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ABSTRACT
Background. Hepatocellular carcinoma (HCC) is the most common primary liver
cancer in the world, with a high degree of malignancy and recurrence. The influence of
the ceRNAnetwork in tumor on the biological function of liver cancer is very important,
It has been reported that many lncRNA play a key role in liver cancer development. In
our study, integrated data analysis revealed potential eight novel lncRNA biomarkers
in hepatocellular carcinoma.
Methods. Transcriptome data and clinical data were downloaded from the The Cancer
Genome Atlas (TCGA) data portal. Weighted gene co-expression network analysis was
performed to identify the expression pattern of genes in liver cancer. Then, the ceRNA
network was constructed using transcriptome data.
Results. The integrated analysis of miRNA and RNAseq in the database show eight
novel lncRNAs that may be involved in important biological pathways, including TNM
and disease development in liver cancer. We performed function enrichment analysis
of mRNAs affected by these lncRNAs.
Conclusions. By identifying the ceRNA network and the lncRNAs that affect liver
cancer, we showed that eight novel lncRNAs play an important role in the development
and progress of liver cancer.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology
Keywords lncRNA, Micrornas, Diagnostic biomarkers, HCC

INTRODUCTION
Liver cancer, which is most common among male patients, is the high leading cause of
death in men worldwide (Wang et al., 2015). In the United States, there are as many as
42,030 new cases and 31,780 deaths related to liver cancer every year, based on the latest
statistics record (Siegel, Miller & Jemal, 2019). The degree of malignancy of cancer can be
determined by study of the histology of the tumor, and patients can be divided into three
classes, low, medium, and high according to the degree of malignancy. Clinically, primary
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liver carcinoma is considered to be one of the most common malignant tumors, and about
90% of these tumors are hepatocellular carcinoma (HCC). In cases of patients diagnosed
with HCC, 50.7% of them achieve a 5-year survival rate, while the median survival time
is 60 months (Lee et al., 2006). The prognosis of HCC patients is related to the patient’s
disease stage. Currently, the tumor-node-metastasis (TNM) pathological staging standard
developed by the American Joint Committee on Cancer (AJCC) is themost commonly used
malignant tumor staging system worldwide. However, the relationship between long non-
coding RNAs (lncRNAs) and tumor staging has raised concern among researchers (Chen et
al., 2015; Ou et al., 2018; Yao et al., 2018), suggesting that many lncRNAs play progressive
key roles in HCC development (Chen et al., 2016a). For example, the MALAT-1 gene is
upregulated in HCC and also correlates with prognostics and recurrence (Guerrieri, 2015;
Lai et al., 2012); the overexpression of the HULC gene may reduce the mir-372 gene, while
at the same time may promote reprogramming during tumorigenesis (Du et al., 2012); and
DANCR induces stemness features and could serve as a potential prognostic marker and
therapeutic target for HCC (Yuan et al., 2016). Previous studies have mainly focused on
the single biomarker use of miRNAs in HCC.

The weighted gene co-expression network analysis (WGCNA) is a popular bioinformatic
method used in the construction of gene networks and the detection of gene modules
and their phenotypic traits (Langfelder & Horvath, 2008; Yin et al., 2018). In this study,
we identified eight novel lncRNAs correlated with TNM using WGCNA. Additionally,
functional enrichment analysis shows that these eight novel lncRNAs play an important
role in the regulation of gene expression that affect development and progression of liver
cancer.

MATERIALS AND METHODS
Data preprocessing and differential gene selection
The clinical data, RNAseq data and microRNA data of LIHC were downloaded from the
The Cancer Genome Atlas (TCGA) database (Akbani et al., 2014) (Table S1). There were
49 pairs of microRNA samples and 50 pairs of RNAseq samples in total. The variation
between the RNA and microRNAs data was calculated using EdgeR package (Reimers &
Carey, 2006; Varet et al., 2016). Only microRNAs recorded with first 10 and last 10 FC
values were selected for subsequent analysis (Li et al., 2018; Shao & Li, 2019). Because these
biggest expression changed miRNA may have real major function in HCC. For RNAseq
data, the EdgeR package was used to calculate the differential correlationship, and the
threshold value for FDR was set at <0.01, | logFC |>1 (Table S2). Clinical data were used
to calculate the correlation matrix of clinical information for integrated analysis. We used
the ‘‘heatmap.2’’ function in the ‘‘gplots’’ package to create the heatmap.

