
Submitted 6 December 2014
Accepted 10 February 2015
Published 3 March 2015

Corresponding author
Richard Wilton,
richard.wilton@jhu.edu

Academic editor
Sven Rahmann

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.808

Copyright
2015 Wilton et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Arioc: high-throughput read alignment
with GPU-accelerated exploration of the
seed-and-extend search space
Richard Wilton1, Tamas Budavari2, Ben Langmead3,6,
Sarah J. Wheelan4,7, Steven L. Salzberg3,5,6 and Alexander S. Szalay1,3

1 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
2 Department of Applied Mathematics and Statistics, Johns Hopkins University, USA
3 Department of Computer Science, Johns Hopkins University, USA
4 Department of Oncology, Johns Hopkins University School of Medicine, USA
5 Department of Biomedical Engineering, Johns Hopkins University, USA
6 Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine,

Johns Hopkins University, USA
7 Center for Computational Genomics, Johns Hopkins University, USA

ABSTRACT
When computing alignments of DNA sequences to a large genome, a key element in
achieving high processing throughput is to prioritize locations in the genome where
high-scoring mappings might be expected. We formulated this task as a series of
list-processing operations that can be efficiently performed on graphics processing
unit (GPU) hardware.We followed this approach in implementing a read aligner
called Arioc that uses GPU-based parallel sort and reduction techniques to identify
high-priority locations where potential alignments may be found. We then carried
out a read-by-read comparison of Arioc’s reported alignments with the alignments
found by several leading read aligners. With simulated reads, Arioc has comparable
or better accuracy than the other read aligners we tested. With human sequencing
reads, Arioc demonstrates significantly greater throughput than the other aligners we
evaluated across a wide range of sensitivity settings. The Arioc software is available at
https://github.com/RWilton/Arioc. It is released under a BSD open-source license.

Subjects Bioinformatics, Genomics, Computational Science
Keywords Sequence alignment, GPU programming, Parallel algorithms

INTRODUCTION
The cost and throughput of DNA sequencing have improved rapidly in the past several

years (Glenn, 2011), with recent advances reducing the cost of sequencing a single

human genome at 30-fold coverage to around $1,000 (Hayden, 2014). It is increasingly

common for consortia, or even individual research groups, to generate sequencing

datasets that include hundreds or thousands of human genomes. The first and usually

the most time-consuming step in analyzing such datasets is read alignment, the process

of determining the point of origin of each sequencing read with respect to a reference

genome. The continued growth in the size of sequencing datasets creates a crucial need for

efficient and scalable read alignment software.

How to cite this article Wilton et al. (2015), Arioc: high-throughput read alignment with GPU-accelerated exploration of the
seed-and-extend search space. PeerJ 3:e808; DOI 10.7717/peerj.808

mailto:richard.wilton@jhu.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.808
http://dx.doi.org/10.7717/peerj.808
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
https://github.com/RWilton/Arioc
http://dx.doi.org/10.7717/peerj.808

To address this need, a number of attempts have been made to develop read-alignment

software that exploits the parallel processing capability of general-purpose graphics

processing units, or GPUs. GPUs are video display devices whose hardware and

system-software architecture support their use not only for graphics applications but

also for general purpose computing. They are well-suited to software implementations

where computations on many thousands of data items can be carried out independently in

parallel. This characteristic has inspired a number of attempts to develop high-throughput

read aligners that use GPU acceleration.

Experience has shown, however, that it is not easy to build useful GPU-based

read alignment software. In general, GPU hardware is perceived as being impractical

from a software-engineering standpoint for the task of computing read alignments

(Kristensen, 2011). This impression is reinforced by the common misconception that

GPU hardware provides speed improvements in direct proportion to the number of

concurrently-executing GPU threads, that is, that the same amount of work “ought to” run

1,000 times faster on 20,000 concurrent GPU threads than on 20 concurrent CPU threads.

