Specifically for WSL and Ubuntu users install modules are provided, which take care for
dependency resolution and install applications (locally) into the user’s home. This
currently works in any environment using the aptitude (apt) package manager, but users
can submit templates which also support other environments, since install modules
are versatile bash scripts. On Mac OS, some install modules support Homebrew for
template installation. Install modules download and potentially severely alter a
system (especially if the sudo password is supplied). Thus, submitted install modules
are manually curated and are only accessible when no security threat has been
identified.

The major goal of bioGUI is to enable any scientist to use bioinformatics applications.
While we extend the repository on a regular basis depending on our own use, users can
also request new templates for applications relevant to them.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 12/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Availability and extensibility
bioGUI is open-source software and users or institutions can either use our global bioGUI
repository or deploy a custom repository, for example, one which is only reachable
within an institution.

bioGUI is available on GitHub (https://github.com/mjoppich/bioGUI). Both source
code as well as pre-built binary distributions (for Microsoft Windows, Linux and Mac OS)
are available. While bioGUI will run on any Linux distribution, install modules currently
use mainly aptitude as package manager (e.g., Ubuntu, debian-based distributions).
If used on Windows, the same applies for the used WSL-application (Ubuntu 18.04 is
recommended). bioGUI has been tested on Microsoft Windows 10, build 17763. On Mac
OS bioGUI uses Homebrew (https://brew.sh/) to install dependencies. Homebrew does not
support a silent, non-interactive installation: the user has to install Homebrew before
running the First time setup for Mac OS install module which will then install the most
common dependencies.

While a number of use cases and corresponding components are already included in
bioGUI, we encourage users to contribute on GitHub by either pushing their own
extensions, or opening feature requests. Further documentation (installation & setup
guide, how to write templates) is also available via ReadTheDocs (https://biogui.
readthedocs.io/en/latest/index.html).

Benchmarking bioGUI templates
bioGUI starts a sub-process for each executed program. Thus, the only overhead
created by bioGUI itself is the one for running the GUI, which creates less than
1% CPU usage, allocates less than 50 MB and only performs IO operations when
loading a new template (assessed via Sysinternals Process Explorer (Microsoft
Sysinternals, 2019)).

Nonetheless we have been interested in demonstrating that many bioinformatics tasks
do not require a dedicated server setup but can be performed on regular laptop computers.
We thus benchmark four typical tasks performed using bioGUI.

The selected tasks allow a good overview of different demands: Tasks 1 (assembly) and 3
(differential expression analysis) are CPU-bound tasks, while tasks 2 (feature counting)
and 4 (miRNA target prediction) are IO-bound. Particularly task 2 has a high load of read
operations, and task 4 has a high demand of write operations. We compare these tasks on
a dedicated (Linux) server, one (rather) powerful Lenovo T470p laptop computer, one
Surface Book laptop computer (resource-wise a typical laboratory laptop) as well as one
MacBook Air. The computer specifications are listed in the Table A1 and results are shown
in Table 2. Even though we have not included the alignment of the Illumina yeast reads in
this benchmark, it should be noted that this task also runs well on laptop computers.
On the Lenovo laptop the alignment of the SRR453566 sample, consisting of 5,725,730
paired reads, has a peak RAM consumption of 34 MB and took 13:50 min, while the
Surface Book is even faster at less than 8 min. This presumably can be explained due to
different SSD speeds.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 13/27

https://github.com/mjoppich/bioGUI
https://brew.sh/
https://biogui.readthedocs.io/en/latest/index.html
https://biogui.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

The results in Table 2 show that even (computational power-wise) lower-end computers
can run bioinformatics tools. More interestingly these results show that theWSL allows the
execution of interesting bioinformatic tools. It can be seen that WSL is slow for IO
operations, but has a comparable speed for in-memory operations. Particularly tools
requiring a lot of IO are considerably faster on the Linux Server (Assembly, RNAhybrid),
while the computational expensive tools like MS-EmpiRe (Ammar et al., 2019) and
featureCounts (Liao, Smyth & Shi, 2014) run within similar times.

