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ABSTRACT
Background. The major landscape in the hilly-gully region of the Loess Plateau is
greatly affected by vegetation rehabilitation on abandoned cropland. Although many
studies have shown that the rehabilitation have greatly improved soil conditions and
protected them from erosion, these effectiveness were not always in consensus possibly
due to the land type of vegetation or to the rehabilitation time. To close this gap, we
conducted a long term experiment as follows.
Methods. In this study, we analysed four land types of vegetation rehabilitation (shrub
land, woodland, naturally revegetated grassland, and orchard land) with different
rehabilitation times and investigated the mechanical composition and erodibility of
the soil. Areas of slope croplandand natural forest were selected as controls.
Results. The results showed that soil depth, rehabilitation time and rehabilitation
land type had strong impacts on soil mechanical composition, micro-aggregation and
erodibility. Following rehabilitation, naturally revegetated grassland and shrub land
had lower fractal dimensions of particle size distribution (fractal dimensions of PSD),
fractal dimensions of micro-aggregation, and erodibility (K factor) than did cropland.
Compared to the positive effects of rehabilitation mainly happened in the topsoil layer
at other rehabilitation land type, that of woodland happened in the deeper soil layer.
Besides, the indispensable rehabilitation time for the significant improvement of soil
condition was shorter at naturally revegetated grassland than that at shrub land and
woodland.
Discussion. Although rehabilitation time was more influential than was rehabilitation
land type or soil depth, the differences among the rehabilitation land types showed that
naturally revegetated grassland with native plants is the most time-saving rehabilitation
vegetation for the Loess Plateau in the conversion from slope cropland. The success of
rehabilitation in this forestry practice was mainly contributed by the suited species
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of rehabilitation land type to the local climate and soil. Based on the differences of
rehabilitation effectiveness resulting from land type, we should be cautious to choose
land types for the rehabilitation of soil conditions in the Loess Plateau.

Subjects Biodiversity, Conservation Biology, Ecology, Natural Resource Management
Keywords Erosion, Fractal dimension, Loess Plateau, Vegetation rehabilitation

INTRODUCTION
Soil erosion initiated by either natural or human factors is a serious environmental problem
in many parts of the world. It not only caused the degradation of soil quality but also the
destruction of ecosystem function and safety (Chen & Peng, 2000; Lian et al., 2013; Borrelli
et al., 2017). Severe soil erosion is a serious challenge in the Loess Plateau of China (Sun, Liu
& Xue, 2016b). To alleviate soil erosion and restore the local ecological environment, the
Chinese government implemented the ‘‘Grain for Green’’ programme in 1999 to convert
degraded cropland to forest and grassland (Uchida, Xu & Rozelle, 2005; Chen et al., 2007a;
Uchida, Rozelle & Xu, 2009; Zhang et al., 2011a; Song et al., 2015). This programme has
greatly decreased soil loss (Chen et al., 2007b).

Several studies had examined the effects of plant species changes, land preparation,
rainfall intensity, anthropogenic disturbance, afforestation, and land abandonment on the
mechanical composition and erodibility of the soil (Koulouri & Giourga, 2007; Keesstra
et al., 2009; Xia et al., 2009; Zhang et al., 2011b; Moora et al., 2014; Yu et al., 2017). Soil
mechanical composition and micro-aggregate stability were shaped by complicated
geophysical and environmental processes and responded to land-use changes, thereby
affecting soil hydrological and mechanical functioning and soil erosion (Wang, Liu
& Liu, 2005; Alagöz & Yilmaz, 2009; Xiao et al., 2014; Wang et al., 2016). Many studies
have reported positive impacts of vegetation rehabilitation of sloped croplandon soil
conditions and soil resistance to erosion (Xu, Li & Li, 2013; Ziadat & Taimeh, 2013; Xiao
et al., 2014; Fu et al., 2015; Sun, Liu & Xue, 2016b). Different plant species, with differences
in morphology, architecture and other biological characteristics, show variation in their
effectiveness for vegetation rehabilitation (Bochet & García-Fayos, 2004; Ghestem et al.,
2014; Fu et al., 2015). However, local precipitation, parent material, disturbance and
their interaction and sampling time can influence vegetation rehabilitation and make
interpretation of results challenging. Thus, long-term research on the dynamics of soil
erosion is necessary to understand the effects of vegetation rehabilitation on soil physical
condition while accounting for confounding factors. However, several studies have focused
on the effects of different rehabilitation patterns or the dynamic changes following
rehabilitation in a certain land type but have not clearly identified the impacts of the
various rehabilitation land type on the soil mechanical composition and erodibility during
a long-time scale. Soil erosion, solution transformation and soil-moisture are influenced
by soil particle size distribution (PSD) (Mazaheri & Mahmoodabadi, 2012; Yu et al., 2015).
Land use could influence soil structure and physical and biochemical activity through PSD
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affected by water erosion (Basic et al., 2004; Su et al., 2004). Therefore, its variation remains
to be characterized for understanding and evaluating soil structure and dynamics and the
effects of land use on soil structure. Fractal theory, an effective and reliable tool, can be
used to characterize it (Chen & Zhou, 2013).