In practice, software running on GPU hardware is constrained by a variety of

algorithmic and software-engineering considerations. GPU programming requires

software to manage single-instruction multiple-data (SIMD) threading, but efficient

handling of memory (data layout, caching, data transfers between CPU and GPU

memory) also requires a great deal of attention. Such threading and memory-management

constraints lead to realistic GPU-based speed improvements on the order of 10×–100×

(Anderson et al., 2011).

The salient problem in engineering a GPU-accelerated read aligner is that the most

biologically relevant sequence-alignment algorithm (Smith & Waterman, 1981; Gotoh,

1982) is not only memory-intensive but also involves dynamic programming dependencies

that are awkward to compute efficiently in parallel. In general, this consideration

has militated against the development of parallel-threaded GPU implementations

(Khajeh-Saeed, Poole & Perot, 2010) where multiple threads of execution cooperate to

compute a single alignment. Instead, the fastest implementations of the algorithm on both

CPUs and GPUs have relied on task parallelism, where each thread of execution computes

an entire pairwise alignment independently of all other parallel threads (e.g., Carriero &

Gelernter, 1990; Manavski & Valle, 2008; Liu, Wirawan & Schmidt, 2013).

There is, however, another significant barrier to the implementation of high-throughput

GPU-based alignment software. In a typical pairwise sequence alignment problem, a

short (100 to 250 nt) query sequence, or “read,” must be aligned with a comparatively

long (109 nt or longer) reference sequence. Since a brute-force search for all plausible

alignments in this setting would be computationally intractable, read aligners typically

construct a “search space” (a list of reference-sequence locations) within which potential

alignments might be discovered. This aspect of the sequence alignment problem accounts

for a significant proportion of the computational effort involved in read alignment.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Figure 1 Seed-and-extend strategy for identifying potential alignments. Fixed-length subsequences
(“seeds”) are extracted from the query sequence and hashed. Each hash value (e.g., “0xDEA5D502”)
is used to probe a lookup table of reference locations (e.g., “01:14353363” for chromosome 1, offset
14353363) where the corresponding seed occurs. These seed locations are prioritized and full alignments
between the query sequence and the reference sequence are explored in priority order.

Seed and extend
One algorithmic approach to exploring a reference-sequence search space is known as

“seed and extend” (Lipman & Pearson, 1985; Altschul et al., 1990). The seed-and-extend

technique is used in a number of successful read aligners and presents no algorithmic

barriers to highly-parallel implementation.

An aligner that uses seed-and-extend relies on a precomputed index or lookup table to

identify locations in the reference where a subsequence (“seed”) extracted from the query

sequence matches the same-length subsequence in the reference (Fig. 1). The aligner then

performs a sequence-alignment computation at one or more of the reference-sequence

locations it has obtained from the lookup table. In effect, the partial alignment implied by

the seed match at each reference location is extended to arrive at a full pairwise alignment

between the query sequence and the reference sequence.

Frequency distribution of seed locations
Most seed sequences occur rarely in the human reference genome, but a few seed

sequences inevitably occur at hundreds or thousands of different locations in the reference

sequence. This is not only because certain portions of the reference are internally repetitive

(e.g., homopolymers or tandem repeats) but also because short sequences occasionally

occur at two or more non-overlapping positions in the reference genome (e.g., because of

transposon-induced duplication). This can be illustrated for the human reference genome

by plotting the frequency with which 20mers (20 nt subsequences) occur (Fig. 2).

Although the mean frequency of human 20mers is only 10.7, high-frequency 20mers

account for a disproportionate percentage of reference-sequence locations in a lookup

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Figure 2 Frequency of 20mers in the human reference genome. The number of different positions at
which the 30,000 most frequently repeated 20mers occur in the human reference genome, ranked in
descending order.

table. For example, only 0.1% of the 20mers in the human reference genome appear in 200

or more different locations, but they account for about 10% of the 20mers in the reference

sequence. In contrast, 71.7% of the 20mers in the human genome occur exactly once.

