

Assessment of North American arthropod collections: Prospects and challenges for addressing biodiversity research (#39532)

1

First submission

Guidance from your Editor

Please submit by **16 Aug 2019** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data. Download from the location [described by the author](#).

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

10 Figure file(s)

4 Table file(s)

Custom checks

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Assessment of North American arthropod collections: Prospects and challenges for addressing biodiversity research

Neil S Cobb^{Corresp., 1}, Lawrence F Gall², Jennifer M Zaspel³, Nicolas J Dowdy^{3, 4}, Lindsie M McCabe⁵, Akito Y Kawahara⁶

¹ Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States

² Entomology Division, Yale Peabody Museum of Natural History, Yale University, New Haven, Connecticut, United States

³ Department of Zoology, Milwaukee Public Museum, Milwaukee, Wisconsin, United States

⁴ Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States

⁵ Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States

⁶ Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States

Corresponding Author: Neil S Cobb

Email address: neil.cobb@nau.edu

Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a “lost hidden treasure trove” of biodiversity – 95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: 1. The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. The National Science Foundation's decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and

less than 1% would have associated digital images. ² The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. ³ The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. ⁴ Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge, collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research.

1 **Assessment of North American Arthropod Collections: Prospects and Challenges for**
2 **Addressing Biodiversity Research**

3
4 NEIL S. COBB¹, LAWRENCE F. GALL², JENNIFER M. ZASPEL^{3,4}, NICOLAS J. DOWDY^{3,5},
5 LINDSIE M. MCCABE¹, AKITO Y. KAWAHARA⁶

6 ¹Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

7 ²Entomology Division, Yale Peabody Museum of Natural History, New Haven, CT, USA

8 ³Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA

9 ⁴Department of Entomology, Purdue University, West Lafayette, IN, USA

10 ⁵Department of Biology, Wake Forest University, Winston-Salem, NC, USA

11 ⁶Florida Museum of Natural History, University of Florida, Gainesville, FL, USA

12

13 Corresponding Author:

14 Neil S. Cobb

15 617 S Beaver St, Flagstaff, Arizona, 86011, USA

16 Email address: Neil.Cobb@nau.edu

17

18 **Abstract**

19 Over 300 million arthropod specimens are housed in North American natural history collections.
20 These collections represent a “vast hidden treasure trove” of biodiversity – 95% of the specimen
21 label data have yet to be transcribed for research, and less than 2% of the specimens have
22 been imaged. Specimen labels contain crucial information to determine species distributions
23 over time and are essential for understanding patterns of ecology and evolution, which will help
24 assess the growing biodiversity crisis driven by global change impacts. Specimen images offer
25 indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of
26 biodiversity. Here, we review North American arthropod collections using two key metrics,
27 specimen holdings and digitization efforts, to assess the potential for collections to provide
28 needed biodiversity data. We include data from 223 arthropod collections in North America, with
29 an emphasis on the United States. Our specific findings are as follows:

30 1. The majority of North American natural history collections (88%) and specimens (89%) are
31 located in the United States. Canada has comparable holdings to the United States relative
32 to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization,
33 but its specimen holdings should be increased to reflect the estimated higher Mexican
34 arthropod diversity. The proportion of North American collections that has been digitized,
35 and the number of digital records available per species, are both much lower for arthropods
36 when compared to chordates and plants.

37 2. The National Science Foundation’s decade-long ADBC program (Advancing Digitization of
38 Biological Collections) has been transformational in promoting arthropod digitization.
39 However, even if this program became permanent, at current rates, by the year 2050 only
40 38% of the existing arthropod specimens would be digitized, and less than 1% would have
41 associated digital images.

42 3. The number of specimens in collections has increased by approximately 1% per year over
43 the past 30 years. We propose that this rate of increase is insufficient to provide enough

44 data to address biodiversity research needs, and that arthropod collections should aim to
45 triple their rate of new specimen acquisition.
46 4. The collections we surveyed in the United States vary broadly in a number of indicators.
47 Collectively, there is depth and breadth, with smaller collections providing regional depth
48 and larger collections providing greater global coverage.
49 5. Increased coordination across museums is needed for digitization efforts to target taxa for
50 research and conservation goals and address long-term data needs.
51 Two key recommendations emerge, collections should significantly increase both their
52 specimen holdings and their digitization efforts to empower continental and global
53 biodiversity data pipelines, and stimulate downstream research.
54

55 **Introduction**

56 *Arthropod Natural History Collections*

57 With more than one million described species, Arthropoda is the most taxonomically and
58 ecologically diverse animal phylum, comprising over half of both North American and global
59 animal species diversity. Arthropods include insects, arachnids, and crustaceans. Insects and
60 arachnids are pervasive in non-marine environments, and crustaceans dominate most marine
61 environments. Arthropods are fundamental to ecosystem function and impact humans both
62 positively and negatively (McIntyre 2000). Arthropods are declining rapidly due to recent
63 anthropogenic disturbance, such as climate change, noise and light pollution (Janzen &
64 Hallwachs 2019; Lister & Garcia 2018; Sánchez-Bayo & Wyckhuys 2019), underscoring an
65 urgency in documenting their life histories and geographic distributions and preserving
66 specimens for future research.

67 Here we examine 223 collections of arthropods in North America (Canada, Mexico and United
68 States, including territories) that vary in size, governance, and locality (Fig 1). Our overarching
69 objectives include characterizing different types of arthropod collections, articulating challenges
70 specific to arthropod collections, and assessing digitization efforts to date with a focus on
71 meeting research data needs. We conducted analyses to examine broad scale trends
72 concerning holdings and digitization efforts for all three countries but emphasize the United
73 States (US) because we have the most complete data for that region. Collections assessed
74 ranged from specialized small collections (~500 specimens) to the United States National
75 Museum (USNM) collection with 35 million specimens. Most of the North American collections
76 have dedicated websites and are housed in universities, public museums, and repositories for
77 government programs.

78 Our focus is on arthropod collections, which have large samples of insects (i.e., 96% of
79 arthropod records discussed herein are for insects). At least 40% of North American insect
80 collections curate additional arthropod groups including Arachnida, Chilopoda, Crustacea,
81 Diplopoda, and Entognatha (SCAN 2019). A number of collections curate invertebrates sensu
82 lato, but we only surveyed those if they included insects. Additionally, we did not attempt to
83 enumerate parasitic arthropods held in vertebrate collections (typically curated as data
84 associated with vertebrate host specimens).

85 We also summarize digitization efforts among the four tiers defined by collection size. Most
86 small entomology collections are located within college and university departments, where the
87 person responsible is a faculty member with a variety of additional responsibilities. These

88 collections are often (1) focused on local fauna and/or reflect the particular interests of the
89 curator(s), (2) managed and curated at their discretion, (3) lacking in dedicated institutional IT
90 support, and (4) possibly supported by nominal budgets and/or students who receive credit for
91 their participation. Larger entomology collections are usually housed in museums that are either
92 free-standing institutions or institutions affiliated with a larger university. These collections are
93 typically (1) of regional or worldwide scope, (2) managed by a dedicated curator and/or
94 collection manager, (3) have access to institutional IT support, and (4) are supported by longer-
95 term budget commitments and access to institutional personnel and related resources. Although
96 the potential capacity to produce digital products at larger collections is much greater than at
97 small collections, the former are also embedded within a broader administrative infrastructure
98 which often present other challenges.

99

100 *Defining Digitization for Arthropod Collections*

101 Digitization is a term whose definition has been expanding in scope as technology allows more
102 extraction of data from specimens (Nelson & Ellis 2018; Short et al. 2018; Watanabe 2019). We
103 define digitization in the context of arthropod specimens as encompassing: (1) transcription of
104 specimen labels into a database; (2) georeferencing localities (determining latitude/longitude);
105 (3) capturing habitus image(s); and (4) vetting species-level identifications. These four elements
106 of digitization are required to make records useful for most research purposes. Current
107 digitization efforts focus almost exclusively on transcribing label data from specimens and
108 georeferencing associated locality information (some efforts include capturing historical field
109 notes e.g., Nufio et al. (2010)). Most collections capture habitus images for exemplar specimens,
110 but less than 1% of specimens have had a general habitus image recorded. Even fewer
111 specimens have associated genetic data. There are some examples of collections linking
112 genetic data to specimens (Short et al. 2018), or molecular tissue vouchers to specimens (Cho
113 et al. 2016), but there is still rudimentary linkage between most genetic data in the Barcode of
114 Life Datasystems (Ratnasingham & Hebert 2007) and in similar genomic repositories and
115 specimen occurrence databases.

116 To achieve the highest value for scientific research, digitization should extract all possible
117 information from specimens i.e., the "extended specimen" (Thiers et al. 2019) *sensu* including
118 morphological, anatomical, molecular, and possibly even metabolomic data. As technology
119 advances and becomes more accessible, our ability to obtain massive amounts of data from
120 specimens will rapidly increase. For example, recent studies have captured phenotypic trait data
121 from arthropod specimens to examine response to environmental change over time (Kharouba
122 et al. 2018; McLean et al. 2016). Morphological traits in insects are also beginning to be
123 assessed via automated workflows for 3D modelling derived from multi-angle imaging (Ströbel
124 et al. 2018) as well as from microCT data (van de Kamp et al. 2015).

125

126 *Importance of Specimen-based data for Biodiversity Research*

127 In the past two decades digitized specimen records have become an invaluable resource for
128 biodiversity and conservation research. Plant and vertebrate collections have spearheaded this
129 effort (Bakker 2017; Bebber et al. 2010; Besnard et al. 2014; Bieker & Martin 2018; Braun &
130 Wann 2017; Cook et al. 2014; Creley 2016; Davis et al. 2015; Greve et al. 2016; Guralnick &
131 Constable 2010; Hart et al. 2014; Primack & Gallinat 2017; Schmitt et al. 2018; Willis et al.

132 2017). Other natural history collections have followed the lead of plants and vertebrates (Brooks
133 et al. 2014; Lawson et al. 2018). Digitization is of benefit to collections by allowing them to share
134 their holdings with larger audiences, and opening new avenues for large-scale research and
135 public engagement (Ellwood et al. 2015; Ellwood et al. 2018; Nelson & Ellis 2018; Spear et al.
136 2017). Digitization also promotes collaborations among collections and integrated data at
137 regional (Belitz et al. 2018; Sikes et al. 2016) and continental scales (Seltmann et al. 2017;
138 Weirauch et al. 2017). Coordinated efforts to digitize arthropod collections across the US has
139 resulted in an influx of specimen-level data and high-resolution images to online repositories
140 (e.g., SCAN BIF, iDigBio). This in turn offers great potential to address an array of
141 environmental issues such as climate change, impacts of human land use, agricultural
142 intensification and the spread of human and animal disease, and the role of arthropods in
143 ecosystem services and crop/forest pest management (Belitz et al. 2018; Bell-Sakyi et al. 2018;
144 Cook et al. 2014; Dunnum et al. 2017; Kharouba et al. 2018; Meineke et al. 2018). Specimen
145 data are also emerging as critical pedagogical resources for science educators seeking to
146 enhance teaching curricula and data literacy (Cook et al. 2014; Ellwood et al. 2019; Lacey et al.
147 2017; Monfils et al. 2017; Singer et al. 2018).

148

149 Recent reviews of arthropod natural history collections and emerging collections-based
150 research have focused on different aspects of the importance of digitize specimens. Short et al.
151 (2018) examined entomology collections in the “age of big data” with a focus on linking genetic
152 data to specimens and technological advances in imaging. Bell-Sakyi et al. (2018) highlighted
153 the importance and relevance of parasitic arthropod collections in understanding biotic
154 interactions between disease vectors and their hosts. Kharouba et al. (2018) studied collections-
155 based research addressing global change impacts, with examples relating to geographical
156 distributions, phenology, phenotypic and genotypic traits. Other reviews have summarized the
157 importance of collections in general, and raised concerns over their sustainability as
158 fundamental providers of biodiversity data and the invaluable expertise of collection personnel,
159 curators, and research associates for preparing data products to support convergent research
160 (Krishtalka & Humphrey 2000; Thiers et al. 2019; Watanabe 2019).

