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Background. The major landscape in the hilly-gully region of the Loess Plateau is greatly affected by
vegetation rehabilitation on abandoned cropland (CL). Although many studies have shown that the
rehabilitation have greatly improved soil conditions and protected them from erosion, these effectiveness
were not always in consensus possibally due to the variation of vegetation or ehabilitation times. To close
this gap, we conducted a long term experiment as follows.

Methods. In this study, we analysed four land types of vegetation rehabilitation (shrubland(SL),
woodland (WL), natural grassland (NG), and orchard (OL)) with different rehabilitation times and
investigated the mechanical composition and erodibility of the soil. Areas of slope CL and natural forest
(NF)were selected as controls.

Results. The results showed that soil depth, rehabilitation time and rehabilitation land type had strong
impacts on soil mechanical composition, micro-aggregation and erodibility. Following rehabilitation, NG
and SL had lower fractal dimensions of particle size distribution (PD), micro-aggregation (MD), and
erodibility (K) than did CL. Compared to the positive effects of rehabilitation mainly happened in the
topsoil layer at other rehabilitation land type, that of WL happened in the deeper soil layer. Besides, the
indispensable rehabilitation time for the significant improvement of soil condition was shorter at NG than
that at SL and WL.

Discussion. Although rehabilitation time was more influential than was rehabilitation land type or soil
depth, the differences among the rehabilitation land types showed that Natural grass is the most time-
saving rehabilitation vegetation for the Loess Plateau in the conversion from slope CL, and the wood-land
benefits to the rehabilitation of deeper soil layer. Based on the differences of rehabilitation effectiveness
resulting from land type, we should be cautious to choose land types for the rehabilitation of soil
conditions in the Loess Plateau.
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Rehabilitation time has greater influences on soil mechanical
composition and erodibility than does rehabilitation land type in
the hilly-gully region of the Loess Plateau, China

Background. The major landscape in the hilly-gully region of the Loess Plateau is greatly
affected by vegetation rehabilitation on abandoned cropland (CL). Although many studies have
shown that the rehabilitation have greatly improved soil conditions and protected them from
erosion, these effectiveness were not always in consensus possibally due to the variation of
vegetation or ehabilitation times. To close this gap, we conducted a long term experiment as

follows.

Methods. In this study, we analysed four land types of vegetation rehabilitation (shrubland(SL),
woodland (WL), natural grassland (NG), and orchard (OL)) with different rehabilitation times
and investigated the mechanical composition and erodibility of the soil. Areas of slope CL and

natural forest (NF)were selected as controls.

Results. The results showed that soil depth, rehabilitation time and rehabilitation land type had
strong impacts on soil mechanical composition, micro-aggregation and erodibility. Following
rehabilitation, NG and SL had lower fractal dimensions of particle size distribution (PD), micro-
aggregation (MD), and erodibility (K) than did CL. Compared to the positive effects of
rehabilitation mainly happened in the topsoil layer at other rehabilitation land type, that of WL
happened in the deeper soil layer. Besides, the indispensable rehabilitation time for the

significant improvement of soil condition was shorter at NG than that at SL and WL.
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Discussion. Although rehabilitation time was more influential than was rehabilitation land type
or soil depth, the differences among the rehabilitation land types showed that Natural grass is the
most time-saving rehabilitation vegetation for the Loess Plateau in the conversion from slope CL,
and the wood-land benefits to the rehabilitation of deeper soil layer. Based on the differences of
rehabilitation effectiveness resulting from land type, we should be cautious to choose land types

for the rehabilitation of soil conditions in the Loess Plateau.

Key word: erosion; vegetation rehabilitation; fractal dimension; Loess Plateau

Introduction

Soil erosion initiated by either natural or human factors is a serious environmental problem
in many parts of the world. It not only causedthe degradation of soil quality but also the
destruction of ecosystem function and safety (Chen & Peng 2000; Zheng et al., 2010; Lian et al.,
2013). Severe soil erosion is a serious challenge in the Loess Plateau of China (Sun et al., 2016b).
To alleviate soil erosion and restore the local ecological environment, the Chinese government
implemented the “Grain for Green” programme in 1999 to convert degraded cropland (CL) to
forest and grassland (Chen et al., 2007a; Zhang et al., 2011a; Song et al., 2015). This

programme has greatly decreased soil loss (Zheng & Fen 2006, Chen et al., 2007b).