For the past fifty years, people pressurized by an increasing population into converting
native grasslands into farmlands in the most parts of Loess Plateau of China, which caused
the loss of most of the topsoil in many locations (Wei et al., 2006; Zhou, Shangguan & Zhao,
2006). The ‘‘Grain for Green’’ Programs (GGP) launched by Chinese government aimed at
reducing soil erosion through replacing degraded cropland with forest and grassland. Since
then, a sloped cropland was abandoned and restored naturally and artificially. As we know,
herbs, rather than trees or shrubs, were dominant on the Loess Plateau due to its special
geological characteristics in a long historical period. A proper choice of rehabilitation
land type for the success of afforestation is the key thing (Lü, Liu & Guo, 2003; Jiang et al.,
2013). Thus, the difference of this rehabilitation effectiveness between native vegetation
(naturally revegetated native grass) and common forestry afforestation (artificial ecological
forest, artificial economic forest, artificial shrub) deserves our attention. In this study, we
collected comprehensive and long-term data on historic vegetation (e.g., forest, shrubland
and grassland)with different rehabilitation times (1) to elucidate the effects of rehabilitation
land type, time and soil depth on soil mechanical condition and erodibility; (2) to clearly
identify the key influencing factors.

MATERIAL AND METHODS
Experimental area
This study was conducted in Ansai County, Shannxi Province, China (36◦31′–37◦20′N,
108◦52′–109◦26′E; 1,012–1,731 m a.s.l.), which lies in the middle part of the Loess Plateau.
This region has a typical semiarid continental climate with a mean annual temperature of
8.8 ◦C, meaning that monthly temperature ranges from 22.5 ◦C in July to 7 ◦C in January
and an annual precipitation of 549.1mm, whichmainly occurs between July and September
(Sun, Liu & Xue, 2016a). The landform is characterized by a deeply incised hilly-gully Loess
landscape. The soil in this area is mainly Huangmian soil, a Calcic Cambisol classified in
the WRB reference system (FAO/UNESCO/ISRIC, 1988), originating from wind-blown
deposits and characterised by yellow color, absence of bedding, silty texture, looseness,
macroporosity, and wetness-induced collapsibility (Xiao et al., 2014). This type of soil is
characterized by weak cohesion (Sun, Liu & Xue, 2016a), which makes it highly susceptible
to severe soil erosion.

So far, native vegetation on the Loess Plateau remains controversial, because the
vegetation cover of the Loess Plateau has been changing greatly during the historical
period. The research about paleo-pedology, phytolith, organic carbon stable isotope
and pollen records showed that herbs, rather than trees or shrubs, were dominant on
the Loess Plateau in both the cold-dry period and the warm-humid period, owing to
specific lithological property with thick loess which can not support an extensive forest
development, even during the climatic optimum in this area (Lü, Liu & Guo, 2003; Jiang et
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Figure 1 Location of the Loess Plateau China.
Full-size DOI: 10.7717/peerj.8090/fig-1

al., 2013). Overgrazing, deforestation and other land-use patterns led to severe damage to
the ecological environment and severe soil erosion by the middle of the last century. Since
the late 1950s, the land use type in this region changed remarkably by the GGP, sloping
cropland has been replanted with woodland (Robinia pseudoacacia), shrubland (Caragana
korshinskii, Hippophae rhamnoides), artificial grassland (Medicago sativa) and naturally
revegetated grassland to control soil erosion (Sun, Liu & Xue, 2016b). Much of barren
lands and degraded croplands with slopes over 15◦ were rebuilt, accounting for about 14%
of hilly Loess Plateau (Xu, Wang & Zhao, 2018). Artificially and naturally rebuilt grassland,
shrub land, and planted woodland consist of the main land use types in the region.