161 For taxonomic groups other than arthropods that have been the focus of digitization efforts for
162 some time, there are recent assessments of the efficacy of such efforts and the state of
163 collections as it relates to producing relevant biodiversity data. For example, Singer et al. (2018)
164 reviewed the major fish collections in the United States, updating holdings and digitization work
165 over the last 22 years since the previous review by Poss & Collette (1995). Sierwald et al.
166 (2018) provided a 40-year update on the survey of mollusk collections in the US and Canada
167 since the previous review by Solem (1975). Our paper offers a comparable assessment of North
168 American arthropod collections and establishes a baseline reference for future studies on
169 museum collections.

170 **Survey methodology**

171 We began identifying collections and institutions for this survey in 2014 using the online
172 resource "The Insect and Spider Collections of The World Website" (Evenhuis & Samuelson
173 2007). More than 90% of the institutions we surveyed acknowledged the presence of a
174 collection on their website. For all collections, we used the estimate of holdings listed on the

175 collection website, in a few cases we followed up with direct correspondence to confirm holding
176 size. We were reasonable confident that holding size did not include specimens in lots or large
177 uncurated samples. Our list was compared periodically with several other resources: (1) a
178 compendium of collections maintained by Song (2019); (2) collections listed in the database
179 provided by the global registry of biodiversity repositories (Schindel & Cook 2018); and (3)
180 collections that were established through the Symbiota Collection of Arthropods Network
181 (SCAN) data portal at <http://scan-bug.org> (SCAN is a dedicated biodiversity portal that serves
182 as an intermediate aggregator of data from 185 North American data providers) (SCAN 2019).
183 Our final list included 223 collections from across North America.
184 For analysis of accumulated digital records, we restricted the survey to collections that have
185 made their specimen data publicly available through SCAN, GBIF (<https://www.gbif.org/>) and/or
186 iDigBio (Page et al. 2015). The SCAN data portal was queried on 22 October 2018 and on 24
187 January 2019, and results were cross-checked against both GBIF and iDigBio. The SCAN portal
188 contained over 18 million records for North America during that three-month assessment period.
189 We excluded 1.5 million records that represented observation-only or image-only records, and
190 another 3 million records that had incomplete or unresolved taxonomic and/or locality data. This
191 yielded a 13.4 million record sample, and we assumed error rates in species identifications and
192 locality data did not differ appreciably among the collections that had contributed records. Data
193 analyses were conducted using R scripts on a computing cluster at Northern Arizona University
194 (<http://nau.edu/hpc/>).
195 For the United States collections, we placed each collection surveyed into one of four size
196 classes that included all terrestrial and freshwater aquatic arthropod records. The four classes
197 were: Tier 1 (< 100,000 specimens); Tier 2 (100,000 to < 1,000,000 specimens); Tier 3 (<
198 3,000,000 to 1,000,000 specimens); and Tier 4 (over 3,000,000 specimens). For temporal
199 analysis, we defined a "historical record" as one where the collecting date was prior to 1965.
200

201 **Results**

202

203 **Scope of North American Arthropod Collections and Digitization Efforts**

204 Our survey of 223 arthropod collections from North America revealed that these collections
205 currently house slightly more than 300 million specimens (Table S1), approximately triple the 93
206 million plant specimens estimated to be housed in North American herbaria (data from Index
207 Herbariorum, March 2019, <http://sweetgum.nybg.org/science/ih/>). We were unable to determine
208 an accurate estimate of the number of chordate (primarily vertebrates) specimens currently
209 housed in North American collections, but that number is certainly smaller than for either plants
210 or arthropods. These collection numbers do not strictly account for "specimen lots," where
211 multiple individual specimens are collected and preserved together. This is routine practice for
212 arthropods but less common for chordates and plants. Most of our data are for single dry-
213 preserved specimens representing lots of n=1, and exclude immature arthropods, bulk samples,
214 and other material typically stored in fluid or on slides as lots of n>1 (Sierwald et al. 2018). If we
215 had been able to account for specimen lots, we believe the total number of arthropod
216 specimens in North America would exceed 1 billion specimens (Derek Sikes, pers. Comm.). The
217 overall pattern of records and diversity shows that compared to plants and especially

218 vertebrates, arthropod records are much lower for North America compared to their diversity
219 (Table 1).
220 Table 1 presents summary statistics for digitization and species diversity for North American
221 arthropod, plant, and chordate collections. The absolute number of digitized data records
222 presented in GBIF is comparable for each group. However, the proportion of all North American
223 arthropod specimens that have a digitized record is less than 5%, whereas that proportion is
224 15% for plants and higher for chordates. Moreover, because the total number of estimated
225 arthropod species in North America is much greater than chordates and plants combined, the
226 average number of specimens digitized per arthropod species (n=97) lags significantly behind
227 both plants (n=404) and especially chordates (n=2,584).
228 In addition, GBIF currently serves some 330 million non-specimen-based records (e.g., eBIRD,
229 (Sullivan et al. 2009)) and image-only records (e.g., iNaturalist, (Nugent 2018)) for chordates,
230 which is nearly two orders of magnitude more than for plants and arthropods. In this regard, we
231 also note that the Botanical Information and Ecology Network (BIEN) holds over 100 million
232 observational records for New World plants (Enquist et al. 2016). In contrast, North American
233 arthropods are only recently gaining traction in this arena, primarily due to citizen science
234 initiatives such as iNaturalist, BugGuide.net, and other efforts focused on Lepidoptera (e.g.,
235 Butterlynet, Pollardbase) and Odonata (e.g., Xerces Society Dragonfly Pond Watch Project).

236 **The Grand Digitization Challenge for North American Arthropod Collections**

237 Given that North American collections hold approximately 300 million specimens, on what
238 timeframe can we expect there to be a digital record available for each of those specimens?
239 Figure 2 provides a visual representation of this "grand challenge." Our analyses indicate that
240 some 2 million new digitized records are being produced annually from specimen labels, but as
241 promising as this ongoing rate may be for generating large amounts of biodiversity data, there
242 are still more than 280 million specimens remaining to be digitized. As a whole, we are currently
243 not even transcribing enough specimen labels to keep up with new specimen acquisitions. A
244 four-fold increase in our transcription rates is needed to capture label data for most specimens
245 by mid-century (2050), assuming a 1% annual growth rate in specimen holdings.
246 The majority of the 223 collections and 300 million specimens in North America are located in
247 the United States, although Canada and Mexico have representative holdings for their
248 respective countries (Figure 3, Table S1). Canada has at least 17 collections and 32 million
249 specimens, with the Canadian National Collection in Ottawa, Ontario curating 17 million of those
250 specimens. The National Autonomous University of Mexico (UNAM) houses three million
251 arthropod specimens, and its holdings comprise 97% of all estimated Mexican specimens in the
252 country (but only seven other major collections were identified in Mexico). There are no
253 published estimates for the number of arthropod species occurring in Mexico. However, some
254 data are available for select groups such as the Arctiini (Lepidoptera: Noctuoidea: Erebidae:
255 Arctiinae). In the United States and Canada, there are 237 species described in this tribe
256 (Lafontaine and Schmidt, 2010) but over 385 species occur in Mexico (Diaz, 1996), which
257 represents a 62% greater species diversity in Mexico. If co-occurring species are removed,
258 about twice as many Arctiini occur in Mexico (n=289) compared to United States and Canada
259 (n=141). These estimates are similar to a recent study demonstrating that vascular plant
260 diversity is approximately 49% greater in Mexico compared to Canada and the United States

261 (Ulloa et al., 2017; despite the fact that Mexico contains only about 10% of the land area of
262 Canada and the United States combined).

263 Given its greater projected arthropod diversity, Mexico would need to increase its specimen
264 holdings 60-fold to generate a corpus of specimens comparable to that of collections in the
265 United States and Canada. In terms of digitization progress, Mexico has conducted a major
266 effort via CONABIO that resulted in 33% of their existing specimen labels being transcribed.
267 This is a much greater proportion than either Canada (3%) or the United States (6%) has
268 achieved to date.

269 **The ADBC Initiative**

270 Historically, individual taxonomists or ecologists working on a specific arthropod species and/or
271 region conducted most digitization efforts, and those data were rarely shared. In just the past
272 decade, the entomological community has made great strides in digitizing specimens and
273 sharing those results (Figure 4). This effort has benefitted enormously from The National
274 Science Foundation's Advancing Digitization of Biodiversity Collections (ADBC) program
275 (iDigBio, 2019). ADBC began in 2011 and runs through 2021. More broadly, ADBC is enhancing
276 and expanding the national resource of digital data that documents biological and
277 paleontological collections, and is advancing scientific knowledge by improving access to
278 digitized information (Nelson & Ellis 2018; Page et al. 2015).

279 The ADBC program has also promoted the development of a strong national investment in
280 curation of the physical objects in scientific collections, and it contributes vitally to scientific
281 research and technology interests in the United States. For arthropods, the impact of the ADBC
282 program has been transformational from its inception, with the number of publicly available
283 records having grown exponentially. Direct ADBC funding for digitization has produced about six
284 million digitized records, and ADBC has indirectly spurred other collections to digitize their
285 holdings. The NSF Collections in Support of Biological Research (CSBR) program has also
286 emphasized digitization in its more recently funded CSBR awards.

287 The ADBC program has funded four Thematic Collections Networks (TCN) based on extant
288 arthropods: InvertNet, Tri-Trophic, SCAN, and LepNet, with an additional TCN focused on
289 invertebrates (InvertEbase) and an invasive species TCN that includes arthropods. The current
290 TCN emphasis is on capturing descriptive data from specimen labels. However, collections are
291 beginning to generate other data, such as geography, environmental habitat, phenology,
292 associated organisms, collector field notes, and tissues and molecular data from specimens,
293 which represent a rich biodiversity resource.

294 To expand on the recent ADBC efforts, we categorized North American collections into three
295 groups based on digitization effort: (1) digitization not yet initiated; (2) records contributed to
296 iDigBio, but no active digitization program in place; or (3) records contributed to iDiBio and with
297 an active digitization program (Figure 5). We distinguished the latter two categories by whether
298 there was an existing GBIF IPT (Integrated Publishing Toolkit) as an endpoint serving Darwin
299 Core Archive data. It is encouraging that collections with active digitization programs account for
300 68% of the specimens in US collections, and that smaller collections that have not yet
301 contributed data to public portals only account for 7% of collections. However, this underscores
302 the need to extend digitization practices to smaller collections, because smaller collections are
303 focal points for mentoring students who contribute to the national workforce. A major challenge

304 will be sustaining activities begun by ADBC activities once funding for the program ceases in
305 2021, such that collections can continue to integrate digitization into their everyday workflows.

306 **Collection Holdings: Are We Meeting Research Data Needs?**

307 It has been 28 years since Miller (1991) conducted the first and only comprehensive review of
308 the 26 largest entomological collections at the time in the United States and Canada. The Miller
309 review emerged from a 1988 meeting of the Association of Systematics Collections (ASC) that
310 sought to address the capacity of systematics collections to increase research productivity, and
311 proposed where national resources should be invested. As a measure of sustainability, the 26
312 collections in the Miller study have shown a steady 1% annual growth in the number of
313 specimens, and the relative ranks of the collections have likewise remained rather stable
314 (Figure 6, Table S2). We lack comparable statistics for the other 197 collections we surveyed in
315 North America, but there are now 25 collections that house more specimens in 2018 than the
316 26th largest collection did in 1991 (see Table S1). Entomology collections in North America
317 generally appear to be growing in the last ~30 years.

318

319 Are we collecting enough specimens?

320 North American collections have continued to grow three decades since Miller (1991) published
321 his seminal paper, but we can still ask whether we are collecting enough. Securing sufficient
322 resources to store and maintain specimens, and the steady 1% annual growth in specimen
323 acquisition no doubt adds to the backlog of specimens needing to be digitized. Furthermore, it is
324 becoming increasingly difficult to justify financial and personnel support for collections without
325 making specimen data fully available to researchers and educators. With the exception of a few
326 dedicated funding programs at NSF and the Institute of Museum and Library Services (IMLS),
327 digitization has been a largely unfunded mandate for most institutions, adding significant
328 budgetary pressure (Blagoderov et al. 2012; Heidorn 2011; Poole 2010). Global change impacts
329 have elevated the urgency to develop regional to continental strategies for reaching appropriate
330 targets for specimen holdings (Sánchez-Bayo & Wyckhuys 2019).

331 Will a projected 1% annual increase in specimen holdings meet expected future data needs?

332 Are there enough arthropod specimens available now in collections for biodiversity-related
333 research? We know that there are unmet research needs for specimen data (Kharouba et al.
334 2018), but it is difficult to grasp how acceptable the existing 300 million arthropod specimens are
335 for meeting needs unless we continue to digitize specimens.