For a read aligner that implements a seed-and-extend strategy, this long-tailed

distribution of seed frequencies is a computational obstacle for reads that contain one or

more “high-frequency” seeds. To avoid searching for potential alignments at an inordinate

number of locations in the reference sequence, an aligner must limit the number of

locations at which it computes alignments for reads that contain such seeds.

Limiting the search space
Read aligners address this problem by using several heuristics, all of which limit the

number of potential alignments computed:

• Limit the number of high-scoring mappings reported per read.

• Limit the number of seeds examined per read.

• Limit the number of reference locations examined per seed.

These heuristics trade throughput for sensitivity. An aligner spends less time computing

potential alignments simply because it does not examine the entire search space (all

reference locations for all seeds in each read). For the same reason, however, the aligner

is less likely to identify all of the high-scoring mappings for each read. The Arioc aligner

implements two different heuristics to mitigate this problem.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 4/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Figure 3 Hash-table construction: sampling in repetitive regions. Adjacent reference-sequence loca-
tions are removed from the hash table where they are found in adjacent “big buckets” (hash-table lists
whose cardinality exceeds a user-configurable threshold).

Reference-location sampling
Arioc uses hash tables in which every location in the reference sequence is sampled. For

highly repetitive regions of the human genome, however, adjacent and overlapping 20mers

in the reference sequence hash to a large number of locations in the reference sequence.

Repetitive regions are thus associated with long hash-table lists (“big buckets”) because the

20mers corresponding to those lists refer to numerous repetitive regions elsewhere in the

reference.

For this reason, the Arioc lookup tables are constructed by sampling adjacent “big

bucket” hash-table lists in repetitive regions so that only one such list in 10 contains a

reference-sequence location that lies within the region (Fig. 3). This sampling strategy

decreases the size of large hash-table lists. The tradeoff is that a read that aligns to a

particular repetitive region must be seeded in up to 10 adjacent locations to guarantee that

the aligner will find a reference location within that region in a hash-table list for the read.

Seed-coverage prioritization
At run time, Arioc implements a heuristic that prioritizes alignments where a read contains

two or more seeds that map to adjacent or nearby locations in the reference. This heuristic

is reminiscent of the “spanning set” method used to compute alignments in the GSNAP

aligner (Wu & Nacu, 2010), but its implementation in Arioc is actually much simpler:

within any given read, Arioc assigns higher priority to a reference-sequence locus when

more seeds refer to that locus (that is, when that locus is contained in more hash-table

buckets for the seeds in that read).

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Arioc uses an additional heuristic in the case of paired-end reads. The aligner prioritizes

potential paired-end mappings where a reference location associated with at least one seed

in one of the mates in the pair lies within a user-configurable distance and orientation of at

least one seed in the other mate in the pair.

Notably, these heuristics are implemented using a series of sorting and reduction

operations on an aggregated list of seed locations. In a CPU-based implementation,

the amount of computation required for these operations would be impractical with

a reference genome the size of the human genome. In a GPU-based implementation,

however, these list-based operations can be performed efficiently with a combination of

cooperative parallel threading (sort, stream compaction) and task parallelism (computing

seed coverage, filtering using paired-end criteria). For example, an NVidia GTX480 GPU

can sort over 300 million 64-bit integer values per second.

The Arioc aligner was designed to evaluate the performance of these “GPU-friendly”

heuristics. In effect, Arioc implements a pipeline in which the following operations are

performed on GPU hardware for each read:

• Define the “search space” for the read; that is, compute the set of reference locations that

correspond to the seeds in the read.

• Adjust the reference locations so that they correspond to the location of the seed within

the read.

• Sort and unduplicate the list of reference locations.

• Count the number of seeds that reference each reference location.

• For paired-end reads, identify pairs of reference locations that lie within a predefined

distance and orientation of each other.

• Coalesce adjacent seed locations so that they are covered by a minimum number of

alignment computations.

• Compute alignments to identify and record high scoring mappings.