In this region, before restoration the soil is weakly cohesive and thus prone to erosion,
with erosion modulus of 10,000–12,000 mg km−2 yr−1 (Liu, 1999). Recently, some soil and
water conservation measure such as revegetation have effectively reduced soil erosion and
have successfully restored some degraded ecosystems in this area, where the representative
vegetation includes woody plants such as Robinia pseudoacacia, shrubs as Hippophae
rhamnoides and Caragana microphylla and herbaceous plants such as Artemisia sacrorum
and Stipa bungeana (Sun, Liu & Xue, 2016a). The wood land area has increased from<5%
to >40% since 1980 (Xu, Wang & Zhao, 2018) (Fig. 1).

Sampling and data collection
Based on the investigation of the history of land use, we selected four types of vegetation
rehabilitation of cropland abandoned between July 10 and September 10 in 2011 and
2012, the season in which plant community biomass peaks. The four types were naturally
revegetated grassland (with rehabilitation times of 2yr, 5yr, 8yr, 11yr, 15yr, 18yr, 26yr
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and 30yr), planted shrubland (with rehabilitation times of 5yr, 10yr, 20yr, 30yr, 36yr,
47yr), planted woodland (with rehabilitation times of 5yr, 10yr, 20yr, 37yr and 56yr), and
orchard land (with rehabilitation times of 5yr, 10yr and 20yr). All these sites suffering
similar farming practices before conversion, and the farmlands had more than 200 years
of cultivation history (Deng et al., 2016). Thus, sloping cropland sites were selected as
representative of the original condition for the rehabilitation chronosequences of the
naturally revegetated grassland, revegetated shrub land, woodland and orchard land. In
this area, the climax vegetation is the Quercus liaotungensis Koidz (Zhang et al., 2011b),
which were naturally regenerated on abandoned land from grassland to shrub land and
climax forest (Q. liaotungensis) over about 150 years, based on previous research of
secondary forests in this area. So, we considered it as representative of the soil-dominated
climax community in vegetation rehabilitation to assess the effectiveness of vegetation
rehabilitation. These selected sites offered representativeness, typicality and consistency
and had similar slope gradients, slope aspects, and topography. The properties of the
experimental sites are shown in Table 1.

The size of the plots were varied with the plant communities to match their spatial
distribution: the replicated plots of 20 × 20 m were established in each site of planted
woodland (Robinia pseudoacacia), while the replicated plots of 10× 10 m were established
in each shrub land site (Caragana microphylla,Hippophae rhamnoides) and in each orchard
land site. The smaller replicate plots (2 × 2 m) were randomly established in each
naturally revegetated grassland site (including Artemisia sacrorum, A. capillaries, A. giraldii,
Aneurolepidium dasystachys, Bothriochloa ischaemum, Heteropappus altaicus, Lespedeza
bicolor, Stipa bungeana, Setaria viridis, and other grasses). The plots were separated by at
least 50 m.

We choose four random sampling to avoid the sampling error. At each sampling plot,
after removing ground litter, five soil layers (0–10, 10–20, 20–30, 30–50, and 50–100 cm)
were separately collected with a soil drilling sampler (4 cm diameter). The soil samples from
the same layer of the same plot were mixed to form one sample. The samples were divided
into two parts and were passed through 2mm screens for removing roots, gravel, and coarse
fragments. Then each sample was brought to laboratory. One part was naturally air-dried
to measure the organic carbon and analyse soil organic carbon (SOC), total nitrogen (TN),
and total phosphorus (TP) contents, particle size distributions and micro-aggregates. The
other part was stored in a refrigerator at 4 ◦C to analyse water-soluble amounts (carbon,
nitrogen), microbial biomass (carbon, nitrogen), enzyme activity as well as other variables
not reported in this paper.

Physical and chemical analyses
The soil bulk density (BD) of each soil layer was measured with the cutting ring method
(Ding et al., 2019). SOCwas determined using the dichromate oxidationmethod (Nelson &
Sommers, 1982), and TNwas determined using the Kjeldahl method (Bremner & Mulvaney,
1982). For soil PSD (particle-size distribution) and micro-aggregate analysis, soil samples
were analysed by a laser diffraction technique using a LongbenchMastersizer 2000 (Malvern
Instruments, Malvern, England) (Xiao et al., 2014). There are some differences between
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Table 1 Basic information of sample plots.