CONCLUSION
The bioGUI framework makes it easy to develop, provide and use GUIs for CL
applications. Particularly for non-computer experts, using CLIs is strugglesome. Providing
a GUI and/or install modules increases accessibility to high-quality bioinformatics
applications for these users. bioGUI creates a cross-platform GUI experience for many
open-source bioinformatics applications. In particular, bioGUI enables the deployment of
academic bioinformatics applications to Microsoft Windows workstations and laptops, but
also to Linux or Mac OS.

The separation of the GUI components and the program logic allows the creation of
templates in two steps. First, the template developer adds input elements to the
window and, second, assembles these inputs according to the needs of the application
back into CL arguments. This way almost any CL application can be used with a GUI,
enabling many more researchers to use open-source tools. Providing install modules
to make UNIX applications available to Microsoft Windows users (via WSL) supports
this goal.

bioGUI can not always replace dedicated GUIs. A tailored UI will still be more usable
and user-friendly than any generic solution can be. We experienced this in our use-case:
certain tasks (e.g., selecting options) require special solutions, let alone from displaying
or interpreting the results. However, especially with the install module concept we aim to
provide a seamless installation and create the possibility to run CL applications by all
scientists. Using the bioGUI framework, simple GUIs can be constructed. But these simple
GUIs already help to make bioinformatic tools more accessible by making execution and
usage of these tools more comfortable.

Using bioGUI, it becomes a simple exercise to use supported CL applications from a
GUI. Currently, there are already installed modules and templates for more than
25 applications in our bioGUI repository. bioGUI lowers the burden to use excellent
applications, allowing more scientists a better analysis of their data. With bioGUI it is
not necessary to understand how to use and navigate on the CL; instead, the focus is set on
the applications, its method and parameters, and finally the data.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 14/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

APPENDIX
Use-cases
Non-computer expert
Many researchers work in small labs without any significant IT support. The computers in
their labs mostly run Microsoft Windows and PhD students often have to bring their own
devices (because the institute does not provide such working devices). Particularly in
the life sciences, users can profit a lot from existing, open-source software. However,
installing major bioinformatics applications on such lab computers often poses a problem:
administrators (if existent) have little time to deploy new applications, or there is no
support in installing new applications at all. If the users are not computer experts,
installing and using command line tools may be strugglesome for them (see Appendix
section “User Survey”; Morais et al., 2018). While there are users that can use the CL
efficiently, the cited literature and our personal experience shows that there are many users
who do not feel comfortable on the CL. This does not mean that they don’t want to learn
it or are incapable of learning it, but their focus simply does not lie in learning to use
the CL. Instead, they want to get the results for their data, fast, reliably and troubleless.
One of these users is Luisa.

Oxford Nanopore Sequencing is becoming more and more popular, and even the
sequencing hardware can be found in more and more biological laboratories, like in
Luisa’s. Particularly important for MinION-sequencing is the post-processing of the actual
raw read data. While in previous versions, base-calling has been directly performed in the
cloud by Oxford Nanopore, this has now been pushed back to the client side. Thus,
despite having the sequencing data on her laptop, Luisa must still retrieve the sequences
herself, using, for instance, the Albacore basecaller (if they don’t want to rely on
LiveBasecalling). Unfortunately, like many bioinformatics packages, the basecaller only
comes as a python CL program. Additionally, the download is only available as a
python-wheel, which means there is no UI-based setup available. Luisa thus needs
assistance for the installation of the python-wheel as well as starting the basecalling
process. After the reads are basecalled, reads need to be aligned to a reference genome.
While there exist reference genomes in correct format on her lab computer (or can easily
be downloaded from the web), the CL program to map the reads is available only from
GitHub to be installed from source. Luisa has troubles using the CL to clone the
repository, compile and use the CL application.

Luisa does not require a custom analysis of her data, but wants to initially screen her
data in a simple, basic and robust analysis. She is mostly busy in her lab, hence an analysis
has to be prepared fast, and parameters should be stored for later reference. For this a local
searchable database of saved templates is needed.