Several studies had examined the effects of plant species changes, land preparation, rainfall
intensity, anthropogenic disturbance, afforestation, and land abandonment on the mechanical
composition and erodibility of the soil (Koulouri & Giourga 2007; Keesstra et al., 2009; Xia et

al., 2009; Zhang et al., 2011b; Yu et al., 2017). Soil mechanical composition and micro-
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aggregate stability were shaped by complicated geophysical and environmental processes and
responded to land-use changes, thereby affecting soil hydrological and mechanical functioning
and soil erosion (Wang et al., 2005; Xiao et al., 2014, Wang et al., 2016). Many studies have
reported positive impacts of vegetation rehabilitation of sloped CL on soil conditions and soil
resistance to erosion (Xu et al., 2013, Xiao et al., 2014; Fu et al., 2015; Sun et al., 2016b).
Different plant species, with differences in morphology, architecture and other biological
characteristics, show variation in their effectiveness for vegetation rehabilitation (Fu et al., 2015).
However, local precipitation of parent material, disturbance and their interaction and sampling
time can influence vegetation rehabilitation and make interpretation of results challenging. Thus,
long-term research on the dynamics of soil erosion is necessary to understand the effects of
vegetation rehabilitation on soil physical condition while accounting for confounding factors.
However, several studies have focused on the effects of different rehabilitation patterns or the
dynamic changes following rehabilitation in a certain land type but have not clearly identified the
impacts of the various rehabilitation land type on the soil mechanical composition and erodibility

during a long-time scale.

In this study, we collected comprehensive and long-term data on historic vegetation (e.g.,
forest, shrubland and grassland) with different rehabilitation times (1) to elucidate the effects of
rehabilitation land type, time and soil depth on soil mechanical condition and erodibility; (2) to

clearly identify the key influencing factors.

Materials and methods
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83 Experimental area

84 This study was conducted in Ansai County, Shanxi Province, China (36°31’-37°20'N,

85 108°52'-109°26'E; 1,012-1,731 m a.s.l.), which lies in the middle part of the Loess Plateau. This
86 region has a typical semiarid continental climate with a mean annual temperature of 8.8°C and an
87 annual precipitation of 549.1 mm, which mainly occurs between July and September. The

88 landform is characterized by a deeply incised hilly-gully Loess landscape. The soil is mainly

89 Huangmian soil (Xiao et al., 2014). This type of soil is characterized by weak cohesion (Sun et

90 al, 2016a), which makes it highly susceptible to severe soil erosion.

91 Overgrazing, deforestation and other land-use patterns led to severe damage to the

92 ecological environment and severe soil erosion by the middle of the last century. Since the late
93  1950s, sloping CL has been replanted with woodland (Robinia pseudoacacia), shrubland

94 (Caragana korshinskii, Hippophae rhamnoides), artificial grassland (Medicago sativa) and

95 naturally revegetated grassland to control soil erosion (Sun et al., 2016b).

96 Sampling and data collection

97 Based on our investigation of the history of land use, we selected four types of vegetation
98 rehabilitation of CL abandoned between July 10 and September 10, the season in which plant
99 community biomass peaks, in 2011 and 2012. The four types were natural grassland (NG) (with
100 rehabilitation times of 2a, 5a, 8a, 11a, 15a, 18a, 26a and 30a), planted shrubland (SL) (with
101 rehabilitation times of 5a, 10a, 20a, 30a, 36a, 47a), planted woodland (WL) (with rehabilitation

102 times of 5a, 10a, 20a, 37a and 56a), and orchard (OL) (with rehabilitation times of 5a, 10a and
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20a). Sloping CL sites were selected as representative of the origin condition for the
rehabilitation chronosequences of the revegetated NG, SL, WL and OL. Additionally, we
considered natural forest as representative of the soil-dominated climax community in vegetation
rehabilitation to assess the effectiveness of vegetation rehabilitation. These selected sites offered
representativeness, typicality and consistency and had similar slope gradients, slope aspects, and

topography. The properties of the experimental sites are shown in Table 1.

