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ABSTRACT
Overweight and obesity are considered among the major health concerns worldwide.
The body mass index is a frequently used measure for overweight and obesity and
is associated with common non-communicable diseases such as diabetes type II,
cardiovascular diseases and certain cancers. However, the body mass index does
not account for the distribution of body fat and relative fat to muscle mass. 3D
laser-based photonic full body scans provide detailed information on various body
circumferences, surfaces, and volumes as well as body height and weight (using an
integrated scale). In the literature, body scans showed good feasibility, reliability,
and validity, while also demonstrating a good correlation with health parameters
linked to the metabolic syndrome. However, systematic differences between body
scan derived measurements and manual measurements remain an issue. This study
aimed to assess these systematic differences for body height, waist circumference,
and body mass index using cross-sectional data from a homogenous sample of 52
young Swiss male volunteers. In addition to 3D laser-based photonic full body scans
and correlative manual measurements, body fat distribution was assessed through
bioelectrical impedance analysis. Overall, an excellent correlation was found between
measurements of waist circumference and body mass index, and good correlation
between body mass index and total fat mass, as well as between waist circumference
and visceral fat mass as assessed by bioelectrical impedance analysis. Volunteers were
shorter in height measured by body scan when compared to manual measurements.
This systematic difference became smaller when volunteers stood in the scanner in a
completely upright position with their feet together. Waist circumference was slightly
smaller for manual measurements than for body scan derived values. This systematic
difference was larger in overweight volunteers compared to leaner volunteers.

Subjects Anatomy and Physiology, Evidence Based Medicine, Human–Computer Interaction
Keywords Waist circumference, 3D body scan, Anthropometry, Body height

INTRODUCTION
Overweight and obesity are major global health concerns, and worldwide more than 1.9
billion adults were overweight in 2016 (WHO, 2017). The body mass index (BMI, weight in
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kilograms divided by squared height in meters) is a frequently used measure for overweight
and obesity and is associated with common non-communicable diseases such as diabetes
type II, cardiovascular diseases and certain cancers (WHO, 2018). However, the BMI
does not account for the distribution of body fat and relative fat to muscle mass. Waist
circumference (WC) and waist-to-hip ratio are considered to be better than the BMI to
predict CVD (Kjaer et al., 2015; WHO, 2008). However, it is still unclear which measures
best correlate with disease risk (Ashwell, Gunn & Gibson, 2012; Kahn & Bullard, 2016; Lam
et al., 2015). Other techniques used at a population level like Bioimpedance Analysis (BIA)
offer and quick and safe measurement of height, weight, BMI, total fat mass, visceral fat
mass, and muscle mass, but measures like WC have to be taken classically with a tape
and values have to be entered manually in the BIA machine. Furthermore, BIA seems to
be less precise in measuring visceral fat mass than other techniques such as the reference
standards, computed tomography (CT) and magnetic resonance imaging (MRI) (Murphy
et al., 2019). Other circumferences and ratios derived from them are not assessed. Such
measurements have therefore their own limitations and new approaches to quantify obesity
and categorize the corresponding health risks are therefore necessary.

3D laser-based photonic full body scans create a detailed surface image of the human
body consisting of up to 300 data points per cm2 within 10–12 s. The BS technique provides
detailed information on whole body or body-part circumferences, surfaces and volumes as
well as body height and weight (using an integrated scale) in a way that is not only fast and
non-invasive but also comfortable for scanned individuals. Scan data are increasingly used
for the acquisition of clinically relevant anthropometric measurements by comparing 3D
scan data with data from classical anthropometry (Bretschneider et al., 2009; Koepke et al.,
2017; Lin et al., 2004; Olivares et al., 2007; Wells et al., 2015). Recent studies comparing the
body scan technique with classical anthropometry have demonstrated the applicability of
the scan technique in an epidemiological context (Jaeschke, Steinbrecher & Pischon, 2015;
Kuehnapfel et al., 2016). In these studies, body scans showed good feasibility, reliability,
and validity, and correlations with health parameters linked to the metabolic syndrome
were comparable to studies using manual measurement techniques (Jaeschke, Steinbrecher
& Pischon, 2015).