Software developers
A developer finished his sequence alignment program. The project is already published on
GitHub and in a journal, but only few people start using it. From the issues and feature
requests on GitHub it can be seen that mainly other bioinformaticians use the program.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 15/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Thus the developer decides that the program should be accessible to more researchers and
looks for ways to make the program useable by everyone. Since the program is written in
python, it is cross-platform compatible per-se. However, it is noticed that domain-experts
do not install and use the program. Thus the developer must look for an easy way to
distribute the application and make it accessible to more researchers. The developer’s time
is limited, having other projects waiting. There is also little support for developing GUI
from colleagues, as they have different views on the extent of autonomy a wet-lab
researcher should have regarding sequencing analysis.

bioGUI paper mockup

Extending templates with script nodes
Often it is required to perform string-manipulations (e.g., remove file extensions) for
CL arguments. For instance, the example below takes as input a HISAT2 index file,
and removes the file extension, such that the index will be accepted by HISAT2.
For evaluation of this node, the evaluate-function is called with the argv-references as

Figure A1 bioGUI mockup showing the elements a template could be made of. The GUI has a
searchable list of installed templates as well as a link to our repository of templates. The right side is
reserved to the currently displayed GUI template. Here a structured view of the available parameters, as
well as hints for filling these, is shown to the user. Finally, the user has the possibility to run the program
by clicking a button and to see the program’s output. Full-size DOI: 10.7717/peerj.8111/fig-A1

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 16/27

http://dx.doi.org/10.7717/peerj.8111/fig-A1
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

input parameters. The last return-value of the script’s call stack is taken as output value
of the script -node.

Listing 1. bioGUI script node with LUA function example. Upon evaluating this node,
the evaluate function will be called with the arguments listed in the argv attribute of the
script node.

<script id=“hisat_index_rel” argv=“${hisat_index_rel_raw}”>

<![CDATA[

functionfunction evaluate(arg1)

ifif (string.match(arg1, “.%d.ht2$”)) thenthen
returnreturn(string.substring.sub(arg1, 0, arg1:find(“.%d.ht2$”)-1))

endend
returnreturn(arg1)

endend
]]>

</script>

Evaluating a bioGUI template
In Fig. A2 the process of assembling a CL call from the shown bioGUI template is
explained. First, the creation of the <window> model (dark gray) will be explained,
followed by the creation of the CL arguments using the <execution> model (shaded).

The window component consists of four different components, which are grouped in a
vertical layout (default for window component). A label describing the input file dialog is
placed on the main window, followed by the actual file dialog with ID input. Then a group
box with title and a checkable status is created, which contains an output file dialog.
Finally, the action button, which starts the CL call assembly and the subprocess of this
program, and the text output elements are created.

When the user has entered all desired data, and clicks the action button, the execution
phase defined by the execution model will be launched. Therefore the program defined in
the execute element is started. For this, the parameters (param) must be assembled.
Any text within ${var} is interpreted as a reference to a variable var or the value of a GUI
element with id var. Thus, the CL is successively assembled. At first the ${input} element
is interpreted and retrieves the value from the input file dialog as this element matches the
id. Next the ${output} is interpreted. The ${output} refers to an if construct in the
execution part, which compares the value of the element with id os to the string TRUE
(which is whether the groupbox is checked). If this value is true, this node evaluates to
netcat 192.168.1.100 55025, otherwise to tee -a {output file path}. Finally,
the program sh is executed with the created CL arguments. For instance, if the group
box is checked, the sh -c “cat inputFile | netcat 192.168.1.100 55025” will
be executed. A full reference of all input types as well as all execution nodes is
available online.

In fact, the evaluation of the execution network resembles the simulation of a petri net
(Fig. A3). Each node in the execution network is a place, and its modification/function

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 17/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

is the transition, which requires values for all its input places, to generate the
output token.

