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ABSTRACT
Background: Genomics diagnostic tests are done for a wide spectrum of complex
genetics conditions such as autism and cancer. The growth of technology has not
only aided in successfully decoding the genetic variants that causes or trigger these
disorders. However, interpretation of these variants is not a trivial task even at a level
of distinguish pathogenic vs benign variants.
Methods: We used the clinically significant variants from ClinVar database to
evaluate the performance of 14 most popular in-silico predictors using supervised
learning methods. We implemented a feature selection and random forest
classification algorithm to identify the best combination of predictors to evaluate the
pathogenicity of a variant. Finally, we have also utilized this combination of
predictors to reclassify the variants of unknown significance in MeCP2 gene that are
associated with the Rett syndrome.
Results: The results from analysis shows an optimized selection of prediction
algorithm and developed a combinatory predictor method. Our combinatory
approach of using both best performing independent and ensemble predictors
reduces any algorithm biases in variant characterization. The reclassification of
variants (such as VUS) in MECP2 gene associated with RETT syndrome suggest that
the combinatory in-silico predictor approach had a higher success rate in
categorizing their pathogenicity.

Subjects Bioinformatics, Computational Biology, Pathology, Medical Genetics,
Computational Science
Keywords Pathogenic mutations classification, Disease-causing mutations, Machine learning,
Rett syndrome, DNA variants, Variant pathogenicity predictors

INTRODUCTION
With advances in genomic sequencing, molecular genomics has quickly become a standard
in clinical genetics and diagnostics. Molecular genetic testing involves the identification of
variants in clinical actionable regions of a single gene or multiple genes that can cause
a genetic disorder. Gene based molecular diagnostics tests have the ability to contribute to
a wide range of testing types such as screening for specific conditions such as autism or
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cancer. As the degree of severity of the disease depends on the genes affected and its
associated variants along with their phenotype characteristics, multi-gene screening
provides a gateway to analyze a set of genes that are found to be associated with a specific
or multiple phenotype all at once (Niroula & Vihinen, 2017). The field of genomics has
provided a continuous evolving platform to decode the human genome.

Advances in molecular genomic technologies such as next-generation sequencing that
includes whole exome sequencing (WES) and whole genome sequencing (WGS) have
aided in screening multiple genes in an instance to identify several single nucleotide
variants (SNVs) that contribute to a disease (Genetic Alliance; District of Columbia
Department of Health, 2010). Many disease phenotypes have been linked to the missense
variants. They are considered as most clinically relevant as they alter the amino acid
encoding a protein that can affect the gene function. These SNVs are not only involved in
disease causing but also play an important role in altering biological processes such as
transcriptional regulation, splicing (Thusberg & Vihinen, 2009).

The SNVs identified from methods like WGS or WES are evaluated based on the
metadata obtained from variant annotation process that is a part of the bioinformatics
workflow using information from various data sources such as Online Mendelian
Inheritance in Man (Hamosh et al., 2005) and Human Gene Mutation Database
(Stenson et al., 2014) databases. Using this annotated information, the variants are
classified into pathogenic, benign, likely pathogenic or benign, variant of uncertain
significance (VUS) and incidental findings based on American College of Medical Genetics
and Genomics (ACMG) recommendations (Richards et al., 2015). The process of
characterizing a particular variant’s clinical relevance such as pathogenic (disease causing)
or nonpathogenic (non-disease causing or benign) poses a challenge due to issues such
as differences in information from the bioinformatics workflows, limited availability of
computational resources and the lack of trained professionals, despite that various
computational algorithms have been developed to predict the clinical pathogenicity of
variant based features such as homology, conservation based on evolution, protein
function etc. (Dong et al., 2015).

In this study we employ supervised learning strategies on variants from ClinVar
database (Landrum et al., 2016) to evaluate and identify the best combination of in-silico
prediction algorithms to implement a best performing combinatory predictor method
to characterize its pathogenicity. The results can provide a framework for bioinformaticists
and molecular genomicists to review the clinical relevance of a variant by minimizing both
false positive and false negative predictions. This also provides a benchmark set of
predictors that could be used to determine and reclassify the variants of unknown clinical
significance.