336 It is useful to compare efforts to digitize North American arthropods with that for vertebrates
337 (see (Guralnick & Constable 2010)). Table 1 indicates that the average number of specimens
338 digitized per arthropod species is 97, compared to 2,584 for chordate species, a 26-fold
339 difference. We suggest that arthropod collections aim high and seek to digitize 2,500 records
340 per species, to match efforts for chordates. We are not suggesting that 2,500 records are
341 required for every arthropod species to address every question. Depending on the nature of the
342 question, only a fraction of all available records may be appropriate (Piel, 2018; Veiga et al.,
343 2017; Sikes et al., 2016; Ferro and Flick, 2015), and future analyses should provide more
344 refined per species digitization targets (Lobo et al., 2018; Pelletier et al., 2018) once more
345 digitized arthropod records become available.

346

347 We predict that to have a comparable corpus of arthropod data relative to chordates for North
348 America, collections would need more than 360 million specimens to address data needs
349 (Figure 7). This assumes that 60% (181 million) of the current 300 million specimens in
350 arthropod collections are from North America, which may be an overestimate (but freshwater
351 mollusk collections are estimated to be 60% for Canada and the United States; (Sierwald et al.
352 2018; Solem 1975)). The current rate of new specimen acquisition is insufficient, and even a
353 doubling of the existing rate means that the target of 360 million would not be achieved until
354 2050. That target would be reached in 2047 if the overall rate of specimen acquisition were
355 increased by 2.5% per year, by 2042 if it were increased to 3% annually and by 2030 if it were
356 increased by 6% per year (Figure 7).

357 Two reasons to aim for 2,500 digitized records per arthropod species are taxonomic skew and
358 spatial bias in digitized records. The average number of digitized records per North American
359 arthropod species is 97 (Table 1). However, less than 15% of all 142,800 species have that
360 many records, and only 0.1% have over 2,500 records. The most recorded species is *Bombus*
361 *bifarius* (Cresson), a common bumblebee in western North America, with over 26,000 records.
362 Even still, at its northern (Alaska) and southern (Arizona, Nevada and New Mexico) limits of this
363 species' range, large gaps are present where there are few or no data records in areas they
364 likely occur. This underscores that data bias can occur for even heavily sampled species (Ruete
365 2015). Moreover, many distribution maps for arthropod species (and other taxa) are incomplete
366 and biased due to an overrepresentation of localities favored by collectors (e.g., roads, popular
367 landmarks), in regions of otherwise more broadly suitable habitat. In addition to spatial bias,
368 historical degradation of locality records is a major challenge (e.g., geopolitical name changes
369 or imprecisely described localities; (Bartomeus et al. 2018)). One useful effort would be to
370 resample for species that either have reliable historic records, and/or have the most vulnerable
371 habitats that are either experiencing change or are predicted to change.

372 Assessing what is an adequate number of specimens has been initiated for two arthropod
373 Thematic Collections Networks (SCAN, LepNet). Taxa being targeted range from individual
374 species of conservation concern (e.g., Poweshiek Skipperling, *Oarisma poweshiek*
375 (Parker);(Belitz et al. 2018)) to all Puerto Rican Lepidoptera that are susceptible to hurricanes
376 (LepNet, 2019). In the case of *O. poweshiek*, it was determined that there were adequate
377 numbers of existing specimens and observational records. For the assessment of Puerto Rican
378 Lepidoptera, this prompted the launch of a longer-term inventory to obtain more complete
379 collections of all Lepidoptera (Catherine Hulsof, pers. comm.). It is possible to provide
380 reasonable running estimates for most North American species that provides basic metrics such
381 as number of occurrences through time documented in suitable habitat or range. These can be
382 used to guide individual species studies to target likely areas where species occur but have not
383 been documented or resample historic areas to confirm their presence. The data for groups of
384 species can be integrated into a more strategic plan to direct future sampling campaigns.

385 **US Collections by Holding Size**

386 Published reviews of natural history collections have focused on the collections with the largest
387 specimen holdings (Dunnum et al. 2017; Miller 1991; Short et al. 2018; Sierwald et al. 2018;
388 Singer et al. 2018). Here, we consider all collection sizes for the three North American
389 countries, with a focus on the United States because it has more data that are readily available.
390 We summarize basic characteristics of Tier 1 (large s) through Tier 4 (smallest) collections in

391 the US, including the number of collections, number of specimens, the percentage of collections
392 that have initiated digitization, and the percentage of specimens that have had their labels
393 transcribed for collections that are digitizing (Figure 8). As expected, most collections are
394 smaller (Tiers 3-4) although the absolute number of specimens is concentrated in larger
395 collections (Tier 1). Small collections may face challenges in initiating digitization, but once
396 begun, they processed a far greater percentage of their holdings than large collections. This
397 suggests that NSF ADBC funding has been effective in promoting digitization across collections,
398 but has not had as large an impact on the largest collections, where most specimens are
399 located.

400 Table 2 shows additional metrics as a function of collection size. A general concern with the
401 NSF ADBC program was whether smaller collections could adequately image specimens,
402 provide digitized specimen data with species-level identifications, and properly georeference
403 localities. We found relatively few significant differences in statistics among Tiers, although
404 smaller collections appeared more effective in imaging, and small to intermediate sized
405 collections more effective in identifications and georeferencing. We expected larger collections
406 to have more global taxonomic and geographic coverage. To assess this, we measured the
407 percentages of (a) non-North American records, (b) number of countries or large regional areas
408 or islands, (c) total number of species recorded, and (d) the average distance of specimens
409 from the collection itself. We predicted that smaller collections would have a strong regional
410 focus and so we quantified (e) the percentage of specimens taken within a 50 km radius of the
411 collection as a metric for a regional focus, and (f) the average rank collecting for each collection
412 within the 50 km radius. These metrics supported our expectations, underscoring a more global
413 taxonomic and geographic focus with increasing collection size. Distance from collection
414 indicated a decreasing regional focus from Tier 1 to Tier 4 collections, although all collections
415 had significant regional representation. The closest collection was almost always ranked first for
416 having specimens from within 50 km of the collection. The only discrepancies occurred when
417 two or more collections were physically near each other (e.g., Essig Museum in Berkeley, CA
418 and the California Academy of Sciences in San Francisco, CA), or in a few Tier 1 collections
419 (e.g., San Diego University, CA) where holdings strongly reflected a curator's research interest
420 in taxa distributed outside of North America.

421 Possibly the most important metric regarding digitization was the number of "historical" records,
422 which we defined as specimens collected prior to 1965, because these specimens represent
423 perhaps the only direct evidence for pre-global change impacts (more fine-grained analysis of
424 temporal patterns are underway; Cobb et al., unpubl. data). Our results show that large
425 collections had more "historical" records than smaller ones (Figure 9), and that there are at least
426 32 million "historical" specimens in US collections that can be used to assess global change
427 impacts on arthropods. This is encouraging but presents a challenge because specimens are
428 typically not separated by sampling year in collections, and hence cannot be readily targeted for
429 digitization. The typical practice for digitization is to digitize all specimens in a drawer, as it is
430 extremely inefficient to digitize a fraction of specimens in a drawer or unit tray. Following Allan et
431 al. (2019), we believe it is important to target special collections of historic importance and
432 develop more effective ways to increase the overall efficiency of digitization.

433

434

435 **Discussion**

436

437 **Moving Forward: Challenges and Opportunities**

438 Our review is the first to provide a modern comprehensive assessment of arthropod collections
439 in North America, and examine trends in the acquisition of new specimens and digitization of
440 existing specimens. Both are important to address national/global needs for biodiversity data,
441 and to initiate and promote collaborative networks among North American collections
442 (organizations such as the Entomological Collections Network, CONABIO, and Canadensys
443 already serve in this capacity and are well positioned to collaborate). Below we summarize key
444 points of our findings, and propose actions needed to mobilize more collections-based
445 arthropod data, to maintain the transformational effort initiated by the NSF ADBC program.

446 *Increasing Specimen Holdings*

447 We suggest that North American collections combined should increase the current holdings of
448 North American arthropod specimens by at least an additional 100 million specimens by 2045 to
449 marshal sufficient data to address global change impacts at the species level. This projection is
450 based on the fact that less than 5% of all arthropod specimens in collections and only 0.1% of
451 all arthropod species in collections are represented by species that have 2,500 digitized
452 records/species – the average number of records/species digitized to date for North American
453 chordate species. One hundred million specimens is a rough estimate that will have to be
454 refined, but GA assessments should be done at the species level for priority arthropod taxa as
455 we increase digitized records from collections, and develop research coordination networks to
456 help guide and prioritize future surveys and digitization.

457 If we use estimates required for species distribution models, the expected standard for
458 adequacy is growing, especially for species that occur over environmental gradients (Araújo et
459 al. 2019). Thus, the target number of 100 million arthropod specimens may be an
460 underestimate, given that 40% of the records in US collections are for specimens outside North
461 America.

462 *Increasing Digitization Efforts*

463 We estimate that data label transcription rates will need to increase by at least four-fold if the
464 rate of new specimen acquisition increases to 3% per year. This goal may be achievable if
465 robotic technologies (e.g., Beyond the) can be implemented at just Tier 4 collections.
466 During the NSF ADBC funding years, a number of collections developed protocols for mass
467 digitization of newly obtained material that are much more efficient than digitization of
468 specimens already integrated into collections. Because Tier 1-2 collections only account for 6%
469 of specimens in North American collections, they will not directly impact the total number of
470 records, but they will have a significant effect on filling in regional gaps and/or focusing on
471 specific arthropod taxa, and they are important for recruiting new biodiversity researchers.

472 *Citizen Science and Computer-Aided Identification*

473 To what degree can citizen science efforts help address the burgeoning arthropod data needs?
474 Approximately 10% of arthropod species are thought to be identifiable to species using an
475 image, date and geographic point location (http://www.lep-net.org/?page_id=25). As
476 smartphone cameras improve, reference image databases expand, and citizen science
477 programs like iNaturalist and Field continue to grow, we expect this to motivate biodiversity
478 researchers to consider utilizing field images to augment physical specimens. Images are

479 currently accepted by GBIF as machine observations and along with human observations
480 comprise the vast majority of GBIF records. The primary concern is that there is no physical
481 specimen to confirm, and the vetting process is not as rigorous as desired. To date, records
482 provided by iNaturalist to SCAN are primarily for those groups that are generally well known to
483 entomologists. These include most species of Orthoptera, Odonata, and many Lepidoptera,
484 along with specific taxa from other orders (e.g., Coccinellidae). Other arthropod orders (e.g.,
485 Araneae) still need to be evaluated to determine the degree to which species-level
486 identifications can be obtained from images. Additionally, with the further genetic information on
487 cryptic species (Miller et al. 2016) may identify more taxa that require more than images to
488 obtain species-level identifications. Using images for identification will significantly help fill
489 current gaps in arthropod data records, and occurrence records do not generally need to be
490 transcribed from images (since modern phone cameras provide coordinate data). Heberling &
491 Isaac (2018) list a suite of variables that can be captured by images of plants that are not
492 typically available from herbarium specimens (e.g., color, biotic associations, habitat). The same
493 is true for arthropods. All arthropods stored in alcohol or collected in ethyl acetate can
494 experience color fading, and specimens left in sunlight or under fluorescent lighting can also
495 lose their color. Host plant associations are typically not recorded, and if they are recorded, the
496 plant specimen is usually not submitted as a corollary herbarium specimen. Computer-aided
497 identification accuracy is increasing exponentially, with the primary limitation being the lack of
498 training images for neural networks (Schuettpelz et al. 2017). Although data associated with
499 specimens (images, genetics, observations) can help augment arthropod biodiversity data
500 needs, they will never replace whole-specimen repositories.

501 *Coordination among North American Countries*

502 Although Mexico has made the greatest strides in digitization progress (~~33% of their specimen~~
503 ~~labels are transcribed~~), the 3 million specimens in Mexican collections remains low given that
504 there are likely over 50,000 arthropod species in Mexico. Unlike the US and Canada, there are
505 significant Mexican specimen holdings in institutions located in countries outside of Mexico.
506 Many US taxa extend into Mexico, but the available data records often stop at the border (see
507 Figure 10). There should be additional cross-country network development, (but note
508 collaborative informal networks such as the Madrean Biodiversity Project that hosts various
509 expeditions to northern Mexico; (Gottfried et al. 2013)).