Running programs via bioGUI
Program execution via bioGUI can be accomplished via different paths, which are shown
in Fig. A4. The easiest way is to execute a native program (one that runs natively on
the operating system, e.g., Docker). Then all output can be piped to bioGUI to display this
to the user. If the host is a Microsoft Windows 10 OS, bioGUI can also run Unix programs
via WSL. Then the Unix program runs natively in a WSL bash. The resulting output

Figure A2 Template construction and evaluation in bioGUI. First, the dark gray window part is evaluated to create the GUI. Once the user clicks
the run button, the execution part of the template (shaded) is executed by constructing and starting the assembled system call. This system call is
constructed in three steps by replacing variables with evaluated terms from the user’s input. Blue lines indicate the visual element a returned value
(cyan lines) is taken from. Helper/intermediate nodes to be evaluated are shown in light yellow. Full-size DOI: 10.7717/peerj.8111/fig-A2

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 18/27

http://dx.doi.org/10.7717/peerj.8111/fig-A2
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

can be transferred to bioGUI via pipes. Of course, for both native and WSL processes, the
output can also be transferred via netcat to bioGUI. The transfer of the GUI template
within install modules is an example. If a process runs on a remote computer, the output
can be transferred to bioGUI also via network, for example, netcat. Such a process can, for
instance, be started by calling ssh from bioGUI with appropriate parameters. Finally
bioGUI can also send HTTP POST requests to web-services and accepts an HTTP response
as answer. This output can also be displayed by bioGUI.

Since the Docker engine is a local, native process, bioGUI also supports the use of
Docker containers. The Circlator template is an example of how this can be
implemented.

Hardware specification for benchmarks
The relevant hardware for benchmarking bioGUI is summarized in Table A1.

Figure A3 (A) An automatically generated bioGUI template from the poreSTAT (Internal tool for minION sequencing analysis) python argument
parser. (B) The resulting execution network for the bioGUI template shown in (A). The central node represents the fully assembled CL argument
(yellow). Full-size DOI: 10.7717/peerj.8111/fig-A3

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 19/27

http://dx.doi.org/10.7717/peerj.8111/fig-A3
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Table A1 Hardware used to benchmark bioGUI.

Computer name CPU RAM Storage

Linux server Intel Xeon W-2145 CPU @ 3.70 GHz
8 cores (+8 HT cores)

128 GB Samsung SSD 860
1 TB SSD

Lenovo laptop (T470p) Intel Core i7-7820HQ @ 2.9 GHz
4 cores (+4 HT cores)

32 GB Samsung MZVLB1T0HALR
1 TB SSD

Microsoft surface book Intel Core i5-6300U @ 2.4 GHz
2 cores (+2 HT cores)

8 GB Samsung MZFLV128HCGR
128 GB SSD

Apple MacBook Air (mid 2012) Intel Core i5 @ 1.7 GHz 8 GB 128 GB SSD

Figure A4 Possibilities for running bioGUI: locally via processes, on a network via ssh or on the web
via HTTP request/response. Straight arrow (purple): HTTP execution mode; Dotted arrow (green):
Docker execution; Dotdashed arrow(orange): bash/WSL execution; Dashed arrow(cyan): remote/ssh
execution. Full-size DOI: 10.7717/peerj.8111/fig-A4

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 20/27

http://dx.doi.org/10.7717/peerj.8111/fig-A4
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Template access

User survey
A user survey among 10 participants (four bioinformaticians, six collaborators (consisting
of two under-graduate bioinformatics students and four external collaborators)) has been
performed. The derived results are shown in Table A2 and the raw data are shown in
Table A3.

Figure A5 (A) On our website a list of already existing templates can be browsed. Besides the description and author, also the type (install module or
template) is shown. (B) All uploaded templates can be downloaded directly from within bioGUI. bioGUI allows to search in/filter all available install
modules and templates. Full-size DOI: 10.7717/peerj.8111/fig-A5

Table A2 Derived user survey results from the given answers (Table A3).

n Median Mean p-value Variance

Better interface bio 3 3 3 4

Better interface collab 6 4.5 4.5 0.3

Better interface all 9 4 4.00 1.75

Easy to align CLI 10 3.5 3.50 1.833

Easy to align bioGUI 10 5 4.90 0.0098 0.1

Easy to install CLI 10 5 4.40 0.711

Easy to install bioGUI 10 5 4.80 0.2023 0.178

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 21/27

http://dx.doi.org/10.7717/peerj.8111/fig-A5
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Figure A6 Scores given by the 10 participants on the question “Has it been easy to align the reads?”
after performing the task using the CLI and bioGUI. These results show that most participants found
the task easier using bioGUI, but for no-one it was harder to use bioGUI.