One issue with body scan studies are systematic differences between body scan derived
measurements and manual measurements, which can be considered as the standard.
Height derived from scans is slightly less than manually measured height, and different
circumferences are either systematically larger or smaller, when derived from scans, as
opposed to manual measurement techniques, in various studies (Domina, Heuberger &
MacGillivray, 2008; Jaeschke, Steinbrecher & Pischon, 2015; Janssen et al., 2002; Koepke et
al., 2017; Wang et al., 2006). Possible factors influencing such differences are variability
of posture, the degree of inspiration, and movement of volunteers while standing in
the scanner. Also, there are technical differences between different scanner systems in
terms of hardware precision, automatic landmark setting, and measurement output of
the scanner software (Schwarz-Müller, Marshall & Summerskill, 2018). Regarding different
body circumferences such as waist or hip circumference, systematic differences between
scans and manual measurements can be explained by a slightly tighter fitting or slightly
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different positioning of the measurement tape, compared to scan derived circumferences
(Koepke et al., 2017; Wang et al., 2006).

This study aimed to further assess systematic differences between body scans and
manual measurements in height, WC, and BMI, with a goal to further validate scan derived
measurements in future population based studies. We also aimed to assess the correlation
between BMI, derived from different scanner or manual measurements, and total body fat
mass, derived from BIA. Similarly, we aim to analyse the correlation between WC, derived
from different scanner and manual measurements, and visceral fat mass, derived from
BIA.

METHODS
As part of a larger research project, a cross-sectional study assessing waist circumference,
body height and weight, as well as body composition was conducted on 52 Swiss Armed
Forces recruits during their basic training. As this is a purely methodological, and not
an epidemiological study, we consider a (homogenous) sample size of 52 to be sufficient
in order to show systematic differences between measurement techniques. The study
took place in Neunkirch in the Canton of Schaffhausen, Switzerland, in August 2017.
Study volunteers were all male Swiss Armed Forces recruits aged 19–23 (19 years
old: 34.6%, 20 years old: 38.5%, 21 years old: 19.2%, 22 years old: 7.7%, mean age:
20.5 years). Volunteers came from different parts of Switzerland and were not selected
for socioeconomic status or other demographic variables. This study was conducted with
institutional review board approval (BASEC No. 2016-01625), and participation was
voluntary. All volunteers were briefed in written form at the beginning of the study and
again orally before the examination. All volunteers signed a detailed informed consent
form.

Body scanner derived measurements were acquired using a semi-mobile Body Scanner
(VITUSbodyscan,Human Solutions, Kaiserslautern, Germany). This scanner model is
equipped with four eye-safe lasers, eight cameras, and acquires up to 300 data points per
cm2 as a 3D point cloud, based on optical triangulation. This type of scanner showed to
be reliable and precise in its measurements (Koepke et al., 2017). The scanner operating
software (Anthroscan, Human Solutions, Kaiserslautern, Germany) calculates more
than 150 automatic standard measurements, including height, and a large number of
distances and circumferences. The scanner was calibrated according to the manufacturer’s
instructions at the beginning of the data collection days when body scans and manual
measurements were acquired. Volunteers were measured in two positions, once standing
straight in an upright position with their feet together (same position as during the manual
height measurement with the stadiometer) and another in a standardized position specified
by the scanner manufacturer (standing in an upright position, both feet positioned on
marks on the scanner platform (spaced approximately 30 cm apart), arms slightly bent
at the elbow and held slightly away from the body, head in accordance to the Frankfurt
Horizontal Plane). All volunteers were briefed before each scan regarding exact positioning
on the platform. They were asked to hold their breath after exhalation for the scans, which
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was about 10 s per scan. Volunteers wore only form-fitting underpants and a tight-fitting
bathing cap. See Figs. S1a and S1b for the two scan positions.