510 Specimen holdings in Canadian collections are primarily of specimens from Canada and the
511 northern US, and total around 32 million specimens. To date, Canada has recorded 20% of
512 species diversity than the US but northern Canada, which harbors unique ecological habitats,
513 are facing destruction and the remainder of the country may likely experience dramatic
514 ecosystem conversion. The focus on the Arctic constitutes one of NSF's 10 Big Ideas for future
515 research (https://www.nsf.gov/news/special_reports/big_ideas/). This NSF program should
516 provide impetus for more specific planning and increased coordination among North American
517 collections. Collections-based research will be important to these efforts, and there should be a
518 North American effort to conduct repeated surveys (e.g., on a 3-5 year basis) to document the
519 expected changes in the north.

520

521 *Developing a Collections-based Network*

522 Data collected during this review provide the basis for a permanent online repository similar to
523 the Index Herbariorum for plant collections (Thiers 2015). We present a basic information
524 framework in Table S1 necessary to establish such an online resource, and in which each
525 collection could maintain its own data and integrate information from future work. We encourage
526 the development of an "Index Entomologica" which could progressively add content such as
527 sustainability scores for each collection based on criteria already established by the Index
528 Herbariorum. The Entomological Collections Network (ECN; (Miller 1991)) acts as an umbrella
529 organization for entomology collections to share best practices, and it could play a major role in
530 supporting an Index Entomologica, along with other organizations such as the Society for the
531 Preservation of Natural History Collections SPNHC (<https://spnhc.biowikifarm.net/wiki>).
532 Although the ECN is primarily active in the United States, it also includes Canada and Mexico
533 and is in a position to network further with entomology collections around the world. An Index
534 Entomologica would be synergistic with the proposed "Extended Specimen Data" program that
535 has emerged as the focus of future biodiversity efforts from the Biodiversity Collections Network
536 (BCoN). Given that at least 90 million specimens in US collections are from countries outside of
537 North America, the timing is ripe for North American collections to help build a global network
538 with collaborations including e.g., iDigBio, GBIF, DISSCO, and SpeciesLink.
539

540 Next-Generation Collections

541 With a cohesive North American collection network in place, a new strategic plan should be
542 implemented to augment the current rate of 1% annual growth in acquisition of new specimen
543 numbers. Identifying gaps in taxonomic and geographic representation will lead to prioritization
544 for collecting campaigns (e.g., the New Arctic). Existing collecting campaigns can also expand
545 their efforts through temporary curation of by-catch samples to be shared with other
546 researchers. The community as a whole should digitize and share by-catch samples (already
547 implemented as part of the NEON ground dwelling carabid project). We have already seen a
548 similar community effort in digitization campaigns in the LepNet TCN, where a group of over 50
549 collections focused their efforts on 3 target families of Lepidoptera, representing some of the
550 most charismatic within the order (Papilionidae, Saturniidae, and Sphingidae).
551 NextGen collections is a new concept that has recently emerged from a national BCoN meeting
552 (see themes outlined by Schindel & Cook (2018)). The primary focus is to promote integrated
553 collections that include cross-phyla collections linked to environmental data gathered by
554 deployable sensors. Collections are prioritized to address important social needs such as
555 disease agents and pests. We fully support the NextGen concept, although the arthropod
556 community still remains focused on filling taxonomic and regional gaps before this next step can
557 be considered. Collecting data on associated taxa for key groups (herbivores, parasitoids,
558 parasites, pollinators) and micro-environment data for other groups (detritivores, omnivores) are
559 priorities. The resulting digitized data sets would promote more sophisticated and targeted
560 efforts to better integrate data from collecting events.
561 NextGen collection practices will continue to arise in museums. For example, standard
562 vocabularies will be developed for associated data denoting species associations (Poelen et al.
563 2014) and specimen traits, among others. It may not be feasible to employ robotic systems in all
564 collections, but we can implement this technology through funding by programs that emerge
565 from NSF's 10 Big Ideas. Of the 10 Big Ideas, "Understanding the Rules of Life: Predicting the

566 "Phenotype" is perhaps the most relevant because of the potential for coupling specimen-based
567 research with targeted NextGen collections, and integration with ecological studies to
568 understand how phenotypes evolve. Employing such techniques at just the 30 largest
569 collections would allow the digitization of most specimens in North America in a shorter time
570 than what we have estimated. Computer-aided identification tools can be deployed to help
571 curators sort and identify specimens, and should be incorporated into NSF strategic planning as
572 core programs emerge from NSF's 10 Big Ideas.

573 **Conclusions**

574 There are three major challenges and needs that remain for North American arthropod
575 collections: (1) deploying effective strategies to integrate more specimens into collections; (2)
576 improving of digitization workflows; and (3) better identification of societal needs for collection-
577 based biodiversity information and conservation. To meet these challenges, there must be a
578 strong call for a combination of technological development, financial and institutional resources
579 needed to increase the capacity for needed specimens, and a better understanding of
580 arthropods and their diversity. Increasing regional to global representation of arthropods will
581 bring collections-based research to the forefront of addressing human impacts on our planet's
582 biodiversity.

583

584 **Acknowledgements**

585 We thank Hojun Song and Jim Wooley (Texas A&M University) for providing their lists of
586 collections, Larry Page (iDigBio, University of Florida) for providing lists of contacts. Katja
587 Seltmann (University of California, Santa Barbara) helped conduct the initial set of analyses
588 addressing digitization. Jesús Romero Napoles provided additional collections in Mexico. Scott
589 Miller (Smithsonian Institute) kindly provided a review of the manuscript. We also thank the
590 collaborating institutions that share data on the SCAN-LepNet portal, who provided data for this
591 study. This work was supported in part by the following NSF grants: EF 1207371, DBI 1602081,
592 DBI 1759966 to NSC; DBI 1600616 to LFG; DBI 1561448, DBI 1601957 to JMZ; DBI 1811897
593 to NJD; DBI 1601369 to AYK.

594

595 **References**

596 Allan EL, Livermore L, Price BW, Shchedrina O, and Smith VS. 2019. A novel automated mass
597 digitisation workflow for natural history microscope slides. *Biodiversity Data Journal* 7.

598 Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R, Garcia RA, Guisan
599 A, Maiorano L, and Naimi B. 2019. Standards for distribution models in biodiversity
600 assessments. *Science advances* 5:eaat4858.

601 Bakker FT. 2017. Herbarium genomics: skimming and plastomics from archival specimens.
602 *Webbia* 72:35-45.

603 Bartomeus I, Stavert J, Ward D, and Aguado O. 2018. Historical collections as a tool for
604 assessing the global pollination crisis. *Philosophical Transactions of the Royal Society B*
605 374:20170389.

606 Bebber DP, Carine MA, Wood JR, Wortley AH, Harris DJ, Prance GT, Davidse G, Paige J,
607 Pennington TD, and Robson NK. 2010. Herbaria are a major frontier for species
608 discovery. *Proceedings of the National Academy of Sciences* 107:22169-22171.

609 Belitz MW, Hendrick LK, Monfils MJ, Cuthrell DL, Marshall CJ, Kawahara AY, Cobb NS,
610 Zaspel JM, Horton AM, and Huber SL. 2018. Aggregated occurrence records of the
611 federally endangered Poweshiek skipperling (*Oarisma powesheki*). *Biodiversity Data
612 Journal*.

613 Bell-Sakyi L, Darby A, Baylis M, and Makepeace BL. 2018. The Tick Cell Biobank: A global
614 resource for in vitro research on ticks, other arthropods and the pathogens they transmit.
615 *Ticks and tick-borne diseases* 9:1364-1371.

616 Besnard G, Christin P-A, Malé P-JG, Lhuillier E, Lauzeral C, Coissac E, and Vorontsova MS.
617 2014. From museums to genomics: old herbarium specimens shed light on a C3 to C4
618 transition. *Journal of experimental botany* 65:6711-6721.

619 Bieker VC, and Martin MD. 2018. Implications and future prospects for evolutionary analyses of
620 DNA in historical herbarium collections. *Botany Letters* 165:409-418.

621 Blagoderov V, Kitching IJ, Livermore L, Simonsen TJ, and Smith VS. 2012. No specimen left
622 behind: industrial scale digitization of natural history collections. *ZooKeys*:133.

623 Braun CE, and Wann GT. 2017. Historical Occurrence of White-Tailed Ptarmigan in Wyoming.
624 *Western North American Naturalist* 77:204-212.

625 Brooks DR, Hoberg EP, Boeger WA, Gardner SL, Galbreath KE, Herczeg D, Mejia-Madrid HH,
626 Racz SE, and Dursahinhan AT. 2014. Finding them before they find us: informatics,
627 parasites, and environments in accelerating climate change. *Comparative Parasitology*
628 81:155-165.

629 Cho S, Epstein SW, Mitter K, Hamilton CA, Plotkin D, Mitter C, and Kawahara AY. 2016.
630 Preserving and vouchering butterflies and moths for large-scale museum-based molecular
631 research. *PeerJ* 4:e2160.

632 Cook JA, Edwards SV, Lacey EA, Guralnick RP, Soltis PS, Soltis DE, Welch CK, Bell KC,
633 Galbreath KE, and Himes C. 2014. Natural history collections as emerging resources for
634 innovative education. *Bioscience* 64:725-734.

635 Creley CM. 2016. Determining habitat suitability for the western gray squirrel and eastern gray
636 squirrel in California: Predicting future ranges with Maxent and ArcGIS. California State
637 University, Los Angeles.

638 Davis CC, Willis CG, Connolly , Kelly C, and Ellison AM. 2015. Herbarium records are
639 reliable sources of phenological change driven by climate and provide novel insights into
640 species' phenological cueing mechanisms. *American Journal of Botany* 102:1599-1609.

641 Dunnum JL, Yanagihara R, Johnson KM, Armien B, Batsaikhan N, Morgan L, and Cook JA.
642 2017. Biospecimen repositories and integrated databases as critical infrastructure for
643 pathogen discovery and pathobiology research. *PLoS neglected tropical diseases*
644 11:e0005133.

645 Ellwood ER, Dunckel BA, Flemons P, Guralnick R, Nelson G, Newman G, Newman S, Paul D,
646 Riccardi G, and Rios N. 2015. Accelerating the digitization of biodiversity research
647 specimens through online public participation. *Bioscience* 65:383-396.

648 Ellwood ER, Kimberly P, Guralnick R, Flemons P, Love K, Ellis S, Allen JM, Best JH, Carter R,
649 and Chagnoux S. 2018. Worldwide Engagement for Digitizing Biocollections
650 (WeDigBio): The Biocollections Community's Citizen-Science Space on the Calendar.
651 *Bioscience* 68:112-124.

652 Ellwood ER, Monfils A, White L, Linton D, Douglas N, and Phillips M. 2019. Developing a
653 Data-Literate Workforce through BLUE: Biodiversity Literacy in Undergraduate
654 Education. *Biodiversity Information Science and Standards* 3:e37339.

655 Enquist BJ, Condit R, Peet RK, Schildhauer M, and Thiers BM. 2016. Cyberinfrastructure for an
656 integrated botanical information network to investigate the ecological impacts of global
657 climate change on plant biodiversity. *PeerJ Preprint*

658 Evenhuis N, and Samuelson A. 2007. The insect and spider collections of the world.

659 Gottfried GJ, Ffolliott PF, Gebow BS, Eskew LG, and Collins LC. 2013. Merging science and
660 management in a rapidly changing world: Biodiversity and management of the Madrean
661 Archipelago III and 7th Conference on Research and Resource Management in the
662 Southwestern Deserts; 2012 May 1-5; Tucson, AZ. *Proceedings RMRS-P-67 Fort*
663 *Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research*
664 *Station 593 p 67.*

665 Greve M, Lykke AM, Fagg CW, Gereau RE, Lewis GP, Marchant R, Marshall AR,
666 Ndayishimiye J, Bogaert J, and Svenning J-C. 2016. Realising the potential of herbarium
667 records for conservation biology. *South African Journal of Botany* 105:317-323.

668 Guralnick R, and Constable H. 2010. VertNet: creating a data-sharing community. *Bioscience*
669 60:258-259.

670 Hart R, Salick J, Ranjikar S, and Xu J. 2014. Herbarium specimens show contrasting
671 phenological responses to Himalayan climate. *Proceedings of the National Academy of*
672 *Sciences* 111:10615-10619.