Overview of in-silico prediction algorithms
Most of the computational methods use prediction features and then identify and
implement the best performing algorithm on a training data set to classify and curate the
pathogenicity of variant (Vihinen, 2012). Some predictors aim at predicting if the variant is
disease-causing, others focus on predicting molecular effects caused by the mutation
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(Kucukkal et al., 2015; Petukh, Kucukkal & Alexov, 2015; Peng & Alexov, 2016; Peng,
Alexov & Basu, 2019). ACMG has drafted policy statement and guidelines for categorizing
variants according to which a variant should have multiple computational evidence to
support its deleterious effect from these computational algorithms or predictors. There are
two types of in-silico predictors (Table 1), (i) Independent predictors (SIFT (Sorting
Intolerant From Tolerant) (Ng & Henikoff, 2003), Polyphene2 (Polymorphism
Phenotyping V-2) (Adzhubei et al., 2010), PROVEAN (Protein Variation Effect Analyzer)
(Choi et al., 2012), Likelihood ratio test (LTR) (Chun & Fay, 2009), Mutation Taster
(Schwarz et al., 2010), Mutation Assessor (Reva, Antipin & Sander, 2011), FATHMM
(Shihab et al., 2014), VEST3 (Carter et al., 2013)) employs computational algorithm that
considers unique features to determine the deleteriousness of a variant (ii) Ensemble
predictor (REVEL (Ioannidis et al., 2016), Mendelian Clinically Applicable Pathogenicity
(M-CAP) (Jagadeesh et al., 2016), MetaLR (Dong et al., 2015), MetaSVM (Dong et al.,
2015), Combined Annotation Dependent Depletion (CADD) (Rentzsch et al., 2019), Eigen
(Ionita-Laza et al., 2016)) includes computation algorithms that uses collected features

Table 1 Description of In-silico predictors evaluated. Brief description of the fourteen in-silco predictors (both independent and empirical
predictors) used in this study with pathogenicity cutoffs values.

Predictor Description Pathogenicity
cutoff

SIFT It uses MSAmethodology that determines the probability that a missense variant is tolerated conditional on the most
frequent amino acid being tolerated (Ng & Henikoff, 2003)

<0.049

Polyphen2 It calculates the normalized accessible surface area and changes in accessible surface propensity resulting from the
amino acid substitution (Adzhubei et al., 2010)

>0.447

LTR It uses heuristic methods to identify mutations that disrupt highly conserved amino acids within protein-coding
sequences (Chun & Fay, 2009)

NA

Mutation
taster

It uses naive Bayes classifier to evaluate the pathogenicity of a variant based on information available from various
databases (Schwarz et al., 2010)

>0.5

Mutation
assessor

It uses the concept of evolutionary conservation that affects amino acid in protein homologs (Reva, Antipin &
Sander, 2011)

>1.935

FATHMM It uses Hidden Markov Models (HMM) to assess the functionality of the candidate variant by incorporating a
disease-specific weighting scheme (Shihab et al., 2014),

<−1.151

PROVEAN It uses the concept of pairwise sequence alignment scores to predict the biological effect on the protein function
(Choi et al., 2012)

<−2.49

VEST3 It uses supervised learning method utilizing p-values generated by gene prioritization method to assess the
functionality of mutations (Carter et al., 2013)

NA

Empirical or meta in-silico predictors

MetaSVM It uses support vector machine approach on the previous generated scores (Dong et al., 2015) >0

MetaLR It uses logistic regression model on the previous generated scores (Dong et al., 2015) >0.5

M-CAP It uses gradient boosting trees method to analyze interactions between features to determine variant pathogenicity
(Jagadeesh et al., 2016)

NA

REVEL It combines all results from available prediction tools by using them as features to access the pathogenicity of a
variant (Ioannidis et al., 2016)

>0.75

CADD It uses a c-score obtained by the integration of multiple variant annotation resources (Rentzsch et al., 2019) >19

Eigen It uses a supervised approach to derive the aggregate functional score from various annotation resources (Ionita-Laza
et al., 2016)

NA
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from various independent predictors to determine the pathogenicity of a variant. These
prediction methods use different computational algorithms (Markov model, evolutionary
conservation, random forest etc.) so in order to eliminate the algorithm biases it is
advisable to use multiple prediction algorithms for variant evaluation (Richards et al.,
2015).