Restoration
pattern

Site
code

Repeat
number

Rehabilitation
years (a)

Altitude (m) Slop
(◦ )

Vegetation
coverage (%)

Vegetation

Crop land AS0 3 0 1,270–1,290 17–24 32 Setaria italica, Glycine max
AS1 3 2 1,101–1,276 13–27 12.1-19.8
AS2 3 5 1,185–1,262 17–19 30.7–57.3
AS3 9 8 1,235–1,276 12–40 18–60.4
AS4 3 11 1,198–1,292 23–37 24–76.3
AS5 3 15 1,291–1,306 14–19 39.8–76
AS6 3 18 1,179–1,189 22–30 16–49
AS7 3 26 1,144–1,161 22–28 21.8–68.9

Naturally
revegetated
grassland

AS8 7 30 1,149–1,293 14–29 33–79.7

Geranium wilfordii Maxim, Artemisia leucophylla, Lespedeza bicolor
Turcz, Tripolium vulgare, Artemisia capillaris, Parthenocissus
tricuspidata, Poa sphondylodes, Leymus secalinus, Stipa bungeana,
Setaria viridis Sonchus oleraceus L, Potentilla bifurca, Cleistogenes
hancei, Bothriochloa ischaemum, Stipa grandis, Heteropappus altaicus,
Dendranthema indicum, Roegneria kamoji

AS9 4 5 1,281–1,290 12–21 20–38
AS10 3 10 1,139–1,161 29–32 53–78.4
AS11 3 10 1,264–1,281 14–27 36–57
AS12 4 20 1,185 21 52
AS13 3 20 1,203–1,211 21–22 28–53
AS14 3 30 1,128–1,139 14–25 21–46.3
AS15 3 36 1,211–1,253 20 46–65

Shrub land

AS16 3 47 1,181–1,241 18–24 49.3–89.6

Hippophae rhamnoides
Caragana korshinskii Kom.

AS17 3 5 1,259–1,288 22–34 36–56
AS18 3 10 1,161–1,227 27.5–33 38–53
AS19 3 20 1,236–1,259 17–26 32–42
AS20 3 37 1,209–1,259 30–33 53–65

Wood land

AS21 2 56 1,170–1,175 21–22 49–90

Robinia pseudoacacia Linn.

AS22 3 5 1,207–1,226 0
AS23 3 10 1,220–1,254 0Orchard

land
AS24 3 20 1,206–1,222 0

Malus pumila Mill.

AS25 100 1,332–1,337 14–29 39–52
AS26 100 1,235–1,283 23–38 35–70Natural

forest land
AS27

9

100 1,552–1,570 28–45 10–28

Quercus wutaishanica Blume.
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the pretreatment methods for determining soil PSD and micro-aggregate. For soil PSD,
soil samples were pretreated with 6% H2O2 and 10% HCL to remove organic matter and
carbonates and oxides and were soaked in distilled water for 24 h, then mechanically
dispersed with 0.4% Calgon by an ultrasonic bath for 5 min. For micro-aggregate
determination, the soil samples were soaked in distilled water for 24 h and mechanically
dispersed in ultrasonication for 5 min (Xiao et al., 2014). Soil PSD was described in terms
of the percentage of sand (0.05–2 mm), fine silt (0.002–0.020 mm), coarse silt (0.02–0.05
mm) and clay (<0.002 mm). The size grades of the micro-aggregates were classified to be
the same as that of the PSD.

Fractal features
The fractal dimension of the PSD and micro-aggregation were calculated by the following
formula (Tyler & Wheatcraft, 1992):

V (r <Ri)/VT = (Ri/Rmax)3-D

where r is the particle diameter, Ri is the particle size of subinterval i in the particle size
grading, V (r <Ri) is the total volume of soil particles with diameter less than Ri, VT is the
sum volume of soil particles, and Rmax is the maximum diameter of soil particles.

Erodibility (K)
Soil erodibility was measured by the K factor in the EPIC model using SOC content and
soil PSD (Williams, Jones & Dyke, 1984) and was calculated as follows:

K ={0.2+0.3exp[−0.0256SAN(1−0.01SIL)]}×
(

SIL
CLA+SIL

)0.3

×

(
1.0−

0.25C
C+exp(3.72−2.95C)

)
×

(
1.0−

0.25C
SN1+exp(−5.51+22.9SN1)

)
where SAN, SIL, and CLA are the sand (%), silt (%), and clay (%) fractions, respectively;
C is the soil organic carbon content (%); and SNI = 1-SAN/100.