673 Heberling JM, and Isaac BL. 2018. iNaturalist as a tool to expand the research value of museum
674 specimens. *Applications in plant sciences* 6:e01193.

675 Heidorn PB. 2011. Biodiversity informatics. *Bulletin of the American Society for Information*
676 *Science and Technology* 37:38-44.

677 Janzen DH, and Hallwachs W. 2019. Perspective: Where might be many tropical insects?
678 *Biological Conservation* 233:102-108.

679 Kharouba HM, Lewthwaite JM, Guralnick R, Kerr JT, and Vellend M. 2018. Using insect
680 natural history collections to study global change impacts: challenges and opportunities.
681 *Philosophical Transactions of the Royal Society B* 374:20170405.

682 Krishtalka L, and Humphrey PS. 2000. Can natural history museums capture the future?
683 *Bioscience* 50:611-617.

684 Lacey EA, Hammond TT, Walsh RE, Bell KC, Edwards SV, Ellwood ER, Guralnick R, Ickert-
685 Bond SM, Mast AR, and McCormack JE. 2017. Climate change, collections and the
686 classroom: using big data to tackle big problems. *Evolution: Education and Outreach*
687 10:2.

688 Lawson S, Shell W, Lombard S, and Rehan S. 2018. Climatic variation across a latitudinal
689 gradient affect phenology and group size, but not social complexity in small carpenter
690 bees. *Insectes sociaux* 65:483-492.

691 Lister BC, and Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a
692 rainforest food web. *Proceedings of the National Academy of Sciences* 115:E10397-
693 E10406.

694 McIntyre NE. 2000. Ecology of urban arthropods: a review and a call to action. *Annals of the*
695 *Entomological Society of America* 93:825-835.

696 McLean N, Lawson CR, Leech DI, and van de Pol M. 2016. Predicting when climate-driven
697 phenotypic change affects population dynamics. *Ecology Letters* 19:595-608.

698 Meineke EK, Davies TJ, Daru BH, and Davis CC. 2018. Biological collections for understanding
699 biodiversity in the Anthropocene. *The Royal Society*

700 Miller SE. 1991. Entomological collections in the United States and Canada. *American
701 Entomologist* 37:77-84.

702 Miller SE, Hausmann A, Hallwachs W, and Janzen DH. 2016. Advancing taxonomy and
703 bioinventories with DNA barcodes. *Philosophical Transactions of the Royal Society B:
704 Biological Sciences* 371:20150339.

705 Monfils AK, Powers KE, Marshall CJ, Martine CT, Smith JF, and Prather LA. 2017. Natural
706 history collections: teaching about biodiversity across time, space, and digital platforms.
707 *Southeastern Naturalist* 16:47-58.

708 Nelson G, and Ellis S. 2018. The history and impact of digitization and digital data mobilization
709 on biodiversity research. *Philosophical Transactions of the Royal Society B*
710 374:20170391.

711 Nufio CR, McGuire CR, Bowers MD, and Guralnick RP. 2010. Grasshopper community
712 response to climatic change: variation along an elevational gradient. *PLoS One* 5:e12977.

713 Nugent J. 2018. iNaturalist: Citizen Science for 21st-Century Naturalists. *Science Scope* 41:12.

714 Page LM, MacFadden BJ, Fortes JA, Soltis PS, and Riccardi G. 2015. Digitization of
715 biodiversity collections reveals biggest data on biodiversity. *Bioscience* 65:841-842.

716 Poelen JH, Simons JD, and Mungall CJ. 2014. Global biotic interactions: An open infrastructure
717 to share and analyze species-interaction datasets. *Ecological Informatics* 24:148-159.

718 Poole PN. 2010. The Cost of Digitising Europe's Cultural Heritage A Report for the Comité des
719 Sages of the European Commission.

720 Poss SG, and Collette BB. 1995. Second survey of fish collections in the United States and
721 Canada. *Copeia*:48-70.

722 Primack RB, and Gallinat AS. 2017. Insights into grass phenology from herbarium specimens.
723 *New Phytologist* 213:1567-1568.

724 Ratnasingham S, and Hebert PD. 2007. BOLD: The Barcode of Life Data System ([http://www.
725 barcodinglife.org](http://www.barcodinglife.org)). *Molecular ecology notes* 7:355-364.

726 Ruete A. 2015. Displaying bias in sampling effort of data accessed from biodiversity databases
727 using ignorance maps. *Biodiversity Data Jour*

728 Sánchez-Bayo F, and Wyckhuys KA. 2019. Worldwide decline of the entomofauna: A review of
729 its drivers. *Biological Conservation* 232:8-27.

730 SCAN. 2019. The Symbiota Collections of Arthropods Network (SCAN) serves specimen
731 occurrence records and images from North American arthropod collections.

732 Schindel DE, and Cook JA. 2018. The next generation of natural history collections. *PLoS
733 biology* 16:e2006125.

734 Schmitt CJ, Cook JA, Zamudio KR, and Edwards SV. 2018. Museum specimens of terrestrial
735 vertebrates are sensitive indicators of environmental change in the Anthropocene.
736 *Philosophical Transactions of the Royal Society B* 374:20170387.

737 Schuettpelz E, Frandsen PB, Dikow RB, Brown A, Orli S, Peters M, Metallo A, Funk VA, and
738 Dorr LJ. 2017. Applications of deep convolutional neural networks to digitized natural
739 history collections. *Biodiversity Data Jour*

740 Seltmann KC, Cobb NS, Gall LF, Bartlett CR, Basham MA, Betancourt I, Bills C, Brandt B,
741 Brown RL, and Bundy C. 2017. LepNet: The Lepidoptera of North America Network.
742 *Zootaxa* 4247:73-77.

743 Short AEZ, Dikow T, and Moreau CS. 2018. Entomological collections in the age of big data.
744 *Annual Review of Entomology* 63:513-530.

745 Sierwald P, Bieler R, Shea EK, and Rosenberg G. 2018. Mobilizing mollusks: Status update on
746 mollusk collections in the USA and Canada. *American Malacological Bulletin* 36:177-
747 215.

748 Sikes DS, Copas K, Hirsch T, Longino JT, and Schigel D. 2016. On natural history collections,
749 digitized and not: a response to Ferro and Flick. *ZooKeys*:145.

750 Singer RA, Love KJ, and Page LM. 2018. A survey of digitized data from US fish collections in
751 the iDigBio data aggregator. *PLoS One* 13:e0207636.

752 Solem A. 1975. The Recent mollusk collection resources of North America. *The Veliger*
753 18:222-236.

754 Song H. 2019. Spear DM, GB, and Kaiser K. 2017. Citizen science as a tool for augmenting museum
755 collection data from urban areas. *Frontiers in Ecology and Evolution* 5:86.

756 Ströbel B, Schmelzle S, Blüthgen N, and Heethoff M. 2018. An automated device for the
757 digitization and 3D modelling of insects, combining extended-depth-of-field and all-side
758 multi-view imaging. *ZooKeys*:1.

759 Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, and Kelling S. 2009. eBird: A citizen-
760 based bird observation network in the biological sciences. *Biological Conservation*
761 142:2282-2292.

762 Thiers B. 2015. continuously updated]: Index Herbariorum: A global directory of public herbaria
763 and associated staff. New York Botanical Garden's Virtual Herbarium. *Published at*
764 <http://sweetgum.nybg.org/science/ih/> [last accessed 13 Jul 2016].

765 Thiers B, Mabee P, and Morris A. 2019. Extending US Biodiversity Collections to Address
766 National Challenges. *Biodiversity Information Science and Standards* 3:e37225.

767 van de Kamp T, Cecilia A, dos Santos Rolo T, Vagoč P, Baumbach T, and Riedel A. 2015.
768 Comparative thorax morphology of death-feigning flightless cryptorhynchine weevils
769 (Coleoptera: Curculionidae) based on 3D reconstructions. *Arthropod structure &*
770 *development* 44:509-523.

771 Watanabe ME. 2019. The Evolution of Natural History Collections: New research tools move
772 specimens, data to center stage. *Bioscience* 69:163-169.

773 Weirauch C, Seltmann KC, Schuh RT, Schwartz MD, Johnson C, Feist MA, and Soltis PS. 2017.
774 Areas of endemism in the Nearctic: a case study of 1339 species of Miridae (Insecta:
775 Hemiptera) and their plant hosts. *Cladistics* 33:279-294.

776 Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G,
777 Mazer SJ, and Rossington NL. 2017. Old plants, new tricks: Phenological research using
778 herbarium specimens. *Trends in Ecology & Evolution* 32:531-546.

779

780

Table 1(on next page)

Metrics for North American collections for Arthropoda, Chordata, and Plantae.

Species richness for Chordata estimated from (Dunnam et al 2018), for Plantae from (Ulloa et al., 2017) and for Arthropoda from Stork (2018). Data obtained from GBIF in January 2019.

1

	Arthropoda	Chordata	Plantae
# Species	142,800	4,424	34,109
# Specimen Records	13,788,159	11,430,528	13,787,883
# Non-Specimen Records	3,335,975	329,994,473	6,729,368
# Records/Species (Specimen Records)	97	2,584	404
# Records/Species (Non-Specimen records)	23	74,597	197

2

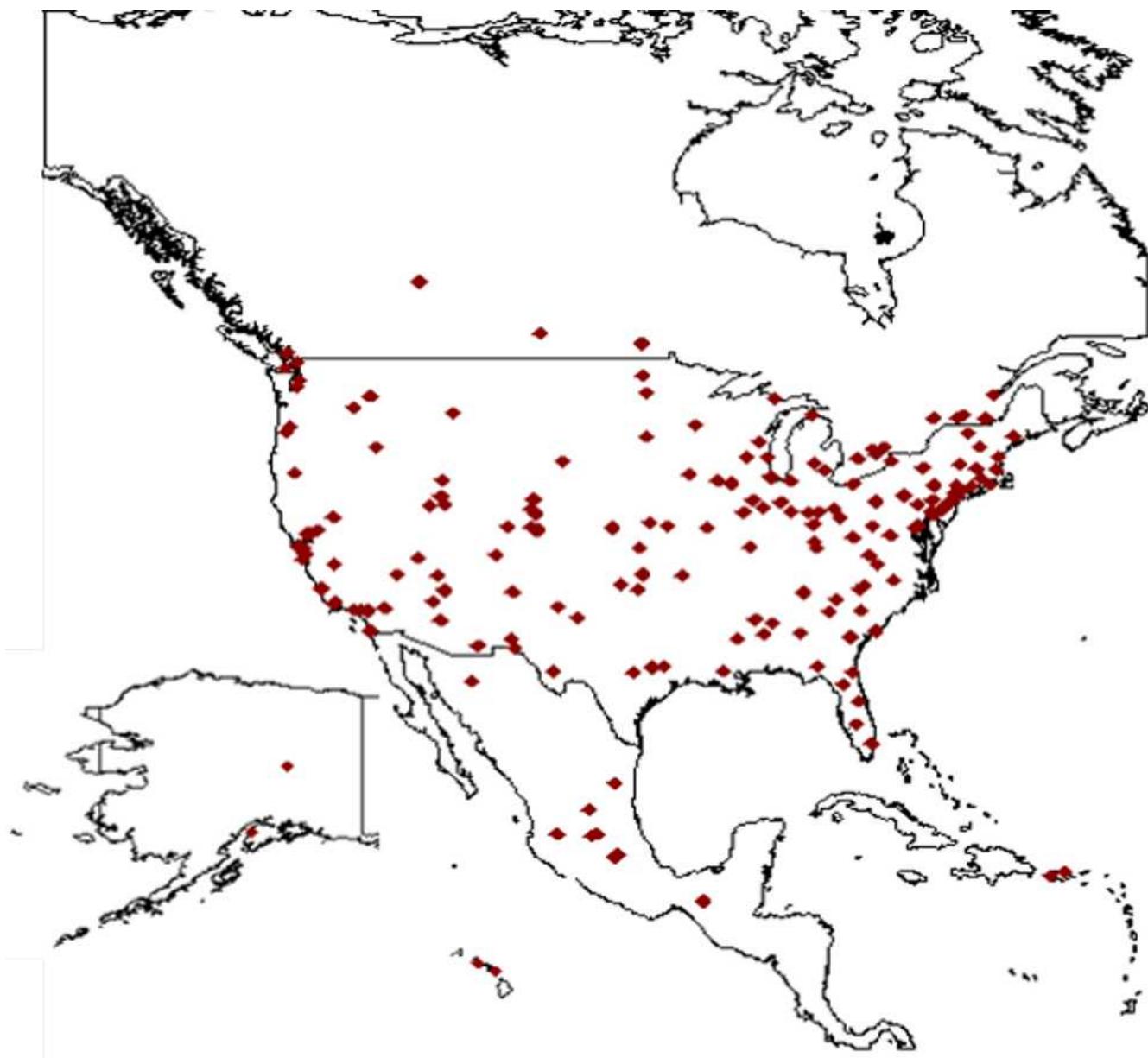
Table 2(on next page)

Summaries of metrics for digitized records from the four size Tier categories.