Full-size DOI: 10.7717/peerj.8111/fig-A6

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 22/27

http://dx.doi.org/10.7717/peerj.8111/fig-A6
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

T
ab
le
A
3

R
el
ev
an

t
pa
rt
ic
ip
an

t
an

sw
er
s
fo
r
th
e
pe
rf
or
m
ed

us
er

su
rv
ey

an
d
th
e
re
su
lt
s
in

T
ab
le

A
2.

P
ar
ti
ci
pa
n
t
1

P
ar
ti
ci
pa
n
t
2

P
ar
ti
ci
pa
n
t
3

P
ar
ti
ci
pa
n
t
4

P
ar
ti
ci
pa
n
t
5

P
ar
ti
ci
pa
n
t
6

P
ar
ti
ci
pa
n
t
7

P
ar
ti
ci
pa
n
t
8

P
ar
ti
ci
pa
n
t
9

P
ar
ti
ci
pa
n
t
10

U
se
rt
yp
e

(0
=

bi
oi
nf
or
m
at
ic
ia
n,

1
=
st
ud

en
t,

2
=
co
lla
bo

ra
to
r)

0
0

0
0

1
2

2
1

2
2

W
hi
ch

ki
nd

of
us
er
-i
nt
er
fa
ce

do
es

th
e
to
ol

ha
ve
?

C
LI

C
LI

C
LI

C
LI

C
LI

C
LI

G
U
I

C
LI

C
LI

G
U
I

W
ha
t
w
er
e
th
e

m
os
t

st
ru
gg
le
-s
om

e
ta
sk
s
in

ac
ce
ss
in
g

an
d
us
in
g
th
e

so
ft
w
ar
e?

D
ep
en
de
nc
ie
s

U
si
ng

so
ft
w
ar
e

fi
nd

in
g
se
tt
in
gs

Fi
nd

in
g
se
tt
in
gs

op
ti
on

s
ne
ed
ed

In
st
al
lin

g
so
ft
w
ar
e

Fi
nd

in
g
se
tt
in
gs

op
ti
on

s
ne
ed
ed

D
ep
en
de
nc
ie
s

st
ar
ti
ng

th
e

so
ft
w
ar
e
us
in
g

th
e
so
ft
w
ar
e

Fi
nd

in
g
se
tt
in
gs

op
ti
on

s
ne
ed
ed

Fi
nd

in
g
se
tt
in
gs

op
ti
on

s
ne
ed
ed

U
si
ng

th
e

so
ft
w
ar
e

Fi
nd

in
g

se
tt
in
gs

op
ti
on

s
ne
ed
ed

C
LI
:H

as
th
e

in
st
al
la
ti
on

pr
oc
es
s
be
en

ea
sy
?
(0

=
N
O
,

5
=
Y
E
S)

4
3

5
5

5
5

4
5

5
3

C
LI
:H

as
it
be
en

ea
sy

to
al
ig
n
th
e

re
ad
s?

(0
=
N
O
,

5
=
Y
E
S)

4
2

5
5

4
3

3
5

3
1

bi
oG

U
I:
H
as

th
e

in
st
al
la
ti
on

pr
oc
es
s
be
en

ea
sy
?
(0

=
N
O
,

5
=
Y
E
S)

5
5

5
4

5
5

5
5

5
4

bi
oG

U
I:
H
as

it
be
en

ea
sy

to
al
ig
n

th
e
re
ad
s?