Three replicated plots of 20 x20 m were established in each site of planted WL (Robinia
pseudoacacia) ensuring that all three plots within the site had the same rehabilitation time. Three
replicated plots of 10 x10 m were established in each SL site (Caragana microphylla,
Hippophae rhamnoides) ensuring that all three plots within the site had the same rehabilitation
time and in each OL site ensuring that all three plots within the site had the same rehabilitation
time. Three smaller replicate plots (2 X2 m) were randomly established in each revegetated NG
site (including Artemisia sacrorum, A. capillaries, A. giraldii, Aneurolepidium dasystachys,
Bothriochloa ischaemum, Heteropappus altaicus, Lespedeza bicolor, Stipa bungeana, Setaria
viridis, and other grasses) ensuring that all three plots within the site had the same rehabilitation

time. The plots were separated by at least 50 m.

After removing ground litter, soil samples were collected from each plot via random
sampling with a soil drilling sampler (4 cm diameter) from five soil layers (0-10, 10-20, 20-30,
30-50, and 50—-100 cm). The soil samples from the same layer of the same plot were mixed to

form one sample. Each sample was air-dried and passed through 2 mm screens after removing
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roots, gravel, and coarse fragments. The samples were brought to the laboratory and divided into
two parts. One part was naturally air-dried to measure the organic carbon and analyse soil
organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents, particle size
distributions and micro-aggregates. The other part was stored in a refrigerator at 4°C to analyse
water-soluble amounts (carbon, nitrogen), microbial biomass (carbon, nitrogen), enzyme activity

as well as other variables not reported in this paper.

Physical and chemical analyses

The soil bulk density (BD) of each soil layer was measured with the cutting ring method.
SOC was determined using the dichromate oxidation method(Nelson & Sommers, 1982), and TN
was determined using the Kjeldahl method (Bremner, 1982).For soil PSD (particle-size
distribution) and micro-aggregate analysis, soil samples were analysed by a laser diffraction
technique using a Longbench Mastersizer 2000 (Malvern Instruments, Malvern, England) (Xiao

etal., 2014).

Fractal features

The fractal dimension of a PSD was calculated by the following formula (7yler &

Wheatcraft 1992):

V(ir<R)/Vi=(Ri/Rpax)*P

where 7 is the particle size, R;is the particle size of subinterval i in the particle size grading, V(r

Peer] reviewing PDF | (2019:05:37265:0:4:NEW 28 May 2019)


Reviewer
OG
Add citations 

Reviewer
Texto insertado
space


PeerJ

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

<<R);) is the mass of soil particles with diameter less than R;, V7 is the sum of soil particles, and

Rmax is the maximum diameter of soil particles.

Erodibility (K)

Soil erodibility was measured by the K factor in the EPIC model using SOC content and

soil PSD (Williams et al., 1984) and was calculated as follows:

K={0.2 + 0.3exp[-0.0256SAN(1 - 0.01SIL)]}

SIL o3 0.25C 0.25C
x| |03%(1.0 - (1.0 -
CLA + SIL C + exp?(3.72 - 2.950) SN1 + exp?(-5.51 + 22.9 SN1)

where SAN, SIL, and CLA are the sand (%), silt (%), and clay (%) fractions, respectively;

C is the soil organic carbon content (%); and SNI = 1-SAN/100.

Statistical analysis

Three-way ANOVA was performed to test the effects of rehabilitation land type (NG, WL,
SL, OL and MQ), rehabilitation time (years since sloping CL abandonment) and soil depth (0-10
cm, 10-20 cm, 20-30 cm, 30-50 cm, and 50-100 cm) on soil mechanical composition and
erodibility. Significance was evaluated at the 0.05 level (P < 0.05). Duncan’s (D) post hoc test
was used to perform multiple comparisons when significance of the ANOVA was observed. The
differences between the natural forest and various vegetation rehabilitation at each last
restoration year were examined by student’s t test. Pearson correlation analysis was used to
analyse the correlations among particle fractal dimension, micro-aggregate fractal dimension,

erodibility and soil nutrients, soil texture, and recovery time. In addition, linear regression
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analysis was used to determine the relationships between each of particle fractal dimension,
micro-aggregate fractal dimension, and erodibility and recovery time in each soil layer between 0
and 100 cm. All of the above statistical analyses were conducted using SPSS 17.0 (SPSS Inc.,
Chicago, IL, USA) and R version 3.4.4.we conducted the redundancy analysis (RDA) for the
relationships between factors (rehabilitation land type, rehabilitation time, soil depth) and soil

erosion properties by R version 3.4.4.