Determination of ceRNA
Using microRNAs and differential expression genes as input data for target prediction, the
RNA22 program was used to predict binding sites of microRNAs based on their sequence
characteristics (Loher & Rigoutsos, 2012). Based on these ceRNA interactions, we obtained
all the mRNA-miRNA pairs with sharing the number of common miRNAs. Because the
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number of the ceRNA pairs is obey hypergeometric distribution. We estimated their
statistical significance by a hypergeometric test. The potential top 20 different expression
miRNAwith hypergeometric test in ceRNA network P value less than 0.05 was obtained (Li
et al., 2018; Shao & Li, 2019). Specific formulas, such as the differential expression matrix
of lncRNA, were used to get the Pearson correlation coefficient (PCC) (Table S3). Based on
ceRNA’s mechanism, the expression matrix (EM) for lncRNA to bind between themselves
resulted in a PCC of EM >0. Co-expression is one of the features of ceRNA network on
account of their interactions. The final ceRNA pair was obtained by intersecting the ceRNA
threshold with cutoff p-value <0.05. Cytoscape v3.0 was used to construct the ceRNA
network. The overall Kaplan–Meier (KM) survival analysis in each subtype was performed
using GEPIA2 database (Tang, 2017).

WGCNA model related computing
Weighted gene co-expression network analysis (WGCNA), a bioinformaticmethod used to
find correlation patterns among genes, was utilized in this research. WGCNA assumes that
gene expression networks is scale-free, it uses a ‘soft’ threshold to determine the weights
of the edges connecting genes and merge individual genes to a module. An appropriate
soft threshold will make the co-expression network closer to a scale-free network. Then
we constructed a signed weighted co-expression network using WGCNA based on the
gene expression value across the TCGA samples. We obtained 60 co-expression modules
according to the correlations of fpkm value among samples. Each module is represented
by an value belongs to the ’eigengene’. This value is identified from the principal component
analysis (PCA) of all the gene expression value in themodule. Then, we find the relationship
between modules and the trait, Eventually, unsupervised WGCNA identified major
lncRNAs expression modules with different degrees of correlation to TNM staging using
WGCNA R software (Langfelder & Horvath, 2008).

Prediction of interrelationship between lncRNA-related mRNAs
Using RNAseq data fromTCGA, the correlation prediction of the lncRNA-lncRNAnetwork
and lncRNA-mRNA network was constructed. The cutoff of PCC was 0.7. We retained
the intersection with the lncRNA using a cutoff of the top 20% degree. Ultimately, we
found eight potentially important lncRNAs with high degrees of connection in the ceRNA
network and high correlation at the expression level.

Gene ontology and KEGG enrichment analysis
Gene ontology (GO) annotation analysis was performed using DAVID software (Huang
da, Sherman & Lempicki, 2009a). Gene functions for these important indirectly regulated
mRNA genes elucidate that this mRNA regulated by lncRNA may have some key
biological functions (Huang da, Sherman & Lempicki, 2009a; Huang da, Sherman &
Lempicki, 2009b). String database was used for protein-protein analysis (Szklarczyk et
al., 2017).
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Figure 1 Different expression of mRNA, miRNA and lncRNA levels between tumor and normal sam-
ples. (A) Heatmap showing 2,763 different expression of mRNA between tumor and normal samples in
LIHC. (B) Volcano map for 310 different expression miRNA. Dots in red and green indicate high and low
expression of miRNA in cancer, respectively. (C) Volcano map for 1,962 different LncRNA. Dots in red
and green indicate high and low expression of lncRNA in cancer, respectively.

Full-size DOI: 10.7717/peerj.8101/fig-1

RESULTS
Analysis of differential miRNAs and differential lncRNAs
The differential expression of miRNAs and lncRNAs between normal samples and cancer
samples was calculated separately using the EdgeR package (Chen et al., 2017; Law et al.,
2016; Maza, 2016). There were 1962 significant differential expression genes in lncRNAs,
and 310 differentially expressed miRNA genes found between healthy and cancer-treated
samples. Almost half of the mRNAs are upregulated and half downregulated (Fig. 1A).
Most of the gene expression for lncRNAs and miRNAs was upregulated in cancer-treated
samples (Figs. 1B–1C).

Weighted gene co-expression network analysis of lncRNA
To determine if any of the identified coexpression modules were associated with TNM
stage, we calculated the PCC between the MEs and TNM stage. All lncRNAs were merged
to 60 modules according the degree of coexpression across the data set in WGCNA. As in
the previous study, we assigned each coexpression module an arbitrary color for reference
(Di et al., 2019; Zhussupbekova et al., 2016). The hierarchical clustering dendrogram of the
eigengenes shows the module size (the number of genes per module) and relationships
among these modules (Fig. 2A). Most modules had minimal relationships with each other.