Statistical analysis
Three-way ANOVA was performed to test the effects of rehabilitation land type (naturally
revegetated grassland, woodland, shrub land, orchard land), rehabilitation time (years
since sloping cropland abandonment) and soil depth (0–10 cm, 10–20 cm, 20–30 cm,
30–50 cm, and 50–100 cm) on soil mechanical composition and erodibility. Significance
was evaluated at the 0.05 level (P < 0.05). Duncan’s (D) post hoc test was used to perform
multiple comparisons when significance of the ANOVA was observed. The differences
between the natural forest and various types of vegetation rehabilitation at each last
restoration year were examined by student’s t test. Pearson correlation analysis was used
to analyse the correlations among particle fractal dimension, micro-aggregate fractal
dimension, erodibility and soil nutrients, soil texture, and recovery time. In addition,
linear regression analysis was used to determine the relationships between each of particle
fractal dimension, micro-aggregate fractal dimension, and erodibility and recovery time in
each soil layer between 0 and 100 cm. All of the above statistical analyses were conducted
using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) and R version 3.4.4.
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Table 2 Tests of the soil particle fractal dimension, micro-aggregate fractal dimension, erodibility linkage with time (years since cropland
abandonment), Rehabilitation pattern and soil depth.

Source Particles fractal
dimension (PD)

Micro-aggregate
fractal dimension (MD)

Erodibility (K)

F P F P F P

Rehabilitation types 34.111 0.000*** 4.901 0.002** 10.007 0.000***

Rehabilitation time 15.283 0.000*** 0.943 0.508 5.491 0.000***

Soil depth 3.282 0.012* 0.108 0.98 25.056 0.000***

Rehabilitation time× Rehabilitation types 4.16 0.001*** 0.628 0.678 2.127 0.062
Soil depth× Rehabilitation types 0.143 1 0.568 0.867 0.393 0.966
Soil depth× Rehabilitation time 0.278 1 0.321 1 0.379 1
Rehabilitation time× Soil depth× Rehabilitation types 0.568 0.933 0.824 0.685 0.349 0.996

Notes.
**Indicates a significant difference at the 0.01 level (P < 0.01).
***Indicates a significant difference at the 0.001 level (P < 0.001).

RESULTS
Rehabilitation time, and rehabilitation land type had significant effects on the soil PSD
fractal dimension andK factor, only the rehabilitation land type had significant effects on the
soil micro-aggregate fractal dimension (Table 2). PSD fractal dimension, micro-aggregate
fractal dimension and erodibility showed trends of decline since cropland in all land types.
However, PSD fractal dimension, micro-aggregate fractal dimension and erodibility varied
among the land types (Figs. 2, 3 and 4).

The rehabilitation pattern in naturally revegetated grassland
Fractal dimensions of PSD and K factor began to show greater decreases in naturally
revegetated grassland than in cropland at 5th, 11th years, respectively, since cropland
abandonment. And these trends mainly occurred in 0–20 cm, gradually weaken with
depth. Overall, the minimum time before significant decreases appeared in the particle
fractal dimension, soil micro-aggregate fractal dimension and erodibility varied among
the different rehabilitation land types; in general, the times were shorter for naturally
revegetated grassland than for the other land types (Figs. 2–4) (Tables 1–3). Naturally
revegetated grassland did not differ from natural forest in fractal dimensions of micro-
aggregation or K factor (20–100 cm) over rehabilitation time (Figs. 5, 6 and 7) (Tables
1–3). Linear regression revealed that fractal dimensions of PSD decreased with the number
of years since farmland conversion in the 0–50 cm (except in 20–30 cm)(Figs. 2–4)
(Tables 1–3).