MATERIALS AND METHODS
Dataset
The ClinVar variant data is downloaded in a tab separated format from the ClinVar
database (a public archive with interpretations of clinically relevant variants) FTP site
available at https://www.ncbi.nlm.nih.gov/clinvar/ (Landrum et al., 2016). A customized
perl script was written to parse SNVs corresponding to the “GRCh37” build. Table 2 shows
the counts variants from the cleaned data categorized with clinical relevance such as
“pathogenic,” “benign,” “likely pathogenic,” “likely benign” and VUS. For this paper,
we choose only “pathogenic” and benign” and then apply purging procedure to eliminate
cases where there is no strong evidence to be classified as “pathogenic” or “benign.”
The purging was done by reading number of submitters (NOS) and submitter categories
(SC) and then applying the following filters: (a) for pathogenic mutations taken from
ClinVar we require that NOS > 2 & SC = 3; (b) for nonpathogenic/benign mutation the
filter was NOS > 3 & SC >= 2 (Table 3). This reduced the number of pathogenic mutations
from 36,536 to 2,123, and benign mutations from 7,249 to 2,231. This reduced dataset is
termed “golden set.” The purging had two outcomes: reduced the noise of potentially
wrong classifications and the number of pathogenic and benign mutations became very
similar. This dataset serves for two purposes (i) as cross validation data set to test the
performance of all the 14 in-silico algorithms evaluated (ii) and as a training data set to aid

Table 2 Clinical relevance distribution of variants from ClinVar database. Counts of Single
Nucleotide Variants (SNVs) from ClinVar Database (for build GRCh37) categorized based on major
clinical relevance.

Clinical relevance Total number of variants

Pathogenic 36,536

Benign 7,249

Likely pathogenic 2,105

Likely benign 17,295

Variant of unknown significance (VUS) 135,534

Table 3 Proposed golden dataset set. The golden data set that includes pathogenic and benign variants
obtained by filtering the ClinVar SNVs (build GRCh37) based on the number of submitters (NOS) and
submitter categories (SC).

Clinical relevance Total number of variants Criteria

Pathogenic 2,123 NOS > 2 & SC = 3

Benign 2,231 NOS > 3 & SC >= 2

Total 4,354
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in re-classification of the uncategorized variants types such as VUS or conflicting
interpretation variants.

Another dataset, called Rett syndrome dataset, consists of variants in MeCP2 gene that
are associated with Rett syndrome (Zoghbi, 2016; Gold et al., 2017). The data was extracted
from downloaded ClinVar database. This data set has all the differently clinically
categorized variants that includes 64 pathogenic and one benign variant and 115 variants
classified as like benign/pathogenic, VUS and conflicting interpretations. Out of the
115 variants we were able to clean up our testing to 101 variants that has associated
in-silico predictor score available. They will be subjected to our best set of in-silico
predictors and reclassified as pathogenic or benign.

Feature extraction
We annotated all the variants from our prepared dataset using the dbNSFP data source
v2.9.3 (https://sites.google.com/site/jpopgen/dbNSFP) (Liu, Jian & Boerwinkle, 2011). This
data source includes scores from all the in-silico predictors along with allele frequency
information from various population databases. A customized perl script is used to extract
the consolidated in-silico scores from both dependent and independent predictors such as
SIFT, Polyphen2, LTR, Mutation Taster, Mutation Assessor, FATHMM, PROVEAN,
VEST3, MetaSVM, MetaLR, M-CAP, Revel, CADD, Eigen. These scores are used as
features for our features ranking and performance evaluation algorithms.