For standard WC measurements, a hand-held tape of stretch-resistant quality and
automatic retraction was used (seca 201, Seca AG, Reinach, Switzerland). All WC
measurements were performed by one of the authors trained in WC measurements
(NB) (Koepke et al., 2016; Staub et al., 2018). The tape measurement position was chosen
according to WHO guidelines, at midlevel between the lowest palpable point of the rib
cage and the highest palpable point of the iliac crest (WHO, 2008). The measurement
level was marked with a pen in order to make it visible in subsequently performed body
scan acquisitions. Due to a tight schedule set by the Swiss Armed Forces, manual WC
measurements were only carried out once for each volunteer. Height measurements
were carried out with a standard stadiometer (seca 274, Seca AG, Reinach, Switzerland).
Volunteers stood straight in an upright position with their feet together, their back and feet
against the stadiometer, and head positioned in accordance with the Frankfurt Horizontal
Plane.

To assess body composition, bioelectric impedance analysis (BIA) was utilized, as time
constraints and the need for non-invasive methods did not allow for other assessment
methods such as dual-energy X-ray absorptiometry (DXA) or magnetic resonance imaging
(MRI). We used a medical 8-point body composition analyzer (Seca mBCA 515, Seca
AG, Reinach, Switzerland) measuring weight and calculating the amount of whole-body
fat mass and visceral fat mass, muscle mass, and intracellular and extracellular water in
the body based on bioelectric impedance measurements across a total of four pairs of
electrodes placed on both hands and both feet. Whole body and body part composition
was calculated based on mathematical algorithms using the integrated software. This
software was validated in different settings and with different ethnic groups (Bosy-Westphal
et al., 2017; Bosy-Westphal et al., 2013; Day et al., 2018). For BIA, study volunteers stood
barefoot on the two pairs of foot-electrodes and placed each hand on one of the two pairs
of hand-electrodes.

A dataset using measurements from all described sources was compiled. Height andWC
from manual measurements were included. From body scans, height in a straight position
and standard position were included. Furthermore, an automatically calculated WC from
the scans and a second WCmeasurement from the scans that was manually adjusted in the
software to theWHOmeasurement point were included. To obtain this secondWC scanner
measurement, the measurement line of the software was manually adjusted to match the
pen mark of the manual WHOmeasurement level on the scans (see Fig. S1c). Additionally,
weight (from an incorporated electronic scale, Seca AG, Reinach, Switzerland), relative
whole-body fat mass (%), and visceral fat mass (l) from BIA measurements were included.
There was onemissing body scan in straight position from one study participant. Therefore,
for some statistics, N = 51 was used instead of N = 52.

Volunteers’ BMI was calculated from their weight divided by the square of their height
in meters in accordance to WHO guidelines (WHO, 2018). Volunteers were classified in
different BMI subgroups, volunteers with BMI <18.5 kg/m2 as underweight, volunteers
with BMI 18.5–24.9 kg/m2 as normal weight, volunteers with BMI ≥ 25.0–29.9 kg/m2 as
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Table 1 Measurements.

Used terms Explanation

Manual WC WCmeasured with classic manual anthropometry (tape)
Automatic scan WC WCmeasured with the scanner at automatic scanner

position
Adjusted scan WC WCmeasured with the scanner adjusted at WHO point
Manual height Height measured with classic manual anthropometry

(stadiometer)
Standard scan height Height measured with the scanner in standard body posture
Straight scan height Height measured with the scanner in straight body posture
Manual BMI BMI calculated with height from classic manual

anthropometry
Standard scan BMI BMI calculated with height from the scanner in standard

body posture
Straight scan BMI BMI calculated with height from the scanner in straight

body posture

overweight, and volunteers with BMI ≥ 30.0 kg/m2 as obese (WHO, 2017). In accordance
withWHOguidelines, volunteers were categorized for their risk ofmetabolic complications
(RMC) according to theirWC.WC<94.0 cm is associated to a lowRMC,WC94.0–102.0 cm
is associated to an increased RMC, and WC >102.0 cm is associated to a substantially
increased RMC (WHO, 2008).

We included the following WC measurements in the study: the manual WC
measurement, the automatic scanner measurement in the standard position, and the
adjusted scanner measurement at the WHO measurement point. For height, we included
the manually measured height, height measured with the scanner in a straight position
(N = 51), and height measured with scanner in standard position. We calculated BMI
using weight from the internal scale of the BIA and height from the manual measurement
as well as using height from the scan in the straight position and the standard position. See
Table 1 for an overview of all measurements considered and abbreviations used.