Comparison of module-characteristic eigengenes showed TNMwas best correlated with
the module MElightpink4 (p= 4E–04) and MElightcyan (P < 0.006), composed of 125
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Figure 2 Results ofWeight Gene Co-expression Network Analysis (WGCNA). (A) shows the cluster-
ing dendrogram of co-expression lncRNA based on topological overlap. (B) Module-TNM stage correl-
ative analysis. Each row corresponds to a module eigengene, each column corresponds to a TNM stage.
Heatmap block with p-values and correlation coefficient. The red box in the figure shows the module with
higher correlation coefficient in the three stages of TNM. The blue box in the figure shows the module
with negative correlation coefficient in the three stages of TNM.

Full-size DOI: 10.7717/peerj.8101/fig-2

lncRNAs (Fig. 2B). The PCC values ranged from −1 to +1 depending on the power of the
relationship. A positive value indicated that the lncRNA within a particular co-expression
module increased as the TNM increased, whereas the opposite occurred if the sign of the
PCC was negative. We learned that the correlationship between the module and TNM
stage with PCC value was accompanied by the corresponding P-value in brackets. These
modules included genes that were co-expressed in a particular TNM stage can be used to
represent the TNM stage of HCC development (Fig. 2B). These gene may be the risk factors
and therapeutic targets in the treatment of HCC.

ceRNA network of lncRNA reveals potential biomarkers in liver
cancer
As shown in Fig. 3A, ceRNA network was constructed by high degree lncRNAs. The
topological characteristics of ceRNA network were analyzed with degree, betweenness, and
closeness (Table S4). Many genes in ceRNA network are with high degree, betweenness, or
closeness like AC016773.1, AC145285.2, LINC01569 and DANCR, and so on. This implied
ceRNA network may regulate many gene expression through these lncRNAs to have effect
on progression of liver cancer. To verify the function of these lncRNAs, Kaplan–Meier
survival analysis was perform ed for expression level of these lncRNAs. The results of the
survival analysis presented in Figs. 3B and 3C show patients with high expression level of
DANCR or AL671710.1 have poor prognosis. It is a validation of our analysis and two of
the lncRNAs may affect prognosis.
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Figure 3 CeRNA network in LIHC and survival curves. (A) Red dots represent overlaping lncRNA se-
lected from co-expression analysis and RNA22 which can identify microRNA binding sites. The bigger the
dots, the higher the degree value, the more important nodes in the network. (B) Survival curve of patients
with high expression of DANCR and low expression of DANCR. Survival curve of patients with high ex-
pression of AL671710.1 and low expression of AL671710.1.

Full-size DOI: 10.7717/peerj.8101/fig-3

The interactions between lncRNAs and mRNAs
CombiningWGCNA with the results of ceRNA prediction analysis, lncRNA was combined
with correlation prediction to find eight important lncRNAs including AL671710.1,
TRIM52-AS1, C1orf220, AC022762.2, DANCR, LINC01569, AC084018.1 and MIR194-
2HG. Among these lncRNAs, downregulation of TRIM52-AS1 play key role in renal
cell carcinoma (Liu et al., 2016). DANCR increases stemness features of hepatocellular
carcinoma (Yuan et al., 2016). DANCR is also associated with various cancer (Lu et al.,
2018a; Lu et al., 2018b; Mao et al., 2017; Sha et al., 2017; Xu et al., 2018; Yuan et al., 2016).
However, there is little known about the function of other six lncRNAs in cancer. There
were 124 genes targeted by these eight lncRNAs (Figs. 4A–4H), including EIF3 which
functions during the initiation phase of translation. TRIM52-AS1 may influence cancer
behavior and function through interactions with regulator EIF3. EIF3 plays a key role in
human diseases (Gomes-Duarte et al., 2018; Valasek et al., 2017). Also, there were 30 genes
targeted by lncRNA ac084018.1, including m6A reader methyltransferase like 3 (METTL3).
As reported in previous research, METTL3 promotes liver cancer progression through
YTHDF2 (Balacco & Soller, 2019; Berlivet et al., 2019; Chen et al., 2018; Weng et al., 2018).
DANCR and AL671710.1 also have crucial roles through certain key genes (Figs. 4C, 4E).
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Figure 4 Interaction of eight lncRNA and target mRNA. The green arrows represent the lncRNA,
and the pale red dots represent the mRNA. It can be seen that the eight important lncRNA AL6717.1,
TRIM52-AS1, C1220C1, DANCR, LINC01569, AC084018.1 participated in many regulation of mRNA.