The rehabilitation pattern in Wood land
Fractal dimensions of PSD, fractal dimensions of micro-aggregation and K factor began to
show greater decrease in woodland than in cropland in the 10th, 10th and 37th respectively
since cropland abandonment (Figs. 2–4) (Tables 1–3). Over rehabilitation time, woodland
did not differ from natural forest in fractal dimensions of PSD (30–100 cm) and fractal
dimensions of micro-aggregation (0–100 cm), K factor in woodland did not differ from
natural forest (0–30 cm) and even was lower than that in natural forest (30–100 cm)
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Figure 2 Particle fractal dimension change with time since cropland abandonment in various vegeta-
tion restoration patterns.Note: NG, naturally revegetated grassland; WL, woodland; SL, shrub land; OL,
orchard land. We set the CL as the initial stage of the rehabilitation process. (A–E) The soil layers of 0–10
cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of naturally revegetated grassland, (F–K) the soil lay-
ers of 0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of woodland, (L–O) the soil layers of 0–10
cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of shrub land, (P–T) the soil layers of 0–10 cm, 10–20
cm, 20–30 cm, 30–50 cm and 50–100 cm of orchard land. Different lower-case letters above the bars mean
significant differences among different ages within the same rehabilitation patterns (P < 0.05).
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Figure 3 Micro-aggregate fractal dimension change with time since cropland abandonment in various
vegetation rehabilitation patterns.Note: NG, naturally revegetated grassland; WL, woodland; SL, shrub
land; OL, orchard land. We set the CL as the initial stage of the rehabilitation process. (A–E) The soil lay-
ers of 0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of naturally revegetated grassland, (F–K)
the soil layers of 0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of woodland, (L–O) the soil lay-
ers of 0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of shrub land, (P–T) the soil layers of 0–10
cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of orchard land. Different lower-case letters above the
bars mean significant differences among different ages within the same rehabilitation patterns (P < 0.05).
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Figure 4 Erodibility change with time since cropland abandonment in various vegetation rehabili-
tation patterns.Note: NG, naturally revegetated grassland; WL, woodland; SL, shrub land; OL, orchard
land. We set the CL as the initial stage of the rehabilitation process. (A–E) The soil layers of 0–10 cm, 10–
20 cm, 20–30 cm, 30–50 cm and 50–100 cm of naturally revegetated grassland, (F–K) the soil layers of 0–
10 cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of woodland, (L–O) the soil layers of 0–10 cm, 10–
20 cm, 20–30 cm, 30–50 cm and 50–100 cm of shrub land, (P–T) the soil layers of 0–10 cm, 10–20 cm, 20–
30 cm, 30–50 cm and 50–100 cm of orchard land. Different lower-case letters above the bars mean signifi-
cant differences among different ages within the same rehabilitation patterns (P < 0.05).
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Table 3 Relationships between particle fractal dimension, micro-aggregate fractal dimension, erodi-
bility and soil nutrients and soil bulk density.

BD TOC TN

Particle fractal dimension fractal dimension 0.185** −0.380** −0.146**

Micro-aggregate fractal dimension fractal dimension 0.018 −0.024 0.048
Erodibility 0.410** −0.658** −0.399**

Notes.
*Correlation is significant at the P < 0.05 level (2-tailed).
**Correlation is significant at the P < 0.01 level (2-tailed).

(Figs. 5–7) (Tables 1–3). Compared to fractal dimensions of micro-aggregation and K
factor, fractal dimensions of PSD in this site showed a clear decreasing tend at the all soil
layers (Figs. 2–4) (Tables 1–3).

The rehabilitation pattern in Shrub land
Fractal dimensions of PSD, fractal dimensions of micro-aggregation and K factor began
to show greater decreases in shrub land than in cropland in the 20th, 36th and 30th years,
respectively, since cropland abandonment, and tended to have significant differences with
cropland since then (Figs. 2–4) (Tables 1–3). The decreasing trend of fractal dimensions of
PSD and fractal dimensions of micro-aggregation occurred in 0–100 cm, but it gradually
weaken with increasing depth. After rehabilitation, naturally revegetated grassland were
also higher than natural forest in fractal dimensions of PSD (0–50 cm), fractal dimensions
of micro-aggregation (0–30 cm) and K factor (0–10 cm) (Figs. 5–7) (Tables 1–3), and had
no difference with that of natural forest at the deep layer. Linear regression indicated that
fractal dimensions of PSD decreased with the number of years since farmland conversion
in the 0–100 cm (except 30–50 cm) (Figs. 2–4) (Tables 1–3).