Standard error of means are provided where applicable.

1

	Tier Collection Size Categories				
Collection size categories	Tier 1 < 0.1 million	Tier 2 0.1-1 million	Tier 3 1-3 million	Tier 4 >3 million	Trend
Data Quality					
Georeferenced	60% (+11)	72% (+9)	72% (+8)	60% (+8)	none
Identified to species	51% (+8)	62% (+6)	70% (+6)	57% (+7)	nonlinear
Records with images	22% (+10)	19% (+8)	6% (+4)	11% (+6)	down
Regional to Global Metrics					
Non-North America records	15% (+7)	10% (+3)	20% (+6)	48% (+9)	up
# of Countries/major regions	69	61	197	355	up
Species per collection	631 (+258)	2,713 (+437)	4,451 (+1,353)	16,990 (+6,884)	up
Distance from Collection (km)	881 (+343)	621 (+146)	1,106 (+174)	2,850 (+725)	up
% of records (50 km radius)	85 (+ 5)	63 (+5)	62 (+5)	43 (+7)	down
Mean rank (50km radius)	1 (\pm 0.0)	1 (\pm 0.0)	1.1 (+0.1)	1.5 (+0.2)	None


2

3

Figure 1

Map of North America showing the location of the arthropod collections included in the present study.

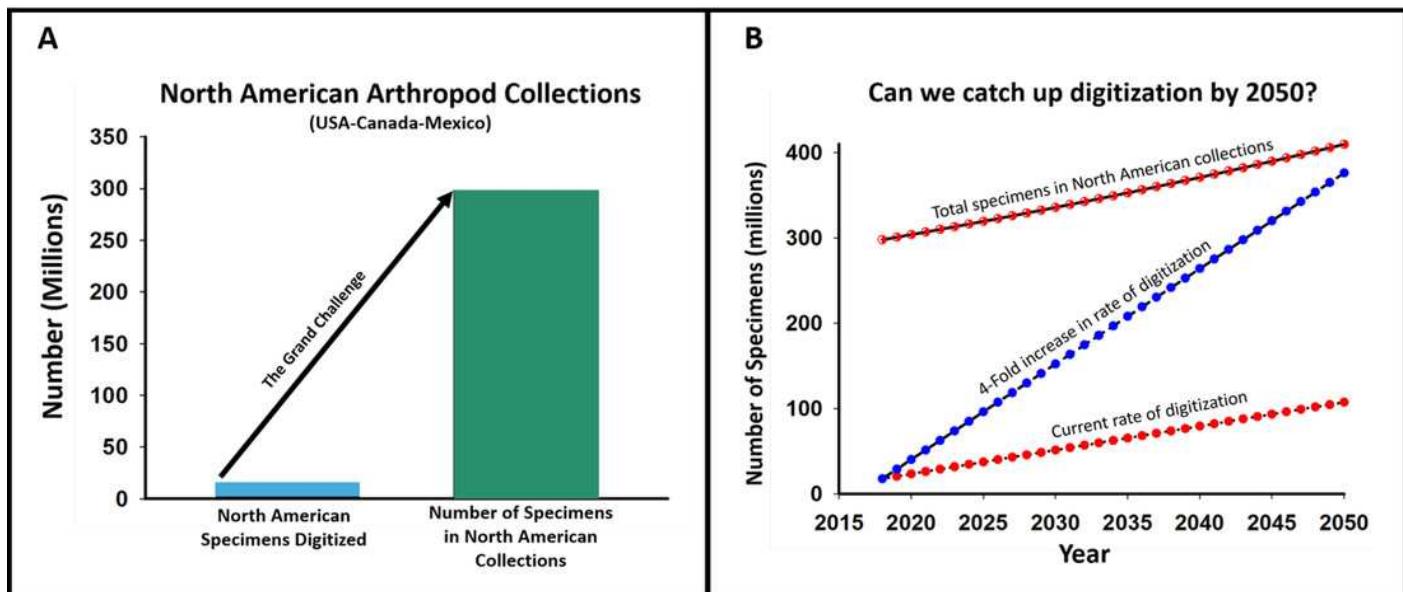

Alaska and Hawaii are shown as inserts in lower left (Guam not shown).

Figure 2

The grand challenge for North American arthropod collections.

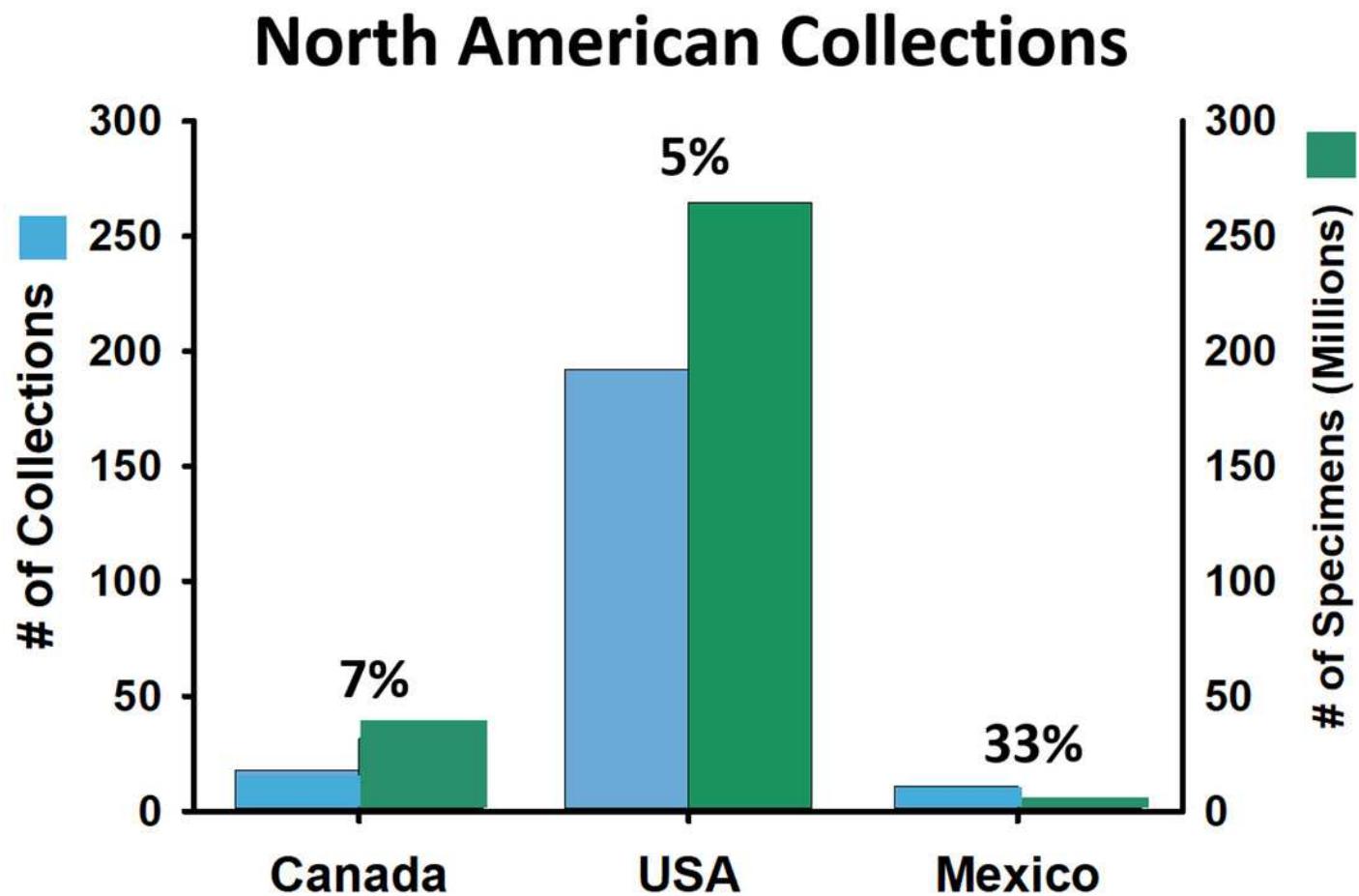

A. Number of records of specimens digitized through 2018 (blue bar, in millions) and the total number of specimens in collections (green bar). B. Projections of ongoing acquisition rates for specimens, compared to rates of digitization.

Figure 3

Number of arthropod collections (blue) and number of specimens (green) for North American collections.

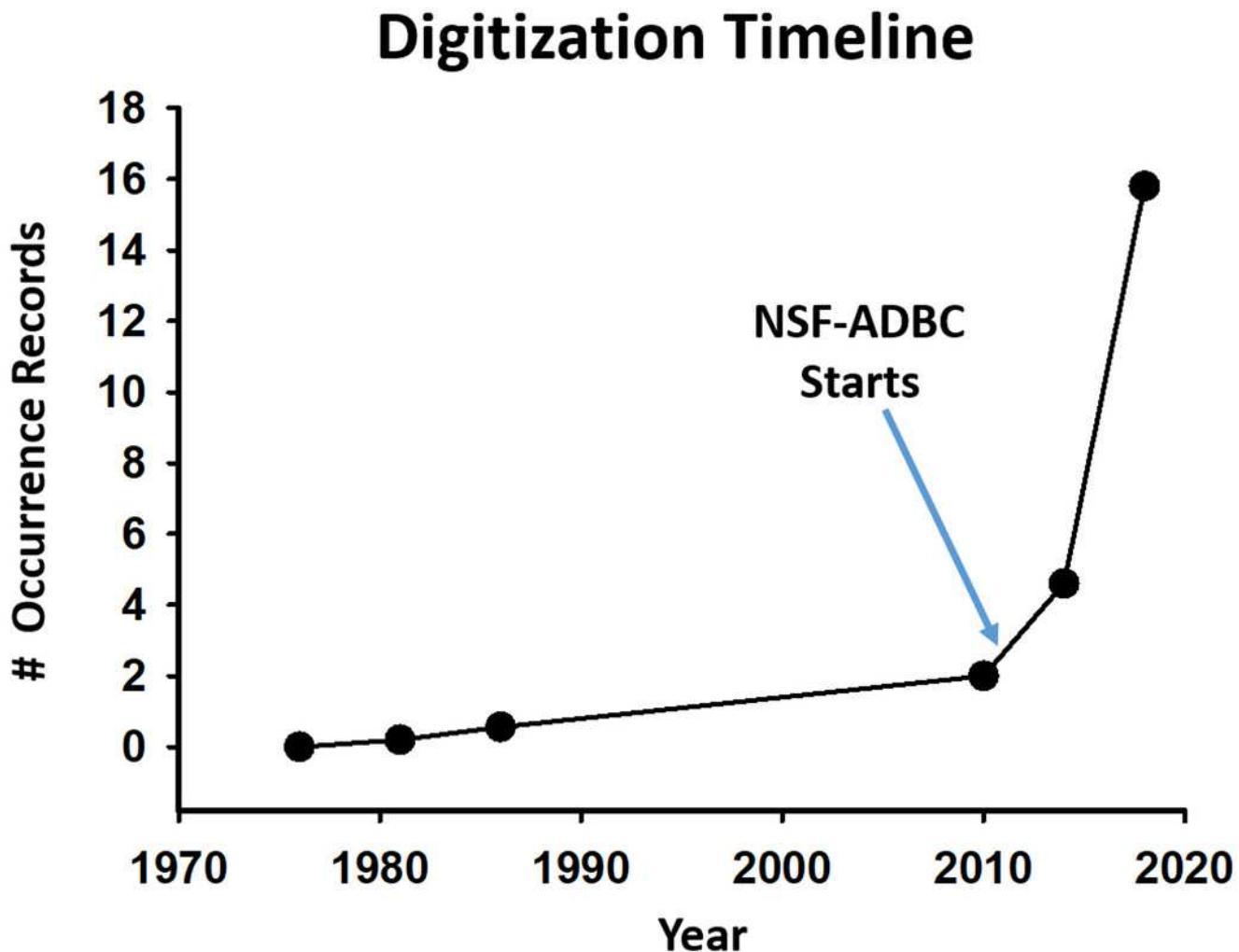

The current percent of specimens whose label data have been transcribed is above each bar.