Results

Rehabilitation time, and rehabilitation land type had significant effects on the soil PSD
fractal dimension and erodibility (K), only the rehabilitation land type had significant effects on
the soil micro-aggregate fractal dimension (Table 2). PSD fractal dimension, micro-aggregate
fractal dimension and erodibility showed trends of decline since CL in all land types. However,
PSD fractal dimension, micro-aggregate fractal dimension and erodibility varied among the land

types (Figs. 2-4).

The rehabilitation pattern in NG

PD and K began to show greater decreases in NG than in CL at 5, 11thyears, respectively,
since CL abandonment. And these trends mainly occurred in 0-20cm, gradually weaken with
depth . Overall, the minimum time before significant decreases appeared in the particle fractal
dimension, soil micro-aggregate fractal dimension and erodibility varied among the different

rehabilitation land types; in general, the times were shorter for NG than for the other land types
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180 (Figs. 2-4). NG did not differ from NF in MD or K (20-100cm) over rehabilitation time (Figs. 5-
181 7). Linear regression revealed that PD decreased with the number of years since farmland

182  conversion in the 0-50 cm (except 20-30 cm)(Figs. 2-4).

183  The rehabilitation pattern in WL

184 PD, MD and K began to show greater decrease in WL than in CL in the 10%,10% and 37t
185 respectively since CL abandonment (Figs. 2-4). Over rehabilitation time, WL did not differ
186 from NF in PD (30-100com) and MD (0-100cm), K in WL did not differ from NF (0-30cm)
187 and even was lower than that in NF (30-100cm) (Figs. 5-7). Compared to MD and K, PD in

188 this site showed a clear decreasing tend at the all soil layers (Figs. 2-4).

189  The rehabilitation pattern in SL

190 PD, MD and K began to show greater decreases in SL than in CL in the 20, 36" and 30®
191 years, respectively, since CL abandonment, and tended to have significant differences with CL
192 since then(Figs. 2-4). The decreasing trend of PD and MD occurred in 0-100cm, but gradually
193 weaken with increasing depth. After rehabilitation, NG were also higher than NF in PD (0-50cm),
194 MD (0-30cm) and K (0-10cm)(Figs. 5-7), and had no difference with that of NF at the deep layer.
195 Linear regression indicated that PD decreased with the number of years since farmland

196 conversion in the 0-100 cm (except 30-50cm)(Figs. 2-4).

197  The rehabilitation pattern in OL

198 PD and MD showed a trend of lower levels in OL than in CL, but there is no significant
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199 differences were observed between them(Figs. 2-4). However, K in this site didn’t decrease after
200 a long-term rehabilitation. Following rehabilitation, PD, MD, and K were significantly higher in
201 OL than in NF at shallow soil layer(Figs. 5-7). Linear regression revealed that PD decreased with

202 the number of years since farmland conversion in the 0-10 cm soil layers(Figs. 2-4).
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Discussion

Effects of rehabilitation time on soil mechanical composition and erodibility

In our study, rehabilitation time was a key factor in driving changes in soil mechanical
condition, erodibility and properties (Table 2) (Fig. 8). The PSD fractal dimension (PD),
erodibility (K) of the soil in the various rehabilitation land types showed decreasing trends
following rehabilitation (Figs. 2-4). These changes were mainly due to the large amounts of soil
nutrients eleased by residues and decomposing dead roots, and they promote plant growth and
rehabilitation succession (Guo et al., 2013). PD, K positively correlated with SOC. And the
improvement of mechanical conditions were mainly explained by the soil nutrient levels (Table
3). Zhuang et al. (2008) discovered that soil organic matter, as a binding agent, favoured soil
structure stabilization and infiltration and protected it from erosion . In addition, well-developed
root systems played a vital role in soil mechanical functioning and actively exude substrates,
such as polysaccharides, phenolic compounds, and polygalacturonic acid, that affect soil particle
cohesion and aggregation (Sun et al., 2016b). Furthermore, by directly binding soil particles in
situ, plant roots prevented soil from being blown or washed away (Reubens et al., 2007). Dense
canopies and ground litter following rehabilitation protected soil aggregates from breakdown and

prevent particles from being washed away by raindrop energy and runoff (Wang et al., 2008).