The rehabilitation pattern in Orchard land
Fractal dimensions of PSD and fractal dimensions of micro-aggregation showed a trend
of lower levels in orchard land than in cropland, but there are no significant differences
between them (Figs. 2–4) (Tables 1–3). However, K factor in this site didn’t decrease after
a long-term rehabilitation. Following rehabilitation, fractal dimensions of PSD, fractal
dimensions of micro-aggregation, and K factor were significantly higher in orchard land
than in natural forest at shallow soil layer (Figs. 5–7) (Tables 1–3). Linear regression
revealed that fractal dimensions of PSD decreased with the number of years since farmland
conversion in the 0–10 cm soil layers (Figs. 2–4) (Tables 1–3).

DISCUSSION
Effects of rehabilitation time on soil mechanical composition and
erodibility
In our study, rehabilitation time was a key factor in driving changes in soil mechanical
condition, erodibility and properties (Table 2) (Fig. 8). The fractal dimensions of PSD, K
factor of the soil in the various rehabilitation land types showed decreasing trends following
rehabilitation (Figs. 2–4) (Tables 1–3). These changes weremainly due to the large amounts
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Figure 5 The differences of particle fractal dimension between the natural forest and various vegeta-
tion restoration patterns at each last restoration year.Note: NG, naturally revegetated grassland; WL,
woodland; SL, shrub land; OL, orchard land; NF, natural forest. (A–E) The soil layers of 0–10 cm, 10–20
cm, 20–30 cm, 30–50 cm and 50–100 cm of naturally revegetated grassland, (F–K) the soil layers of 0–10
cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of woodland, (L–O) the soil layers of 0–10 cm, 10–20
cm, 20–30 cm, 30–50 cm and 50–100 cm of shrub land, (P–T) the soil layers of 0–10 cm, 10–20 cm, 20–30
cm, 30–50 cm and 50–100 cm of orchard land. * means significant differences between the natural forest
and various vegetation restoration patterns at each last restoration year (P < 0.05).

Full-size DOI: 10.7717/peerj.8090/fig-5

of soil nutrients released by residues and decomposing dead roots, and they promote plant
growth and rehabilitation succession (Guo et al., 2013). Fractal dimensions of PSD, K
factor positively correlated with SOC, and the improvement of mechanical conditions were
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Figure 6 The differences of micro-aggregate fractal dimension between the natural forest and various
vegetation restoration patterns at each last restoration year.Note: NG, naturally revegetated grassland;
WL, woodland; SL, shrub land; OL, orchard land; NF, natural forest. (A–E) The soil layers of 0–10 cm, 10–
20 cm, 20–30 cm, 30–50 cm and 50–100 cm of naturally revegetated grassland, (F–K) the soil layers of 0–
10 cm, 10–20 cm, 20–30 cm, 30–50 cm and 50–100 cm of woodland, (L–O) the soil layers of 0–10 cm, 10–
20 cm, 20–30 cm, 30–50 cm and 50–100 cm of shrub land, (P–T) the soil layers of 0–10 cm, 10–20 cm, 20–
30 cm, 30–50 cm and 50–100 cm of orchard land. * means significant differences between the natural for-
est and various vegetation restoration patterns at each last restoration year (P < 0.05).

Full-size DOI: 10.7717/peerj.8090/fig-6

mainly explained by the soil nutrient levels (Table 3). Soil organic matter, as a binding
agent, favoured soil structure stabilization and infiltration and protected it from erosion
(García-Orenes et al., 2012). In addition, well-developed root systems played a vital role in
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soil mechanical functioning and actively exude substrates, such as polysaccharides, phenolic
compounds, and polygalacturonic acid that affect soil particle cohesion and aggregation
(Hodge et al., 2009; Sun, Liu & Xue, 2016b). Furthermore, by directly binding soil particles
in situ, plant roots prevented soil from being blown or washed away (Reubens et al., 2007).
Dense canopies and ground litter following rehabilitation protected soil aggregates from
breakdown and prevent particles from being washed away by raindrop energy and runoff
(Zuazo & Pleguezuelo, 2009; Wang et al., 2008).