(0
=
N
O
,

5
=
Y
E
S)

5
5

5
5

5
5

5
5

5
4

O
ve
ra
ll:

W
hi
ch

in
te
rf
ac
e
w
as

ea
si
er

to
us
e
in

yo
ur

op
in
io
n?

(0
=
C
LI
,

5
=
G
U
I)

5
1

3
4

5
5

4
4

5

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 23/27

http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

ACKNOWLEDGEMENTS
We thank Luisa F. Jimenez-Soto and Gergely Csaba for their valuable input as well as for
reviewing the manuscript. We thank the participants in our survey for their time.
We thank the reviewers for their constructive feedback.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Deutsche Forschungsgemeinschaft (Collaborative
Research Centre SFB 1123-2/Z2). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deutsche Forschungsgemeinschaft (Collaborative Research Centre): SFB 1123-2/Z2.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Markus Joppich conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.

� Ralf Zimmer conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The bioGUI documentation is available at https://biogui.readthedocs.io/en/latest/.
In order to setup Windows Subsystem for Linux (required for using bioGUI on Windows),
follow the steps at https://biogui.readthedocs.io/en/latest/build_wsl.html. bioGUI is open
source software. Releases and code are available at https://github.com/mjoppich/bioGUI.
Additional software (cwl2biogui) is available at https://github.com/mjoppich/bioGUItools.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8111#supplemental-information.

REFERENCES
Afgan E, Baker D, Van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D,

Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E,
Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. 2016. The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids
Research 44(W1):W3–W10 DOI 10.1093/nar/gkw343.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 24/27

https://biogui.readthedocs.io/en/latest/
https://biogui.readthedocs.io/en/latest/build_wsl.html
https://github.com/mjoppich/bioGUI
https://github.com/mjoppich/bioGUItools
http://dx.doi.org/10.7717/peerj.8111#supplemental-information
http://dx.doi.org/10.7717/peerj.8111#supplemental-information
http://dx.doi.org/10.1093/nar/gkw343
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Albert I. 2016. The biostar handbook. Albert, Istvan. Available at https://www.biostarhandbook.com/.

Ammar C, Gruber M, Csaba G, Zimmer R. 2019. MS-EmpiRe utilizes peptide-level noise
distributions for ultra sensitive detection of differentially abundant proteins. bioRxiv 514000
DOI 10.1101/514000.

Amstutz P, Andeer R, Chapman B, Chilton J, Crusoe MR, Valls Guimer R,
Carrasco Hernandez G, Ivkovic S, Kartashov A, Kern J, Leehr D, Ménager H, Mikheev M,
Pierce T, Randall J, Soiland-Reyes S, Stojanovic L, Tijani�c N. 2016. Common workflow
language, draft 3. Available at https://figshare.com/articles/Common_Workflow_Language_
draft_3/3115156/1.

Anslan S, Bahram M, Hiiesalu I, Tedersoo L. 2017. PipeCraft: flexible open-source toolkit
for bioinformatics analysis of custom high-throughput amplicon sequencing data.
Molecular Ecology Resources 17(6):e234–e240 DOI 10.1111/1755-0998.12692.

AutoIt. 2018. AutoIt scripting language. Available at https://www.autoitscript.com/site/autoit/.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G,
Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of Computational Biology 19(5):455–477
DOI 10.1089/cmb.2012.0021.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
data. Bioinformatics 30(15):2114–2120 DOI 10.1093/bioinformatics/btu170.

Cygwin. 2019. Cygwin. Available at https://www.cygwin.com/ (accessed 22 September 2019).

Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and
endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679
DOI 10.1093/bioinformatics/btm009.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F,
Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Trinity:
reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature
Biotechnology 29(7):644–652 DOI 10.1038/nbt.1883.

Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. 2013. Identifying personal genomes by
surname inference. Science 339(6117):321–324 DOI 10.1126/science.1229566.

Hillion K-H, Kuzmin I, Khodak A, Rasche E, Crusoe M, Peterson H, Ison J, Ménager H. 2017.
Using bio.tools to generate and annotate workbench tool descriptions. F1000Research 6:2074
DOI 10.12688/f1000research.12974.1.