Features ranking and performance evaluation
We used the scores from the 14 in-silico predictors as features to access their performance.
We evaluated the in-silico predictors on the ability to distinguishing the variants of our
dataset into pathogenic or benign based on the statistics collected from the confusion
matrix. We used Weka (v3.8.2) (Hall et al., 2009) to collect statistics about accuracy,
sensitivity, specificity, precision, F-measure and Mathews correlation coefficient (MCC)

Table 4 Statistical measure from our supervised learning method. Various statistics values calculated
from our performance evaluation and classification analysis from Weka Software.

Statistics Formula

Sensitivity TP
ðTPþ FNÞ

Specificity TN
ðTNþ FPÞ

Precision TP
ðTPþ FPÞ

F-measure 2� Precision� recall
ðPrecisionþ recallÞ

MCC TP� TN� FN� FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp
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calculated using the number of true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) (Table 4).

Identification of best in-silico predictor set
For the development of the best predictor set, firstly we evaluated the two class of attributes
or features (independent and ensemble predictors scores) separately using the ranker
attribute evaluation method. This provides with a list of the best performing in-silico
algorithms. Secondly, we identified the best combination of in-silico predictors that
includes top performing independent and ensemble predictors that can best classify the
variant as either benign or pathogenic. The “ranker” option nested under the classifier
attribute evaluation method is used for ranking features (in-silico scores), it is a fast and
precise method that considers only relevant attributes and eliminates both irrelevant and
redundant features that ranking our methods based on more on correlation. Thus, the
algorithm ranks the features based on their strength of classification. We also use Random
forest as a classifier method along with the Ranker evaluator method to rank and evaluate
the in-silico predictor based on performance.

RESULTS
Selection of best classification algorithms
The predictors’ scores on the golden dataset with 4,354 variants bearing stronger
evidence to be categorized as pathogenic and benign were used as an input for the machine
learning algorithms. For the first step of our analysis we applied the best performing
classification methods for the evaluation of our dataset. Table 5 shows the statistics. Based
on our findings, we identified Random forest method as the best classifier method when
compared to others such as Naïve Bayes, Classification via Regression, LibSVM with 97%
accuracy.

Evaluation of the performance of in-silico prediction methods
After identifying Random forest as the best classifier method, we evaluated the
performance of the in-silico predictors separately based on the strength of classification
of a variant into benign or pathogenic class. Comparing the statistics obtained from the
classification method (Fig. 1) we identified that ensemble or the dependent predictor out
performed almost all the independent predictor algorithms with higher sensitivity and
accuracy. VEST3 is the only independent predictor that has seems to have a sensitivity and

Table 5 Summary of various supervised learning method. Statistics calculated on our cross-validation dataset by applying different machine
learning algorithms to identify the best methods for feature evaluation.

Classification algorithm Sensitivity Specificity Precision Recall F-Measure MCC Accuracy

Random forest 0.985 0.952 0.956 0.985 0.970 0.938 0.969

Naive Bayes 0.905 0.911 0.914 0.905 0.909 0.815 0.907

Classification via regression 0.957 0.944 0.948 0.957 0.953 0.902 0.951

LibSVM 0.940 0.930 0.934 0,940 0.937 0.870 0.953
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accuracy comparable to the ensemble predictors. Even the comparison based on MCC
values that is used for evaluation of imbalanced data displays the same trend where the
ensemble predictors fared better than the independent predictors.

We also performed evaluation of dependent predictors and independent/ensemble
predictors separately using the 10-fold cross validation strategy by implementing
random forest method to check for the best performing classification predictors based on
accuracy and other statistics of predictions. The ensemble predictors outperform the
independent predictors with an accuracy of ~97% along with higher sensitivity, specificity
and MCC values (Fig. 2).