Figure 4

Number of digitized occurrence records for arthropod specimens from North American collections.

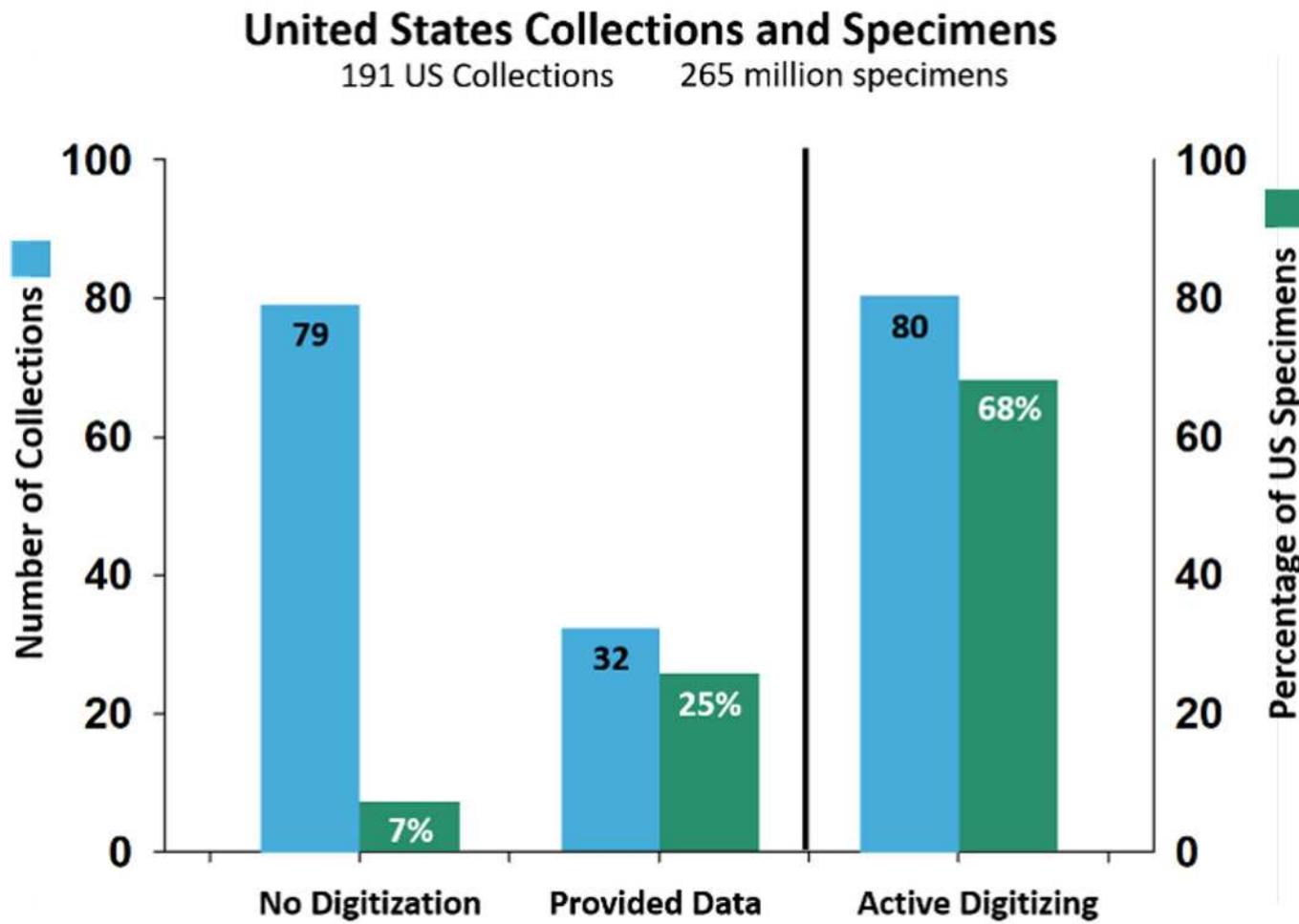

Estimates before 2010 are from Miller (1991), estimates since are from periodic queries of GBIF and SCAN.

Figure 5

Number of US collections and percentage of US specimens.

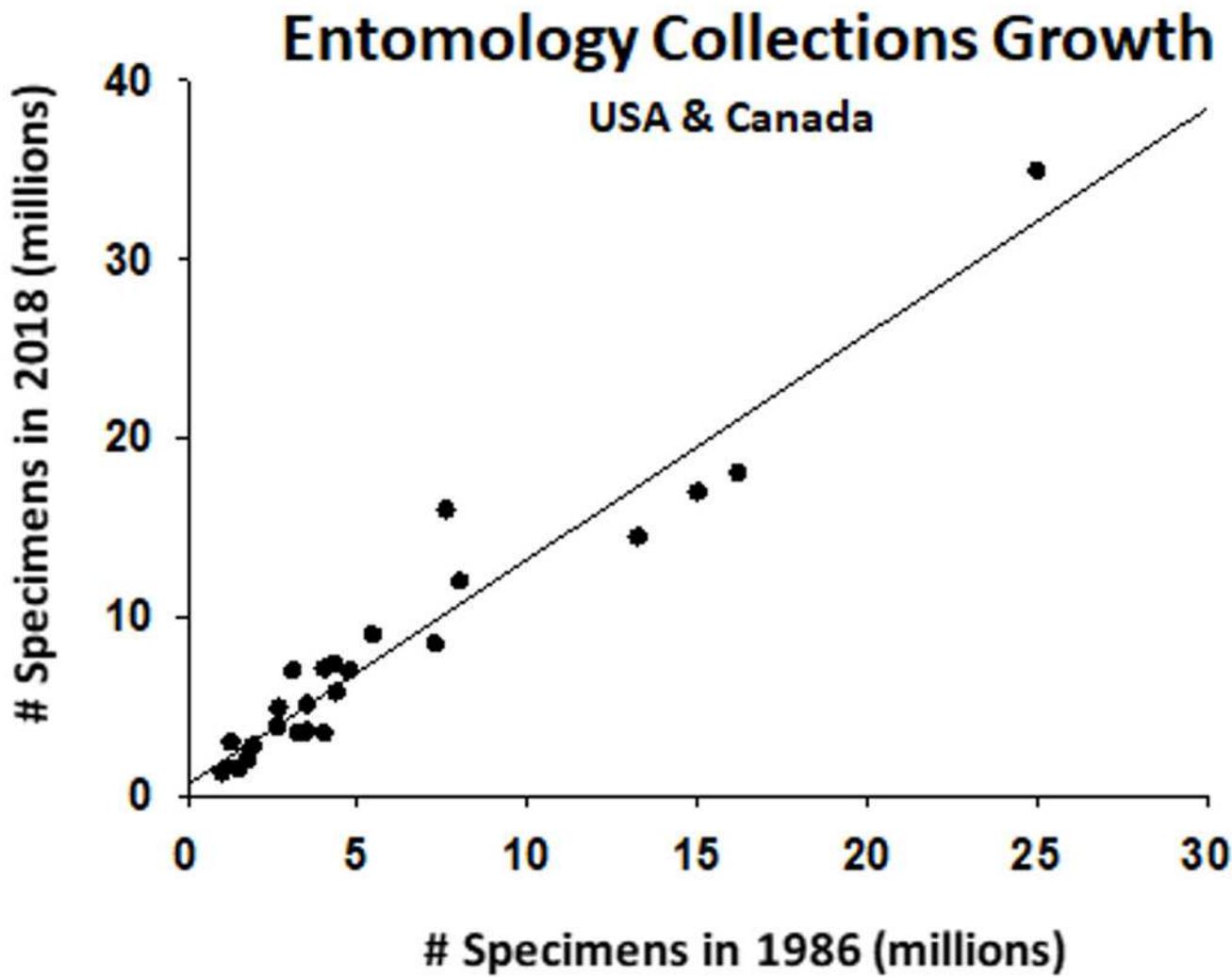

Collections are arranged by degree of digitation effort; see text for elaboration of effort categories.

Figure 6

Growth in number of specimens at the 26 largest collections in Canada and the United States over three decades.

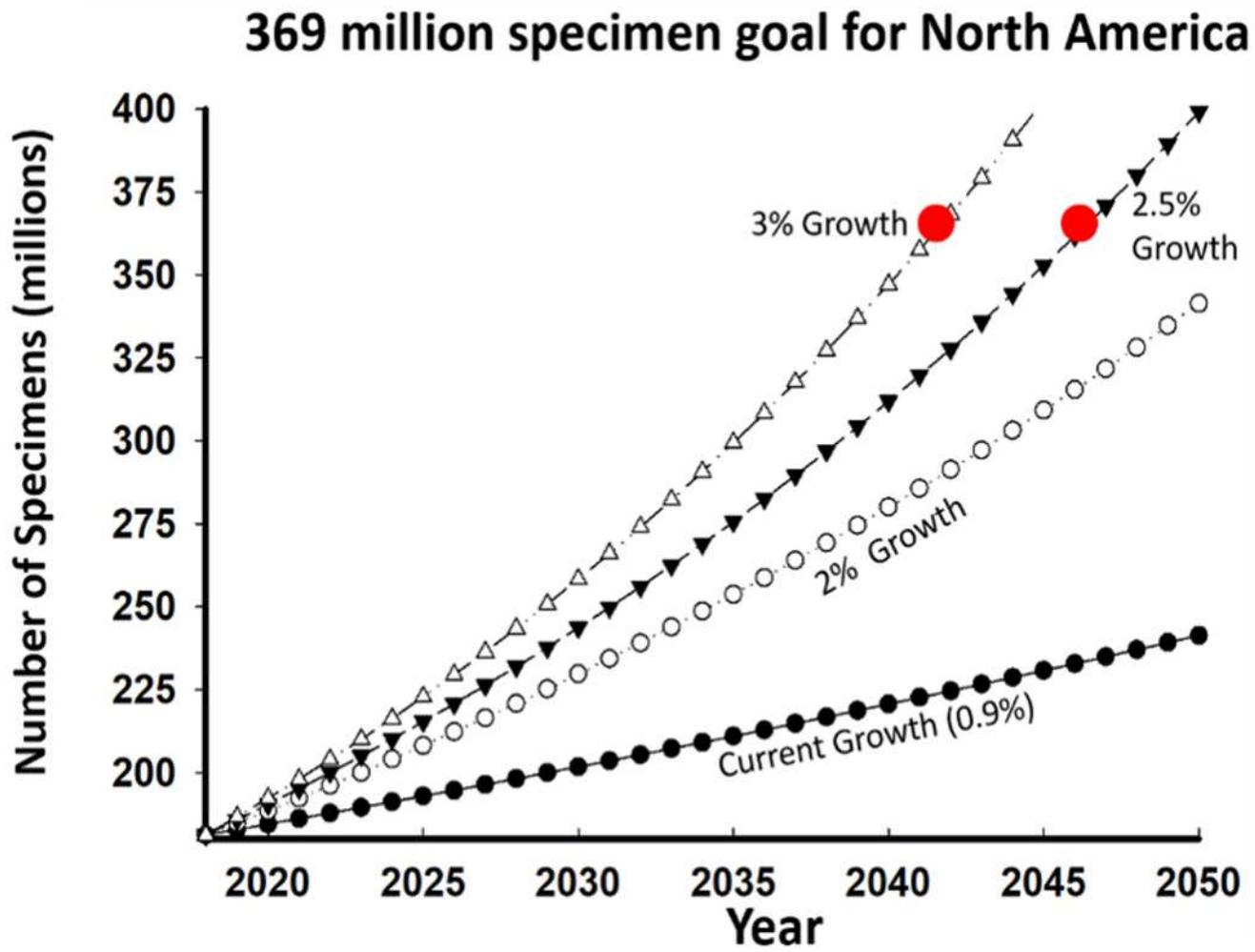

Estimates from 1980's tabulated by Miller (1991), 2018 estimates extracted from this review (Table S1).