Hosny A, Vera-Licona P, Laubenbacher R, Favre T. 2016. AlgoRun: a Docker-based packaging
system for platform-agnostic implemented algorithms. Bioinformatics 32(15):2396–2398
DOI 10.1093/bioinformatics/btw120.

Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator: automated
circularization of genome assemblies using long sequencing reads. Genome Biology 16(1):294
DOI 10.1186/s13059-015-0849-0.

Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI. 2012. Yabi: an online
research environment for grid, high performance and cloud computing. Source Code for Biology
and Medicine 7(1):1 DOI 10.1186/1751-0473-7-1.

JavaScript. 2019. ECMAScript 2018 language specification. Available at
https://www.ecma-international.org/ecma-262/9.0/ (accessed 22 September 2019).

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 25/27

https://www.biostarhandbook.com/
http://dx.doi.org/10.1101/514000
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/1
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/1
http://dx.doi.org/10.1111/1755-0998.12692
https://www.autoitscript.com/site/autoit/
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1093/bioinformatics/btu170
https://www.cygwin.com/
http://dx.doi.org/10.1093/bioinformatics/btm009
http://dx.doi.org/10.1038/nbt.1883
http://dx.doi.org/10.1126/science.1229566
http://dx.doi.org/10.12688/f1000research.12974.1
http://dx.doi.org/10.1093/bioinformatics/btw120
http://dx.doi.org/10.1186/s13059-015-0849-0
http://dx.doi.org/10.1186/1751-0473-7-1
https://www.ecma-international.org/ecma-262/9.0/
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and
genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37(8):907–915
DOI 10.1038/s41587-019-0201-4.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable
and accurate long-read assembly via adaptive �-mer weighting and repeat separation.
Genome Research 27(5):722–736 DOI 10.1101/gr.215087.116.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods
9(4):357–359 DOI 10.1038/nmeth.1923.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biology 10(3):R25
DOI 10.1186/gb-2009-10-3-r25.

Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics 32(14):2103–2110 DOI 10.1093/bioinformatics/btw152.

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18):3094–3100 DOI 10.1093/bioinformatics/bty191.

Li B, Dewey CN. 2014. RSEM: accurate transcript quantification from RNA-seq data with or
without a reference genome. Bioinformatics: The Impact of Accurate Quantification on
Proteomic and Genetic Analysis and Research 12(1):41–74.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics 25(14):1754–1760 DOI 10.1093/bioinformatics/btp324.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
2009. The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079
DOI 10.1093/bioinformatics/btp352.

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning
sequence reads to genomic features. Bioinformatics 30(7):923–930
DOI 10.1093/bioinformatics/btt656.

Lua. 2019. The programming language Lua. Available at https://www.lua.org/home.html
(accessed 22 September 2019).

Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics 27(6):764–770 DOI 10.1093/bioinformatics/btr011.

Microsoft Sysinternals. 2019. Process Explorer v16.30. Available at https://docs.microsoft.com/en-
us/sysinternals/downloads/process-explorer (accessed 22 September 2019).

Morais D, Roesch LFW, Redmile-Gordon M, Santos FG, Baldrian P, Andreote FD, Pylro VS.
2018. BTW—bioinformatics through windows: an easy-to-install package to analyze marker
gene data. PeerJ 6:e5299 DOI 10.7717/peerj.5299.

Pavelin K, Cham JA, De Matos P, Brooksbank C, Cameron G, Steinbeck C. 2012. Bioinformatics
meets user-centred design: a perspective. PLOS Computational Biology 8(7):e1002554
DOI 10.1371/journal.pcbi.1002554.

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of
RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11(9):1650–1667
DOI 10.1038/nprot.2016.095.

Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. 2004. Fast and effective prediction of
microRNA/target duplexes. RNA 10(10):1507–1517 DOI 10.1261/rna.5248604.