METHODS
The Arioc aligner is written in C++ and compiled for both Windows (with Microsoft

Visual C++) and Linux (with the Gnu C++ compiler). The implementation runs on a

user-configurable number of concurrent CPU threads and on one or more NVidia GPUs.

The implementation pipeline uses about 30 different CUDA kernels written in C++

(nongapped and gapped alignment computation, application-specific list processing)

and about 100 calls to various CUDA Thrust APIs (sort, reductions, set difference, string

compaction).

The development and test computers were each configured with dual 6-core Intel

Xeon X5670 CPUs running at 2.93 GHz, so a total of 24 logical threads were available

to applications. There was 144 GB of system RAM, of which about 96 GB was available

to applications. Each computer was also configured with three NVidia Tesla series GPUs

(Kepler K20c), each of which supports 5 GB of on-device “global” memory and 26,624

parallel threads. The internal expansion bus in each machine was PCIe v2.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 6/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Figure 4 Arioc pipeline. The Arioc pipeline implementation consists of one-time-only initialization
(memory allocation, loading of lookup tables and reference data) followed by iterative batched processing
of reads (query sequences). Within each batch, nongapped alignments are discovered using GPU-based
spaced seed alignment. Gapped alignments, using GPU-based seed-and-extend alignment, are computed
only for reads for which a satisfactory number of nongapped alignments are not found. All mappings are
finalized (scored and mapped), classified, and reported in multiple concurrent CPU threads.

Throughput (query sequences aligned per second) was measured only when no other

user applications were using the machines so that all CPU, memory, and I/O resources were

available. For experiments with simulated data, we used Mason (Holtgrewe, 2010) to gener-

ate 100 nt and 250 nt paired-end reads. For experiments with Illumina data, we used 100 nt

paired-end Illumina Genome Analyzer data from the YanHuang genome (Li et al., 2009).

Software implementation
The Arioc implementation is a pipeline (Fig. 4) in which batches of reads are processed by

a sequence of discrete software modules, each of which operates on a separate CPU thread

that is allocated for the lifetime of the module and then discarded. When multiple GPUs

are used, each GPU is associated with its own CPU thread. Modules are designed to execute

concurrently on CPU threads and on the GPU. Data common to multiple CPU threads

is shared; data common to a sequence of GPU operations resides in GPU device memory

without being transferred to or from CPU memory.

The execution of the Arioc pipeline consists of iterative processing of batches of reads

(query sequences), where the number of reads in a batch is constrained by the amount of

available GPU memory. Within each batch iteration, the GPUs are used for list processing

and for the computation of alignments, while CPU threads are used concurrently for

scoring, classification, and formatting of alignment results as well as for input and output.

GPU code executes concurrently with CPU code wherever possible. For example, the

classification, reporting, and final output of the alignment results for a batch overlaps with

the beginning of processing of the subsequent batch.

Nongapped alignment
The nongapped aligner uses periodic spaced seeds (gapped q-grams) to identify potential

mappings. The seed pattern covers 84 adjacent positions with 30 “care” positions using the

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 7/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Figure 5 Binary encoding of sequence data. Arioc packs 21 three-bit symbols into a sequence of 64-bit
values. Encoding proceeds from low-order to high-order bits. For example, the 4-nucleotide sequence
AACT is encoded as binary 111101100100, or hexadecimal 0x0000000000000F64.

repeating 7-bit pattern 0010111; it is fully sensitive for nongapped alignments containing

up to two mismatches when it is evaluated at seven adjacent locations in a sequence (Chen,

Souaiaia & Chen, 2009). Both the seed value and the query sequences are encoded in 64-bit

packed binary values (Fig. 5) to facilitate bitwise operations.

For each of the first seven positions in each query sequence, the result of the bitwise

AND between the seed value and the query sequence is packed into a 30-bit value that is

used to probe a lookup table of potential alignment locations in the reference sequence.

For each such location, mappings between the query sequence and the reference sequence

are identified by bitwise comparison of the entire query sequence with the corresponding

reference.