Full-size DOI: 10.7717/peerj.8101/fig-4

GO and KEGG pathway enrichment analyses of lncRNA-targeted gene
Additionally, we performed GO and KEGG enrichment analysis of the mRNAs in
the network (Figs. 5A–5C). We analysed target genes of the lncRNA based on their
enrichment scores for associated GO terms and KEGG pathways using David tools (Huang
da, Sherman & Lempicki, 2009a; Huang da, Sherman & Lempicki, 2009b) . The GO and
KEGG enrichment analysis concerning the target genes of lncRNAs indicated that the
top regulated pathways of lncRNAs were Huntington’s disease, RNA polymerase and
Pyrimidine metabolism, and the top regulated functions of lncRNAs were SRP-dependent
co-translational protein targeting to membrane, translational initiation, viral transcription,
nuclear-transcribed mRNA catabolic process, and nonsense-mediated decay. Further-
more, those essential mRNA may interact with each other and function in HCC (Fig. 6A).
We can conclude that those lncRNAs affect HCC through the functions and pathways
listed above (the flow chart was depicted in Fig. 6B).

DISCUSSION
Hepatocellular carcinoma (HCC) is one of the primary causes of cancer-related death
worldwide (Balogh et al., 2016). Many genes influence HCC, TP53 tumor-suppressor gene,
p16INK4A and Rb-associated with various risk factors have been largely reported (Bae
et al., 2016; Buendia, 2000; Nishida & Fukuda, 2001; Peng et al., 2013; Wang et al., 2017;
Zhang et al., 2014). Some even take part in the cancer biography progress through lncRNA
(Su et al., 2017). Long non-coding RNAs (lncRNAs) which are transcribed but do not
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encode proteins, play key roles in HCC development (Abbastabar et al., 2018). These
include MALAT-1 and also NEAT-2, which regulates splicing factors mostly situated in
nuclear speckles. In addition, MALAT-1 is a biomarker in various cancers including HCC
(Lai et al., 2012; Wang et al., 2016). LncRNA GAS5 is a biomarker and have potential
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applications in HCC therapy (Fang et al., 2019). Using WGCNA and hypergeometric test
analysis, we found eight lncRNAs with important functions: AL671710.1, TRIM52-AS1,
C1orf220, AC022762.2, DANCR, LINC01569, AC084018.1 and MIR194-2HG. TRIM52-
AS1 is one of the eight lncRNAs that has been reported as a function of a tumor suppressor
(Liu et al., 2016; Zhang et al., 2017).Targeted by MYC, DANCR promotes cancer (Chen et
al., 2016b; Dhanasekaran et al., 2017; Huang, Deng & Zhou, 2013; Kron et al., 2012; Lu et
al., 2018b). Taken together, we concluded that these lncRNAs may function as a potential
tumor regulator in HCC.

Additionally, some lncRNAs were associated with the TNM stage in HCC tissues
(Abbastabar et al., 2018). The American Joint Committee on Cancer (AJCC) stratifies
patients using a Tumor-Node-Metastasis (TNM) classification, representing a group of
models useful in the assessment of tumor extension (Selcuk, 2017; Tellapuri et al., 2018).
Among several staging systems, the TNM system was one of the most widely accepted,
and had a higher prognostic competency than the other systems (Prognosis Evaluation
in Patients with Hepatocellular Carcinoma after Hepatectomy, Comparison of BCLC
and Hangzhou Criteria Staging Systems). In our work, we found two lncRNAs modules
associated with the TNM stage. Those lncRNAs may function as the biomarker of node size
andmetastasis status in HCC. Systematic analysis of transcriptomics data reveal those novel
potential therapeutic target may be involved in cancer-related pathway in liver cancer. Our
study has limitations, the specific mechanism of these lncRNAs remains unexplored.

CONCLUSIONS
In summary, our results demonstrated that lncRNAs AL671710.1, TRIM52-AS1, C1orf220,
AC022762.2, DANCR, LINC01569, AC084018.1, and MIR194-2HG play an essential role
in the HCC stage, and their targeted mRNA have key functions in HCC. Those lncRNAs
might be a novel prognostic biomarker for HCC.
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