Effects of rehabilitation land type on soil mechanical composition and erodibility

Vegetation rehabilitation type was the most influential factor in driving soil mechanical
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222 composition and erodibility (Table 2)(Fig. 8). Variation in vegetation recovery patterns and plant
223 traits led to variation in the production and release of soil organic matter, which affect soil

224  crusting, splash, aggregate size and stability. For example, high levels soil organic matter

225 reduced soil vulnerability to detachment by surface flow, rain splash and other erosion-inducing
226 phenomena (Xiao et al., 2014; Fu et al., 2015). Litters with different chemical composition

227 among different plant species would impact decomposition rates and the release of soil organic
228 matter(Ayres et al., 2006). Thus NG site dominated with high quality litter showed faster

229 circulating rates than shrub and tree sites dominated with relative low quality litter. This

230 phenomenon may explain why the recovery time needed to reach significant improvements of
231  soil mechanical conditions and soil erosion was shorter for NG than for WL and SL. Our results
232 are in accordance with the study of Yu et al. (2015), which showed that high concentrations of
233 soil organic matter greatly affected the fractal dimensions of PSD and generally facilitated the
234 improvement of soil structure. In addition, vegetation alleviates erosion of soil by its canopy

235 effectively reducing water-induced soil erosion (Kutilek 1995; Mohammad & Adam 2010, Wei et
236 al, 2010). However, these effectiveness were different from various land type. In NG, the lower
237 vegetation layer was more effective in reducing the kinetic energy of rainfall striking the soil

238 surface than the tall vegetation in SL and WL. Owing to the lack of roots at deep soil layer, the
239 NG only showed positive effect at the shallow soil layer(0-10cm). However, due to the stronger
240 stretching ability of the trees roots, WL site also showed the potential of alleviate soil erosion at
241  deep layer. The soil loss in OL was continued over a long time owing to human disturbances

242 (such as production management and tillage practices) and the absence of surface cover
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protection, which leads to the breakdown of shallow soil aggregates and the washing away of

soil particles by raindrop energy and runoff (Wang et al., 2008).

Effects of soil depth on soil fractal dimension and erodibility

In the four types of vegetation rehabilitation, soil depth had large influences on soil
mechanical composition and erodibility (Table 2)(Figs. 8) being consistent with previous studies
(Xiao et al., 2014). In our study, the positive effects of vegetation recovery mainly occurred in
the topsoil with the higher reduction rates of PD, MD and K in the topsoil than in the subsoil
(Figs. 2-4). This pattern was resulting from the variation in plant root distribution density
decreasing along soil depth (Reubens et al., 2007); thus, the deeper soil layers were, the weaker
the improvements of soil conditions were (Sun et al., 2014). In addition, soil nutrients
accumulated near the soil surface also due to the decomposition of vegetation litter and

biogeochemical cycling (Wang et al., 2014).

Conclusion

Our study suggested that vegetation rehabilitation time, type and soil depth significantly
affects soil mechanical composition and erosion. Following the conversion of sloping CL to NG,
SL or WL, the soil structure gradually recovered, and the resistance of the soil against erosive
forces gradually increased, primarily within the topsoil. For the conversion of sloping CL,
planting grass represents a more efficient rehabilitation practice than does the planting of other

vegetation types. Meanwhile, the WL was the best type to improve soil mechanical condition and
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the erodibility of deep soil layer. Based on the differences of rehabilitation effectiveness among
the rehabilitation land type, it is important to carefully select land types for the rehabilitation of
soil conditions in the Loess Plateau. Our study, conducted at the regional scale, revealed the
effects of vegetation rehabilitation on soil erosion in the Loess Plateau, China. This study
contributes to our understanding of the mechanisms through which rehabilitation improves soil

quality and provides a suggestion for ecosystem management in arid and semi-arid regions.
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Figure 1

Fig. 1. Location of the Loess Plateau China

Fig. 1. Location of the Loess Plateau China
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Figure 2 (on next page)

Fig. 2. Particle fractal dimension change with time since cropland abandonment in
various vegetation restoration patterns.