Figure 7

Projected growth in specimen numbers that would be required to meet data demands for biodiversity research.

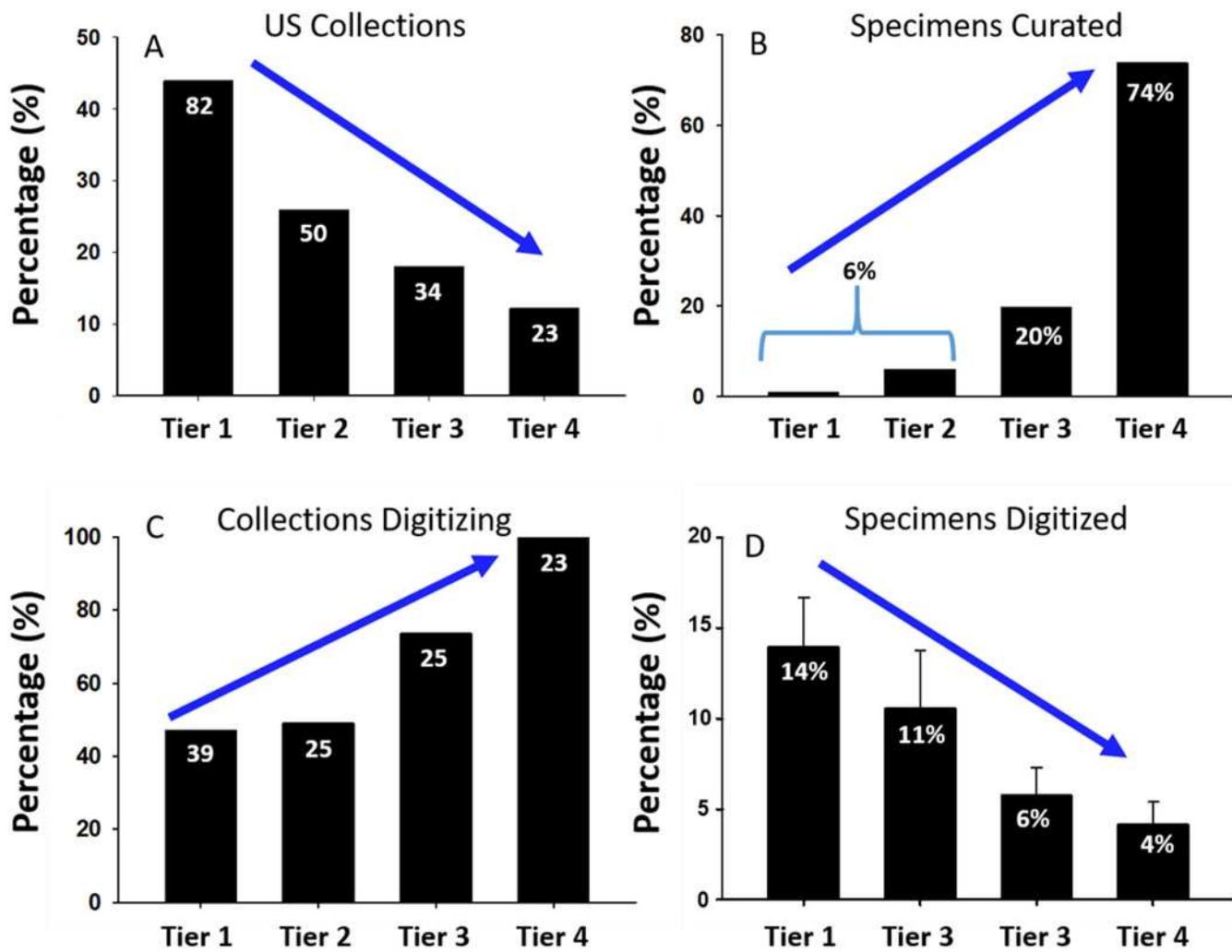

Values expressed as percent increase in North American holdings for all collections in North America. Red circles indicate goals under the two trajectories.

Figure 8

Attributes of 189 US collections arranged by size.

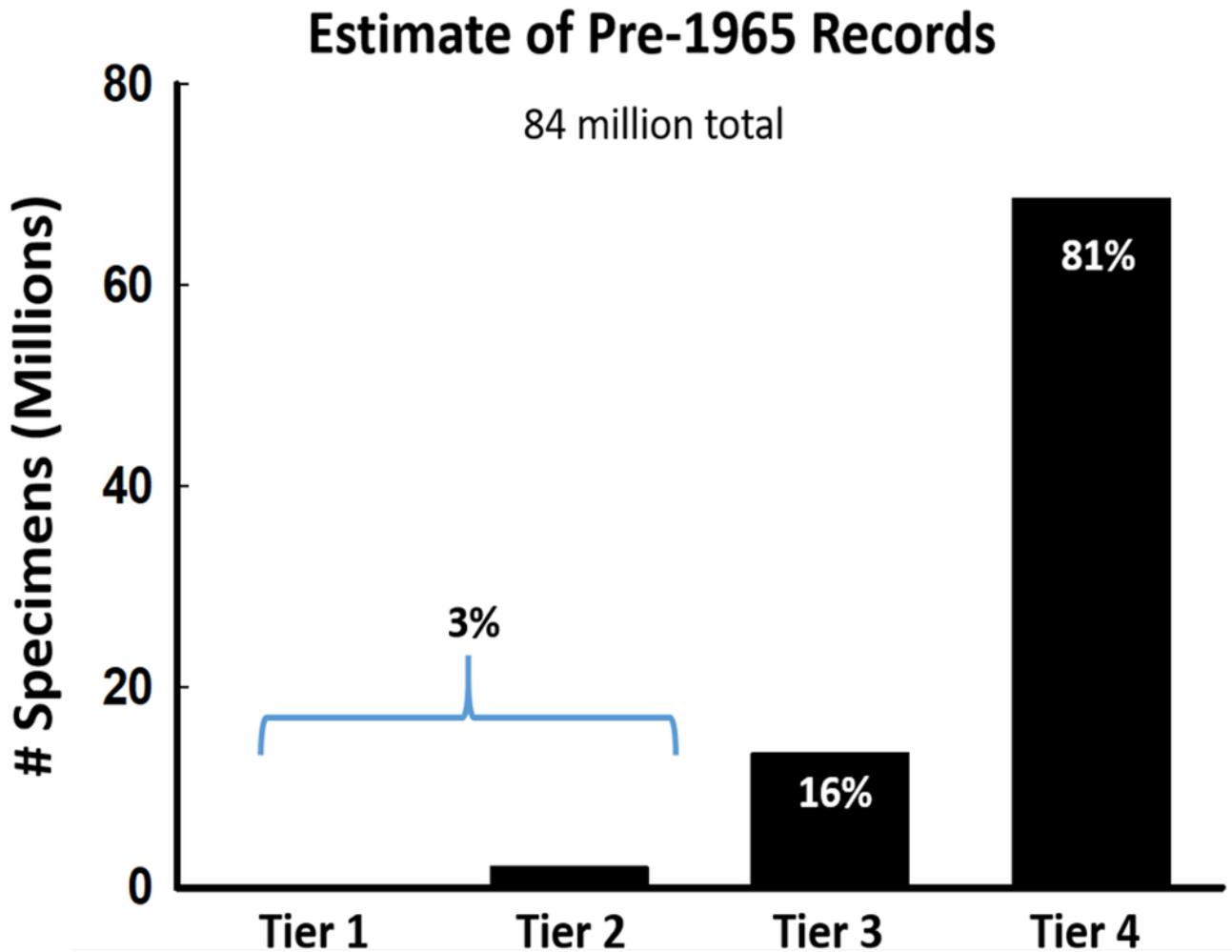

Tier 1: < 100,000 specimens, Tier 2: 100,000 to 1,000,000 specimens, Tier 3: 1,000,000 to 3,000,000 specimens, Tier 4: Over 3,000,000 specimens. Numbers within black bars either represent the numbers of collections (A, C) or percentage values for each Tier (B, D).

Figure 9

Estimates for numbers of specimens collected prior to 1965 in US collections.

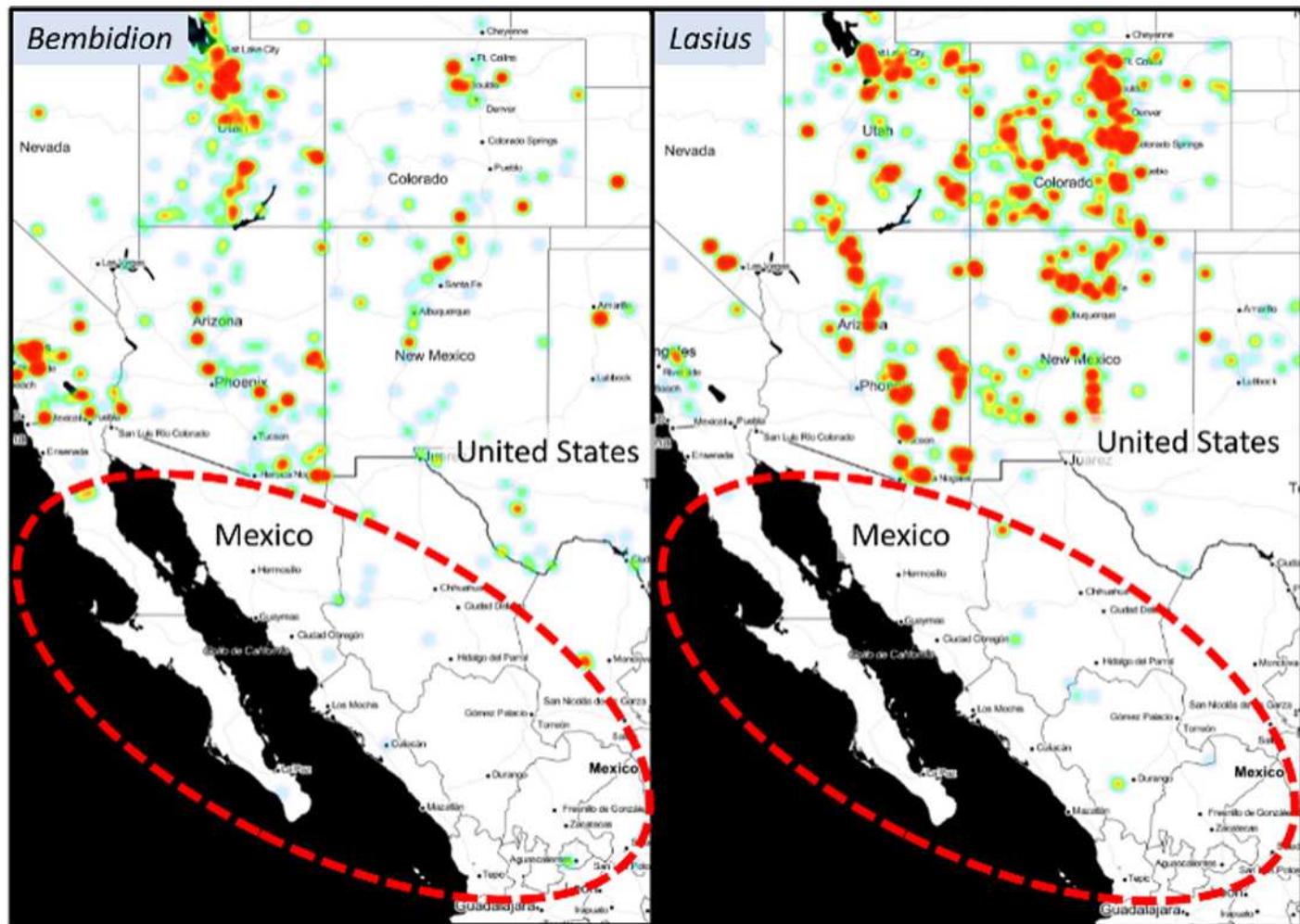

Tier 4 collections hold the vast majority of “historical” specimens.

Figure 10

Heat maps showing distributions for *Lasius* (Formicidae) and *Bembidion* (Carabidae) from SCAN data

The dashed ellipses show a “border impact” where there is strong coverage in the US but almost no records in Mexico. Record density ranges from red (high) to green (low). Data derived from SCAN Spatial Module (heat map radius=1, blur=4).