Identification of the best performing in-silico predictor set
The results from the feature evaluation of the ranking attribute methods for both the
independent and ensemble predictors separately identified the best in-silico predictors
that can now be used to classify the variant data better into pathogenic and benign
sub-categories.

VEST3, LTR, Polyphene2 and PROVEAN are identified as the top four ranked
independent in-silico predictors and CADD, Eigen, MetaSVM and REVEL are identified
as the top four ranked ensemble in-silico predictors. Figure 1 shows that these in-silico

Figure 1 Performance evaluations of 14 in-silico predictors. The graphical representation of the major
statistics obtained from the evaluation of all 14 in-silico predictors.

Full-size DOI: 10.7717/peerj.8106/fig-1
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predictors did show higher sensitivity, MCC and accuracy trends too compared to the
other in-silico predictors in their respective category.

The classification of SNVs with the top four predictors from both independent and
ensemble predictor categories together shows a better and stronger evidence to evaluate
variant pathogenicity. The higher rate of observed accuracy, sensitivity and the MCC
statistics from the classification of our data with just the selected eight features proves that
our combined in-silico predictor set can be highly reliable with comparatively minimal
algorithmic biases (Table 6). Figure 3 shows that our identified combination of the
predictors outperforms previously proposed combination proposed by Li et al. (2018) that
includes just two predictors (REVEL & VEST3).

Figure 2 Performance comparison: independent vs empirical in-silico predictors. The graphical
representation of the major statistics obtained from the evaluation of both independent (solid bars) and
ensemble (grey bars) predictors. Full-size DOI: 10.7717/peerj.8106/fig-2

Table 6 Summary statistics of our combinatory approach. Statistics obtained by applying our classifier to the golden dataset with proposed
combined set of independent (VEST3, LTR, Polyphen2 and PROVEAN) and ensemble or dependent (CADD, Eigen, MetaSVM and REVEL)
predictors.

Predictors Classification
algorithm

Sensitivity Specificity Precision Recall F-Measure MCC Accuracy

VEST3, LTR, Polyphene2, PROVEAN.
CADD, Eigen, MetaSVM and REVEL

Random forest 0.982 0.950 0.954 0.982 0.968 0.933 0.966
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Rett syndrome variants
The 197 variants associated with Rett syndrome collected from the ClinVar database
includes 101 variants which are categorized into likely benign/pathogenic, uncertain
significant (VUS) and conflicting interpretations of pathogenicity classes, along with
64 pathogenic and 1 benign variant.

Figure 3 Performance comparison: our approach vs ReVe. Comparison of the statistics obtained from
the proposed combined set of independent (VEST3, LTR, Polyphen2 and PROVEAN) and ensemble or
dependent (CADD, Eigen, MetaSVM and REVEL) predictors (solid bars) to the combination of REVEL
and VEST as proposed by Li et al. (2018) (grey bars). Full-size DOI: 10.7717/peerj.8106/fig-3

Table 7 Reclassification of the MECP2 variants.Variants that was previously classified as likely benign/
pathogenic, uncertain significant (VUS) and conflicting interpretations of pathogenicity classes was
reclassified using our golden dataset (as training dataset) along with benchmarking against “pathogenic”
and “benign” mutations.

Clinical significance Total variants Classification on best in-silico predictors Success rate

Benign Pathogenic

Pathogenic 64 7 57 89%

Benign 1 1 0 100%

Likely Benign 10 9 1 NA

Likely pathogenic 11 2 9 NA

Uncertain significance 69 25 44 NA

Conflicting interpretation 11 5 6 NA
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We used our best in-silico predictor set to reclassify the above (64 pathogenic and 1
benign) variants either as pathogenic or benign with an average classification accuracy of
89% and 100%, respectively (Table 7). This assures the performance of the proposed set
of in-silico predictors. Furthermore, Table 7 summarizes the fringe variants re-classified,
with our best set of in-silico predictors out of which 60% was classified into pathogenic
category and 40% was classified into benign category.