Statistical analysis
Descriptive statistics were calculated for all above-listed measures of WC, height, and BMI.
The distributions forWC and BMI were not entirely symmetrical (Fig. S2), and logarithmic
transformation did not considerably change their shape. Therefore, non-parametric and
parametric methods were applied to analyse the data. Differences between different WC,
height, and BMI measures were tested using Wilcoxon signed-rank tests and paired t -tests.
To assess the agreement between the different measurements for WC, height, and BMI,
and to compare both measurement methods (scanner vs. manual), Lin’s correlations
coefficients (CCC) (Lin, 1989) were used, Pearson’s as well as Spearman rank correlations.
Kappa coefficients (Altman, 1999)were used to assess the classification agreement according
to official WHO BMI categories for overweight/obesity as well as increased health risks for
WC. Agreements, correlations, and intra- and inter-methods comparisons were visualized
using scatterplots and Bland Altman Plots (Bland & Altman, 1999). For the Bland Altman
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plots the batplot package in Stata (Version 14.1) was used, which additionally tests the
difference between themethods for trend. To compare effect sizes betweenmethods a linear
regression was performed to assess the association between BMI and relative whole-body fat
mass, divided into BMI subcategories, separately for the different BMI measures. Similarly,
a linear regression was performed to assess the association between WC and visceral fat
mass, divided into WC subcategories, separately for the different WC measures.

RESULTS
Visual evaluation of WC measure scatterplots showed an increasing deviation with larger
WCs when manually measured WC was compared to automatic scan WC and to manually
adjusted scan WC (Figs. 1A and 1C). This increasing deviation is also represented as an
increasing difference between the measures with an increasing average of the measures
(Figs. 1B and 1D). The largest difference (−1.64 cm, paired t -test p< 0.01) between
WC measurements was observed between manual WC (mean 81.65 cm, SD = 9.04) and
adjusted scan WC (mean 83.29 cm, SD = 9.95) (Table 2). The smallest and not significant
difference (−0.13 cm, paired t -test p= 0.376) was observed between automatic scan WC
(mean 83.15 cm, SD= 9.73) and adjusted scanWC (mean 83.29 cm, SD= 9.95). Agreement
between automatic scan WC and adjusted scan WC was good (kappa=0.68, agreement =
92.88%) and very good between manual WC and automatic scanWC (k= 0.91, agreement
= 98.08%). Correlation was very high for all WC measurements (CCC >0.96). For all
results see Tables 2–5. The results from the non-parametric tests were very similar (Table 3
and Table 5).

For height, visually there was a constant small difference between manually measured
height and standard position scan height as well as between standard position scan height
and vertical position scan height. This difference was minimal between manual height and
vertical scan height (Figs. 2A, 2C, and 2E). The smallest height measurements difference
(+0.20 cm, paired t -test p= 0.009) was between manual height (mean 178.69 cm, SD
= 6.82) and straight scan height (mean 178.18 cm, SD = 6.55) (Table 2). The largest
difference (+0.77 cm, paired t -test p< 0.001) was between manual height (mean 178.69
cm, SD = 6.82) and standard scan height (mean 177.92 cm, SD = 6.78) (Table 2). There
were significant differences between all compared height measurements (Table 2). The
correlation was very high for the manually measured height, and both scanned height
measurements (CCC > 0.98). The results from the non-parametric tests were again very
similar (Tables 2 and 3).

For BMI, the inspection of Fig. 3 revealed a strong association between BMI calculated
with manual height and BMI calculated with scan height in a straight posture. The visual
association was slightly deviating for manual BMI versus standard scan BMI, and for
standard scan BMI versus straight scan BMI, with increasing BMI (Figs. 3A, 3C and 3E).
All calculated BMI differences were highly significant (Table 2). The smallest difference
(−0.06, paired t -test p= 0.007) was between manual BMI (mean 23.99, SD = 4.01) and
straight scan BMI (mean 24.09, SD = 4.06). The largest difference (−0.22, paired t -test
p< 0.001) was between manual BMI (mean 23.99, SD = 4.01) and standard scan BMI
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Figure 1 Associations between different waist circumference measures. (A), (C) and (E) show scat-
ter plots of different WC measures (solid line: x=y, dotted line: linear regression). (B), (D) and( F) show
Bland Altman plots (the solid line including 95% confidence interval originates from the test for trend us-
ing linear regression). There is an increasing deviation between manual measurements and scanner mea-
surements with increasing WC.