Note: a: natural grassland, b: woodland, c: shrub land, d: orchard. 0: crop land. We set the CL
as the initial stage of the rehabilitation process. Different lower-case letters above the bars
mean significant differences among different ages within the same rehabilitation patterns (P

< 0.05).

Peer] reviewing PDF | (2019:05:37265:0:4:NEW 28 May 2019)



Particle fractal dimension

0 10cm

2.80 7

Pe gr“:z:]=().168

2.657

2.60 7

2.557

P=0.005
Y=-0.001x+2.685

02581115182630

0 10cm
2.807 P=0.02
Y=-0.001x+2.684
R*=0.266
2.757
a
ab
2.70 7
bc
abc
abc
2.657
C
2.60 T
2.557
0 5 1020 37 50
0 10cm
2.807
P=0.003
Y=-0.001x+2.681
R?=0.290
2.757
a
2.707 b b
b b
b
2.657 b
2.60 T
2.557

0 5 1020303647

0 10cm
2.80
P=0.01
Y=-0.002x+2.724
R’=0.452
2.757 a
a a
2.70
b
2.657
2601 T WY
2.557

0 5 10 20

10 20 cm
2.801
P=0.011
Y=-0.001x+2.691
R’=0.149
27542
ab ab
- ab b
b
2.657
2.60 7
2.557

2.801

2.757

2.701

2.657

2.607

2.557

2.807

2.751

2.70 7

2.657

2.607

2.557

2.807

2.757

2.707

2.657

P&l

2.557

02581115182630

10_20cm

P=0.028
Y=-0.001x+2.694
R*=0.236

ab ab

0 5 1020 37 50

10 20 cm

P=0.019
Y=-0.001x+2.686
a  R=0.177

ab
ab b

0 5 1020303647

10 20 cm

0 5

10 20

2.807

2.757

2.70 1

2.651

2.60 7

2.557

2.801

2.757

2.701

2.657

2.607

2.557

2.807

2.751

2.70 7

2.657

2.607

2.557

2.807

2.757

2.701

2.651

BN

2.557

20 30cm

ab

abab ab

b
aab

ab

02581115182630

20 30 cm

P=0.026
Y=-0.001x+2.690
R’=0.243

0 5 102037 50

20 30 cm

P=0.015
Y=-0.001x+2.687
R?=0.189

ab b
ab

0 5 1020303647

50_100cm

2.80 17

2.707

2.657

2.607

30 50 cm
2.80 7
P=0.04
Y=-0.001x+2.694
R?*=0.09
2.757 AIYY
a ab M Clﬁﬁ
ab abab ab
270 T ab b
ab
2.657
2.60 7
2.557

02581115182630

30 50 cm

2.80 7 P=0.024
Y=-0.001x+2.691
R?*=0.249

2.757 a

a
270 ab ab

ab
2.65" b
2.60 7
2.557
0 5 1020 37 50

30 50 cm
2.80 7
2.757 a

ab
ab
b
b

2.657
2.60 7
2.557

0 5 1020303647

20 _30cm 30 _50cm
2.80 7
a
a a
a a 2.757 a
a
a
2.70 7
2.65 7
2 2 9)2.60'
2.557
0 5 10 20 0O 5 10 20

2.557

script to be reviewed

02581115182630

50 100 cm

2.80 7 P=0.016
Y=-0.001x+2.689
R*=0.284
2.757
a
a a
2.70" ab
ab

2.657 b
2.60 T
2.557

0 5 10 20 37 &(

50 100 cm
2.80 7
P=0.022
Y=-0.001x+2.677
R’=0.167
2.757
a
2.70 ab
ab b b
b
2.657
2.60 7
2.557

0 5 102030364

50_100cm

2.80 7
a
ab

2.757

ab
2.70 7 o
2.65 7
2.60 7
2.557

0 5 10 20

(a)

(b)

()

(d)



PeerJ

Figure 3(on next page)

Fig. 3. Micro-aggregate fractal dimension change with time since cropland
abandonment in various vegetation rehabilitation patterns.