DISCUSSION
The advances in computer algorithm had been widely utilized in the evaluation of the
pathogenicity of a variant. We evaluated the performance of 14 prominent in-silico
computational algorithmmethods with 4354 SNVs from purged ClinVar database (golden
dataset). We also evaluated the performance of eight independent and six ensemble
predictors that led us to identify the best combination of in-silico predictors that can
categorize variants into either disease causing or not. Our initial investigation revealed that
the ensemble prediction algorithms outperformed the independent algorithm with a
higher accuracy of variant categorization.

Our individual assessment of the in-silico prediction methods shows that VEST3 is
the best performing independent predictor method with high accuracy of classifying
variants. However, the main limitation is that this algorithm is based on prioritization of
missense variants thus creating a partizanship biases in evaluating the non-missense
variants. Similarly, Eigen and CADD are the best performing empirical algorithms
based on accuracy of classification which is also highly influenced by the algorithm
constrain that decreases the sensitivity and specificity of variant characterization.
The pathogenicity of variant can also be associated with the different scoring strategies
used by either supervised or unsupervised learning methods. This provides us with a
strong platform to investigate a combinatory approach that includes both dependent and
empirical predictors to evaluate the pathogenicity of a variant.

Although there are many studies that performed comparative investigation to identify
the best performing in-silico predictor method, (Li et al., 2018) in their study displayed
the effectiveness of a combinatory approach where the combination of two in-silico
predictors, VEST3 and REVEL displayed better overall performance in characterization of
clinically significant missense variants. This combination when extended to both missense
and non-missense variants displayed less accuracy, sensitivity and specificity compared
to the just the empirical predictors. The results from feature selection analysis identified
the best combination of independent and empirical predictors that can distinguish and
characterize the variant pathogenicity.

To select the best combination of predictors, we first used the attribute ranking method
for overall ranking of the predictors, followed by combination predictors using each
in-silico predictor sub-group (independent and ensemble). We picked the combination
with the least number of predictors with the highest prediction accuracy. Based on the
statistics obtained (a few combinations are highlighted in Table S1) the combination of top
four methods had the highest accuracy, sensitivity andMCC values. Thus we combined the
top four performing in-silico predictors from both the empirical and the conventional
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methods (independent methods: VEST3, LTR, Polyphene2 PROVEAN; ensemble
methods: CADD, Eigen, MetaSVM and REVEL) that yielded an accuracy of 97% which
is similar to the accuracy yielded by just the empirical predictors, while providing
information on a variant with a minimized biased evaluation. It even outperformed the
ReVe (Revel and Vest3) combination from Li et al. (2018) with higher sensitivity and
accuracy measures (Fig. 3) (Table S1). During our selection we noticed that the empirical
predictors MetaLR and REVEL both exhibited similar accuracy, sensitivity and specificity
but we included REVEL into our set as it has been validated with larger sample set and has
exhibited greater performance in classifying missense variants.

After we demonstrated that the algorithm performs well, it was applied to reclassify
the variants associated with RETT syndrome listed as uncertain or conflicting clinical
significance. This reclassified set can be used to guide further clinical investigation for
mutants linked with Rett syndrome along with studies about the effects of mutation on
wild type characteristics of the corresponding protein.

CONCLUSIONS
In summary, our combinatory approach of using both best performing independent and
empirical predictors reduces any algorithm biases in variant characterization. Our robust
training dataset composed of ClinVar variants filtered based on strong evidences for
pathogenic and benign characteristics can reduce the false positive and true negative
results. Also, similar filtering approaches for data preparation can be used in development
of new methods for accessing the functional effect of a variant. Though in-silico predictors
are just one of data point in evaluation of variant pathogenicity along with other
information such as allele frequency, our predictor set will aid in consolidated balanced
prediction thus increases the confidence of evaluation. This also could provide sufficient
evidence for clinical genomicist and researchers to understand and evaluate the
pathogenicity of variants whose clinical relevance is unknown.
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