Full-size DOI: 10.7717/peerj.8095/fig-1

(mean 24.20, SD = 4.09). The correlation was excellent for all BMI measures (Kappa =
1.0, agreement 100%, CCC >0.99). For all results see Tables 2–5.

There was a strong correlation between the different BMI measures and relative fat
mass (Spearman Rho≥ 0.86, Table 6, Fig. 4A). The WHO subcategories of BMI correlated
similarly with relative fat mass in all three BMI measures (Fig. 5A). Compared to normal
weight volunteers, underweight volunteers measured with classic anthropometry showed
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Table 2 Descriptive statistics forWC, height, and BMI. (A) N, mean, standard deviation (SD), and me-
dian. (B) Wilcoxon signed rank test, paired t -test.

(A)
N Mean SD Median

WC
Automatic scan WC 52 83.15 9.73 80.50
Adjusted scan WC 52 83.29 9.95 81.00
Manual WC 52 81.65 9.04 80.00
Height
Standard scan height 52 177.92 6.78 176.10
Straight scan height 51 178.18 6.55 176.40
Manual height 52 178.69 6.82 177.25
BMI
Standard scan BMI 52 24.20 4.09 23.81
Straight scan BMI 51 24.09 4.06 23.54
Manual BMI 52 23.99 4.01 23.55

(B)
Wilcoxon signed rank test Paired t -test

z p Delta (cm) p

WC
Manual WC vs. scan WC −4.54 <0.001 −1.50 <0.001
Manual WC vs. adjusted scan WC −4.71 <0.001 −1.64 <0.001
Scan WC vs. adjusted scan WC −1.06 0.295 −0.13 0.376
Height
Manual height vs. standard scan height 5.56 <0.001 0.77 <0.001
Manual height vs. straight scan height 2.98 0.003 0.20 0.009
Standard scan height vs. straight scan height −5.08 <0.001 −0.55 <0.001
BMI
Manual BMI vs. standard scan BMI −5.56 <0.001 −0.22 <0.001
Manual BMI vs. straight scan BMI −3.02 0.003 −0.06 0.007
Standard scan BMI vs. straight scan BMI 5.12 <0.001 0.16 <0.001

−6.6% (95% CI [−13.8–0.5]) less body fat mass. Overweight volunteers showed 11.3%
(95% CI [8.2–14.3]) more body fat than normal weight volunteers, and obese volunteers
showed 20.5% (95%CI [14.5–26.4])more body fat than normalweight volunteers (Fig. 5A).
The results for BMI calculated with scan height in the standard position and in the straight
position were very similar. See Fig. 5 and Table S1 for all results.

There was a strong correlation between the different WC measures and visceral adipose
tissue (Spearman Rho ≥ 0.79, Table 5), but manual WC deviated increasingly from
automatic scan WC and adjusted scan WC with increasing WC (Fig. 4B). For WC
subcategories vs. visceral adipose tissue, the correlation was more different for manual WC
than for the other WC measures, when WC was more than 102.0 cm (Fig. 5B). Compared
to volunteers withWC<94.0 cm (low RMC) volunteers withWC 94.0–102.0 cm (increased
RMC) measured with classic anthropometry had 1.94 litre (95% CI [1.53–2.34]) more
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Table 3 Correlations between different measurements ofWC, height, and BMI.

CCC R C_b Rho

WC
Manual WC vs. scan WC 0.964 0.979 0.985 0.964
Manual WC vs. adjusted scan WC 0.964 0.983 0.981 0.967
Scan WC vs. adjusted scan WC 0.994 0.995 1.000 0.994
Height
Manual height vs. standard scan height 0.988 0.995 0.993 0.989
Manual height vs. straight scan height 0.996 0.997 0.999 0.992
Standard scan height vs. straight scan height 0.992 0.996 0.996 0.992
BMI
Manual BMI vs. standard scan BMI 0.997 0.999 0.998 0.998
Manual BMI vs. straight scan BMI 0.999 0.999 1.000 0.998
Standard scan BMI vs. straight scan BMI 0.998 0.999 0.999 0.998

Notes.
CCC, Lin’s concordance correlation coefficient; R, Pearson’s correlation coefficient; C_b, bias correction factor; Rho,
Spearman correlation coefficient.