Ruan J, Li H. 2019. Fast and accurate long-read assembly with wtdbg2. bioRxiv 530972
DOI 10.1101/530972.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 26/27

http://dx.doi.org/10.1038/s41587-019-0201-4
http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1093/bioinformatics/btw152
http://dx.doi.org/10.1093/bioinformatics/bty191
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btt656
https://www.lua.org/home.html
http://dx.doi.org/10.1093/bioinformatics/btr011
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
http://dx.doi.org/10.7717/peerj.5299
http://dx.doi.org/10.1371/journal.pcbi.1002554
http://dx.doi.org/10.1038/nprot.2016.095
http://dx.doi.org/10.1261/rna.5248604
http://dx.doi.org/10.1101/530972
http://dx.doi.org/10.7717/peerj.8111
https://peerj.com/

Schadt EE. 2012. The changing privacy landscape in the era of big data.Molecular Systems Biology
8(1):612 DOI 10.1038/msb.2012.47.

Shen S, Park JW, Lu Z-x, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y. 2014. rMATS: robust and
flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of
the National Academy of Sciences of the United States of America 111(51):E5593–E5601
DOI 10.1073/pnas.1419161111.

Smith DR. 2013. The battle for user-friendly bioinformatics. Frontiers in Genetics 4:187
DOI 10.3389/fgene.2013.00187.

Smith DR. 2015. Buying in to bioinformatics: an introduction to commercial sequence analysis
software. Briefings in Bioinformatics 16(4):700–709 DOI 10.1093/bib/bbu030.

Sovi�c I, Šiki�c M, Wilm A, Fenlon SN, Chen S, Nagarajan N. 2016. Fast and sensitive mapping of
nanopore sequencing reads with GraphMap. Nature Communications 7:11307
DOI 10.1038/ncomms11307.

Vaser R, Sovi�c I, Nagarajan N, Šiki�c M. 2017. Fast and accurate de novo genome assembly from
long uncorrected reads. Genome Research 27(5):737–746 DOI 10.1101/gr.214270.116.

Větrovský T, Baldrian P, Morais D. 2018. SEED 2: a user-friendly platform for amplicon
high-throughput sequencing data analyses. Bioinformatics 34(13):2292–2294
DOI 10.1093/bioinformatics/bty071.

Visne I, Dilaveroglu E, Vierlinger K, Lauss M, Yildiz A, Weinhaeusel A, Noehammer C,
Leisch F, Kriegner A. 2009. RGG: a general GUI Framework for R scripts. BMC Bioinformatics
10(1):74 DOI 10.1186/1471-2105-10-74.

Wang Q, Ni C-m, Li Z, Li X-f, Han R-m, Zhao F, Xu J, Gao X, Wang S. 2019. Efficient and
accurate prediction of transmembrane topology from amino acid sequence only. bioRxiv 627307
DOI 10.1101/627307.

Wheeler TJ, Eddy SR. 2013. nhmmer: DNA homology search with profile HMMs. Bioinformatics
29(19):2487–2489 DOI 10.1093/bioinformatics/btt403.

Xu G, Strong MJ, Lacey MR, Baribault C, Flemington EK, Taylor CM. 2014. RNA
CoMPASS: a dual approach for pathogen and host. PLOS ONE 9(2):e89445
DOI 10.1371/journal.pone.0089445.

Joppich and Zimmer (2019), PeerJ, DOI 10.7717/peerj.8111 27/27

http://dx.doi.org/10.1038/msb.2012.47
http://dx.doi.org/10.1073/pnas.1419161111
http://dx.doi.org/10.3389/fgene.2013.00187
http://dx.doi.org/10.1093/bib/bbu030
http://dx.doi.org/10.1038/ncomms11307
http://dx.doi.org/10.1101/gr.214270.116
http://dx.doi.org/10.1093/bioinformatics/bty071
http://dx.doi.org/10.1186/1471-2105-10-74
http://dx.doi.org/10.1101/627307
http://dx.doi.org/10.1093/bioinformatics/btt403
http://dx.doi.org/10.1371/journal.pone.0089445
https://peerj.com/
http://dx.doi.org/10.7717/peerj.8111

	From command-line bioinformatics to bioGUI
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Appendix
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