Note: a: natural grassland, b: woodland, c: shrub land, d: orchard. 0: crop land. We set the CL
as the initial stage of the rehabilitation process. Different lower-case letters above the bars
mean significant differences among different ages within the same rehabilitation patterns (P

< 0.05).
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Figure 4 (on next page)

Fig. 4. Erodibility change with time since cropland abandonment in various vegetation
rehabilitation patterns.

Note: a: natural grassland, b: woodland, c: shrub land, d: orchard. 0: crop land. We set the CL
as the initial stage of the rehabilitation process. Different lower-case letters above the bars
mean significant differences among different ages within the same rehabilitation patterns (P

< 0.05).
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Figure 5(on next page)

The differences of particle fractal dimension between the natural forest and various
vegetation restoration patterns at each last restoration year.

Note: A: 0-10cm, B: 10-20cm, C: 20-30cm , D: 30-50cm ,E: 50-100cm. * means significant
differences between the natural forest and various vegetation restoration patterns at each

last restoration year (P < 0.05).
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Figure 6(on next page)

The differences of micro-aggregate fractal dimension between the natural forest and
various vegetation restoration patterns at each last restoration year.

Note: A: 0-10cm, B: 10-20cm, C: 20-30cm , D: 30-50cm ,E: 50-100cm. * means significant
differences between the natural forest and various vegetation restoration patterns at each

last restoration year (P < 0.05).
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Figure 7 (on next page)

The differences of erodibility between the natural forest and various vegetation
restoration patterns at each last restoration year.

Note: A: 0-10cm, B: 10-20cm, C: 20-30cm , D: 30-50cm ,E: 50-100cm. * means significant
differences between the natural forest and various vegetation restoration patterns at each

last restoration year (P < 0.05).
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Figure 8(on next page)

Biplot of the first two RDA axes between the vegetation Rehabilitation patterns, soil
depth, restoration time and fractal dimension, erodibility( K factor), TC, TOC, TN, each
classes particles and micro-aggregate.

Biplot of the first two RDA axes between the vegetation Rehabilitation patterns, soil depth,
restoration time and fractal dimension, erodibility( K factor), TC, TOC, TN, each classes

particles and micro-aggregate.
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Table 1l(on next page)

Table 1 Basic information of sample plots

Table 1 Basic information of sample plots
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Restoration Rehabilitation Vegetation
Site code Altitude (m) Slop(°) Understory vegetation types
pattern years (a) coverage (%)
CL ASO 0 1270-1290 17-24 32 Setaria italica. Glycine max
Geranium wilfordii Maxim, Artemisia capillaris,
AS1 2 1101-1276 13-27 12.1-19.8
Parthenocissus tricuspidata, Setaria viridis
Artemisia leucophylla, Artemisia capillaris, Poa
AS2 5 1185-1262 17-19 30.7-57.3 sphondylodes, Sonchus oleraceus L, Lespedeza
bicolor Turcz, Heteropappus altaicus
Lespedeza bicolor Turcz, Artemisia capillaris .,
Leymus secalinus, Potentilla bifurca
AS3 8 1235-1276 12-40 18-60.4
Bothriochloa ischaemum , Stipa bungeana,
Dendranthema indicum
NG
Artemisia leucophylla, Tripolium vulgare
Lespedeza bicolor Turcz, Stipa bungeana,
AS4 11 1198-1292 23-37 24-76.3
Cleistogenes hancei, Artemisia capillaris
Heteropappus altaicus , Setaria viridis
Tripolium vulgare, Lespedeza bicolor Turcz, Stipa
ASS 15 1291-1306 14-19 39.8-76 bungeana, Cleistogenes hancei, Stipa grandis,
Heteropappus altaicus, Roegneria kamoji
AS6 18 1179-1189 22-30 16-49 Artemisia leucophylla, Tripolium vulgare,
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Cleistogenes hancei, Stipa grandis

Artemisia leucophylla, Tripolium vulgare,

AS7 26 1144-1161 22-28 21.8-68.9 Lespedeza bicolor Turcz, Stipa bungeana,
Cleistogenes hancei