Table 4 WHO categories of manual BMI, standard scan BMI, and straight scan BMI.WHO categories
for manual WC, automatic scan WC, and adjusted scan WC.

Manual BMI (kg/m2) N Standard scan BMI (kg/m2) N Straight scan BMI (kg/m2) N

<18,5 2 <18,5 2 <18,5 2
18,5 - 24,9 32 18,5–24,9 32 18,5–24,9 32
25,0 - 29,9 15 25,0 - 29,9 15 25,0 - 29,9 15
≥30,0 3 ≥30,0 3 ≥30,0 3

ManualWC (cm) Automatic scanWC (cm) Adjusted scanWC (cm)

<94.0 46 <94.0 46 <94.0 44
94.0–101,9 5 94.0–101,9 4 94.0–101,9 6
≥102.0 1 ≥102.0 2 ≥102.0 2

Table 5 Kappa coefficients and% agreement between categories of different measures ofWC and
BMI.

Kappa % Agreement

WC
Manual WC vs. automatic scan WC 0.9081 98.08%
Manual WC vs. adjusted scan WC 0.7593 94.23%
Automatic scan WC vs. adjusted scan WC 0.681 92.31%
BMI
Manual BMI vs. standard scan BMI 1.000 100%
Manual BMI vs. straight scan BMI 1.000 100%
Standard scan BMI vs. straight scan BMI 1.000 100%
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Figure 2 Associations between different height measurements. (A), (C) and (E) show scatter plots of
different height measures (solid line: x=y, dotted line: linear regression). (B), (D) and (F) show Bland–
Altman Plots (the solid line including 95% confidence interval originates from the test for trend using lin-
ear regression). (A) shows the systematic difference between manual height measurement and scanner
measurement in the standard scanner position.
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visceral fat mass. Volunteers with a WC >102 cm (substantially increased RMC) had 4.57
litre (95% CI [3.7–5.44]) more visceral fat mass than volunteers with low risk (WC < 94.0
cm).
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Figure 3 Associations between different BMImeasurements. (A), (C) and (E) show scatter plots of dif-
ferent BMI measures (solid line: x=y, dotted line: linear regression). (B), (D) and (F) show Bland Altman
plots (the solid line including 95% confidence interval originates from the test for trend using linear re-
gression).
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DISCUSSION
The presented study evaluated whether the positioning of volunteers in the scanner
influenced previously observed differences between height measurements derived from
body scans and manually measured height. We confirmed that height was less when
measured by the scanner, compared to classical anthropometry. When volunteers stood
in the scanner in a completely upright position with their feet together, this difference
decreased smaller. Nevertheless, for height measurements, a small difference remained
between the scanner and manual classical anthropometry for the same body position.
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Table 6 Pearsons (R) and Spearman (Rho) correlation coefficients betweenmeasures of (A) BMI and
relative fat mass, and betweenmeasures of (B)WC and visceral fat mass.

(A) Relative fat mass

BMI R Rho
Manual BMI 0.884 0.863
Straight scan BMI 0.883 0.861
Standard scan BMI 0.881 0.860

B) Visceral adipose tissue

WC R Rho
Manual WC 0.919 0.824
Automatic scan WC 0.897 0.790
Adjusted scan WC 0.904 0.808
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Figure 4 Associations between BMI and relative fat mass, and betweenWC and visceral fat mass. A,
Associations between BMI and relative fat mass (%). The different BMI measures are given in different
colours and symbols, and linear regression lines. B, Associations between WC and visceral fat mass (l).
Different WC measures are given in different colours and symbols, and linear regression lines. The manual
measurements are increasingly deviating from the scanner measurements with increasing WC.
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Interestingly, other studies found that height was greater in the scanner than measured
with classical anthropometry (Jaeschke, Steinbrecher & Pischon, 2015; Kuehnapfel et al.,
2016). Several factors could explain our findings. In classical anthropometry, the
stadiometer behind the volunteers may encourage the volunteers to stand straighter
than without the stadiometer in the scanner (Koepke et al., 2017). Additionally, posture
variation in the scanner could also have influenced height; in fact, other studies showed
relevant differences due to posture variation (Schwarz-Müller, Marshall & Summerskill,
2018; Tomkinson & Shaw, 2013;Wells et al., 2015).