Effects of rehabilitation land type on soil mechanical composition and
erodibility
Vegetation rehabilitation type was the most influential factor in driving soil mechanical
composition and erodibility (Table 2) (Fig. 8). Variation in vegetation recovery patterns
and plant traits led to variation in the production and release of soil organic matter, which
affect soil crusting, splash, aggregate size and stability. For example, high levels of soil
organic matter reduced soil vulnerability to detachment by surface flow, rain splash and
other erosion-inducing phenomena (Xiao et al., 2014; Fu et al., 2015). Litters with different
chemical composition among different plant species would impact decomposition rates
and the release of soil organic matter (Ayres, Dromph & Bardgett, 2006). Thus, naturally
revegetated grassland site dominated with high quality litter showed faster circulating rates
than shrub and tree sites dominated with relative low quality litter. This phenomenon
may explain why the recovery time needed to reach significant improvements of soil
mechanical conditions and soil erosion was shorter for naturally revegetated grassland
than for woodland and shrub land. Our results are in accordance with the study of Yu et
al. (2015), which showed that high concentrations of soil organic matter greatly affected
the fractal dimensions of PSD and generally facilitated the improvement of soil structure.
The species of naturally revegetated grassland on the whole corresponds with the native
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vegetation specieson on Loess Plateau during a long historical period (Lü, Liu & Guo, 2003;
Jiang et al., 2013). They belong to Poaceae and Asteraceae families which are tolerant to
drought, cold and grazing due to the characteristics of low water requirements, fibrous
root system, are fully suited to the local arid or semi-arid climates and soil (Lü, Liu & Guo,
2003; Jiang et al., 2013). Thick loess was mainly caused by the loosely cemented silt (Liu,
1985; Yang & Ding, 2008) which allows rainwater to infiltrate quickly (Yang et al., 2012).
Thus, naturally revegetated grass as native Loess Plateau vegetation were the best selected
species for rehabilitation of soil conditions. Cespedes-Payret et al. (2012) even found that
afforestation with fast growing exotic species showing its negative effects on soil, compared
to native grassland.

In addition, vegetation alleviates erosion of soil by its canopy effectively reducing
water-induced soil erosion (Mohammad & Adam, 2010; Wei et al., 2010). However, that
effectiveness was different from various land types. In naturally revegetated grassland site,
the lower vegetation layer was more effective in reducing the kinetic energy of rainfall
striking the soil surface than the tall vegetation in shrub land and woodland. Owing to the
lack of roots at deep soil layer, the naturally revegetated grassland only showed positive
effect at the shallow soil layer (0–10 cm). However, due to the stronger stretching ability
of the trees roots, woodland site also showed the potential of alleviate soil erosion at
deep layer. The soil loss in orchard land was continued over a long time owing to human
disturbances (such as production management and tillage practices) and the absence of
surface cover protection. This leads to the breakdown of shallow soil aggregates and the
washing away of soil particles by raindrop energy and runoff (Wang et al., 2008).

Effects of soil depth on soil fractal dimension and erodibility
In the analysed four types of vegetation rehabilitation, soil depth had large influences on soil
mechanical composition and erodibility (Table 2) (Fig. 8) being consistent with previous
studies (Xiao et al., 2014). In our study, the positive effects of vegetation recovery mainly
occurred in the topsoil with the higher reduction rates of fractal dimensions of PSD, fractal
dimensions of micro-aggregation and K factor in the topsoil than in the subsoil (Figs.
2–4) (Tables 1–3). This pattern was resulting from the variation in plant root distribution
density decreasing along soil depth (Reubens et al., 2007); thus, the deeper soil layers were,
the weaker the improvements of soil conditions were (Sun et al., 2014). In addition, soil
nutrients accumulated near the soil surface due to the decomposition of vegetation litter
and by influence of the biogeochemical cycling (Wang et al., 2014).

CONCLUSION
Our study suggested that vegetation rehabilitation time, type and soil depth significantly
affect soil mechanical composition and erosion. Following the conversion of sloping
cropland to naturally revegetated grassland, shrub land or woodland, the soil structure
gradually recovered, and the resistance of the soil against erosive forces gradually increased,
primarily within the topsoil. For the conversion of sloping cropland, the natural restoration
process of grass represents a more efficient rehabilitation practice than does the planting
of other vegetation types. The key point of success rehabilitation project is whether the
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selection of species fit current climatic and geological conditions, such as the naturally
revegetated grass in our study. Based on the differences of rehabilitation effectiveness
among the rehabilitation land type, it is important to carefully select land types for the
rehabilitation of soil conditions in the Loess Plateau. Our study, conducted at the regional
scale, revealed the effects of vegetation rehabilitation on soil erosion in the Loess Plateau,
China, but it strongly contributes to our understanding of the mechanisms through which
rehabilitation improves soil quality and provides a suggestion for ecosystem management
in arid and semi-arid regions.
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