Artemisia leucophylla, Tripolium vulgare,

ASS 30 1149-1293 14-29 33-79.7 Lespedeza bicolor Turcz, Stipa bungeana,
Cleistogenes hancei, Stipa grandis
Artemisia argyi. Artemisia giraldii. Lespedeza
AS9 5 1281-1290 12-21 20-38
bicolor
Bothriochloa ischaemum . Stipa bungeana .
AS10 10 1139-1161 29-32 53-78.4
Artemisia giraldii
AS11 10 1264-1281 14-27 36-57 Artemisia argyi
AS12 20 1185 21 52 Melica scabrosa
SL

Stipa bungeana . Artemisia argyi. Artemisia

AS13 20 1203-1211 21-22 28-53
giraldii Lespedeza bicolor

AS14 30 1128-1139 14-25 21-46.3 Artemisia argyi

Stipa bungeana . Setaria viridis. Artemisia
AS15 36 1211-1253 20 46-65

argyi. Setaria viridis. Artemisia giraldii

AS16 47 1181-1241 18-24 49.3-89.6

Stipa bungeana . Artemisia argyi. Artemisia
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giraldii pamp.

AS17

1259-1288

Stipa bungeana Artemisia argyi. Lespedeza
22-34 36-56 P & & P

bicolor
AS18 10 1161-1227 27.5-33 38-53 Artemisia argyi. Setaria viridis. Leymus secalinus
WL AS19 20 1236-1259 17-26 32-42 Artemisia argyi. Setaria viridis
Artemisia gmelinii . Artemisia argyi. Stipa
AS20 37 1209-1259 30-33 53-65
bungeana
AS21 56 1170-1175 21-22 49-90 Stipa bungeana . Artemisia argyi
AS22 5 1207-1226 0
OL AS23 10 1220-1254 0
AS24 20 1206-1222 0
AS25 100 1332-1337 14-29 39-52 Vittaria flexuosa. Syzygium aromaticum
Artemisia gmelinii, Lespedeza bicolor, Vittaria
NF AS26 100 1235-1283 23-38 35-70
flexuosa
AS27 100 1552-1570 28-45 10-28 Rosa xanthina, Vittaria flexuosa
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Table 2(on next page)

Table 2 Tests of the soil particle fractal dimension, micro-aggregate fractal dimension,

erodibility linkage with time(years since cropland abandonment), Rehabilitation pattern
and soil depth

" Indicates a significant difference at the 0.01 level (P < 0.01).™

Indicates a significant difference at the
0.001 level (P < 0.001).
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Micro-aggregate fractal dimension

Source Particles fractal dimension (PD) Erodibility (K)
(MD)
F P F P F P

Rehabilitation types 34.111 0.000%** 4.901 0.002%* 10.007 0.000%*
Rehabilitation time 15.283 0.000*** 0.943 0.508 5.491 0.000**
Soil depth 3.282 0.012% 0.108 0.98 25.056 0.000**
Rehabilitation timexRehabilitation types 4.16 0.001*** 0.628 0.678 2.127 0.06
Soil depthxRehabilitation types 0.143 1 0.568 0.867 0.393 0.96

Soil depthxRehabilitation time 0.278 1 0.321 1 0.379
Rehabilitation timexSoil depthxRehabilitation types 0.568 0.933 0.824 0.685 0.349 0.99
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Table 3(on next page)

Table 3 Relationships between particle fractal dimension, micro-aggregate fractal
dimension, erodibility and soil nutrients and soil bulk density.

*Correlation is significant at the PJ0.05 level (2-tailed); **Correlation is significant at the P

[0.01 level (2-tailed) ¥
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BD TOC TN
particle fractal dimension fractal dimension 0.185%** -0.380%* -0.146**
micro-aggregate fractal dimension fractal
) ) 0.018 -0.024 0.048
dimension
erodibility 0.410%* -0.658** -0.399**

Peer] reviewing PDF | (2019:05:37265:0:4:NEW 28 May 2019)



	绘图1
	页-1

	绘图1
	页-1

	绘图1
	页-1

	绘图1
	页-1

	绘图1
	页-1

	绘图1
	页-1

	RDA.vsdx
	页-1