As expected and similarly to other studies, we found a strong correlation for WC
measured by classical manual anthropometry and scanner derived measurements
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Full-size DOI: 10.7717/peerj.8095/fig-5

(Koepke et al., 2017). However, WC was systematically slightly smaller if measured with
manual anthropometry than derived from the scanner. A possible explanation for this
difference is that volunteers tend to pull their stomach in for manual measurements
(Jaeschke, Steinbrecher & Pischon, 2015). Other studies showed that arm posture had a
significant influence on WC measurements (Lennie et al., 2013; Lu, Wang & Mollard,
2010). In our study arm posture was different in the scanner (slightly bent elbows and
slightly separated from the body, but not too far away in order not to leave the measuring
area) as in manual WC, where volunteers had to hold their arms further away from the
trunk due to the measurement procedure. The difference betweenmanual WC and scanner
derived measurements was not explicable by a different measuring level, as manual WC
deviated more from adjusted scan WC than expected, while there was no significant
difference between automatic scan WC and adjusted scan WC. This means that at the
population level automatic scan WC is reliable concerning the measuring level and can be
equalized to the WHO measuring level.

Interestingly, manual WC deviated more from scanner measures in obese volunteers
compared to lean volunteers. Other studies showed low reliability of manual WC
measurements in obese subjects (Kuehnapfel et al., 2016; Verweij et al., 2013). It was more
challenging to control tape position when WC was larger and more difficult to identify the
WHO measurement level in obese volunteers correctly.

The scanner derived measures correlated similarly to total fat and visceral fat as the
manually derived measures, probably being even superior when it comes to the correlation
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between waist circumference and visceral fat in heavily obese people. As just discussed
for waist circumference, this might be due to the difficulty in measuring manually the
waist circumference in very obese people. Overall the scanner offers a reliable tool to
assess a number of anthropometric measures in a fast and safe way. Furthermore, as
Table 4 showed, the difference in categorizations of BMI and WC between scanner and
manual measurements was absent or minimal. The scanner can therefore be regarded as
an alternative tool to categorize patients into BMI and WC categories, if scans are taken
for any reason.

Several techniques are used to reconstruct body segment volumes, body segment
parameter differences, or segment inertial properties, such as 3D body scanners (Norton,
Donaldson & Dekker, 2002), infrared scanners (Smith & Bull, 2018), magnetic resonance
imaging (Cheng et al., 2000) or dual energy X-ray absorptiometry (DEXA) (Durkin &
Dowling, 2003). The different techniques have their advantages and disadvantages,
depending on the specific research target. For epidemiological research on anthropometrical
measures, a 3D full body scanner offers a rapid, safe and reliable alternative.

This study is the first to compare different postures and different measuring levels to
assess height andWC with a 3D body scanner. An advantage for the internal validity of this
study was the homogenous study group, namely same age, and sex, which reduced physical
inter-individual variability apart from BMI. Limitations for the external validity of this
study were the small sample size, and the specificity of the sample, particularly regarding
sex and age. Due to time constraints, all measurements were only carried out once per
volunteer. One trained researcher did all manual WC measurements. Therefore, we could
exclude inter-observer bias, but an intra-observer bias cannot be excluded (Koepke et al.,
2017).

CONCLUSION
The body scanner measurement technique seems to be reliable for height and WC and the
comparedmeasurement techniques correlated well. However, the small difference in height
measurements that also persists after postural correction must be further investigated.
Likewise, the observed deviation between manually measured WC and body scan derived
values, which systematically increased with increasing BMI of volunteers, must be further
investigated. Additionally, extensive studies with volunteers of both sexes, various ages,
and different BMIs are required to further evaluate the differences between scanner derived
measurements and classic anthropometrics in order to assess the applicability of the scanner
technique at a population level.
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