Nongapped mappings with mismatches near one or both ends are examined for

potential soft clipping. Arioc soft-clips a nongapped mapping whenever its alignment

score is higher than it would be without soft clipping. The nongapped aligner assigns

a numerical score to each mapping by applying the user-specified parameters for

Smith–Waterman–Gotoh affine-gap alignment.

Gapped alignment
Arioc only performs gapped alignment with reads for which it does not find a

sufficient number of nongapped alignments. The minimum number of satisfactory

nongapped alignments required for a read to be excluded from further processing is a

user-configurable parameter.

The gapped aligner is a straightforward implementation of the seed-and-extend strat-

egy. To facilitate parallel computation, multiple seed locations are examined concurrently

within each read. Groups of seed locations are selected iteratively. The first group of seeds

is chosen so as to cover the entire read without overlapping seeds; subsequent groups are

selected so as to straddle the seed positions examined in previous groups (Fig. 6).

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 8/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Figure 6 Seed locations in read sequences. Seed locations for each of six seed iterations, for 20 nt seeds
in a 100 nt read.

In each iteration, the seed subsequences are extracted from the read and hashed to

30 bits using MurmurHash3 (Appleby, 2014). The 30-bit hash values are used to probe

a hash table of reference-sequence locations. The reference locations are prioritized and

Smith–Waterman–Gotoh local alignment is computed at the highest-priority locations.

Reads for which a user-configured number of satisfactory mappings have been found are

excluded from subsequent iterations.

Each iteration examines seed locations that straddle the locations that were processed in

previous iterations; seeds are chosen at locations that are halfway between those examined

in all previous iterations. (This is similar to the behavior of Bowtie 2’s -R option.) In this

way the cumulative number of seeds examined doubles with each iteration, but the actual

number of reference locations considered remains relatively stable. With fixed-length 20 nt

seeds (20mers), six “seed iterations” are required to examine every seed location in the

query sequence.

Lookup table structures
To associate seeds with reference-sequence locations, Arioc uses two pairs of lookup tables,

one pair for nongapped alignment and the other for gapped alignment. Each pair of

lookup tables comprises an H table with one element for each possible hash value and a J

table that contains reference-sequence locations. Each table lookup is a two-step process:

a read from the H table (to obtain an offset into the J table) followed by reading a list of

reference-sequence locations from the J table.

Restricting the seed-and-extend search space
To facilitate GPU-based list operations, the Arioc implementation encodes reference

locations as 64-bit bitmapped values that can be represented in one-dimensional arrays.

These arrays are maintained exclusively in GPU device memory where multiple CUDA

kernels can access them. CUDA kernels are used to reorganize and triage reference-location

lists:

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 9/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

• Prioritize reference locations that lie within paired-end distance and orientation

constraints.

• Prioritize reference locations where overlapping and adjacent seeds cover the largest

number of adjacent positions in the reference sequence.

• Exclude reference locations that have been examined in previous seed iterations.

• Identify reference locations for which acceptable mappings exist and for which criteria

for paired-end mapping are met.

Mapping quality (MAPQ)
For each mapped read, Arioc computes an estimate of the probability that that read is

mapped to a reference location other than the location where the read actually originated.

MAPQ is reported as −10log10(p), where p is the aligner’s estimate of the probability

that the read is not mapped to the correct reference location. Arioc estimates p using a

computational model based on a probabilistic analysis of different types of mapping errors

(Li, Ruan & Durbin, 2008). Arioc supports two user-selectable implementations of this

model: one based on the methodology used in BWA-MEM (Li, 2013) with MAPQ scores in

the numerical range 0 to 60, and another derived from the empirical logic used in Bowtie 2

(Langmead & Salzberg, 2012), with reported MAPQ values between 0 and 44.

Specific concerns for GPU implementation
Available memory and computational resources on GPU devices constrain the implemen-

tation of the Arioc pipeline. Although the compiled code is not “tuned” to a particular

GPU device, the source-code implementation follows programming practices that

experience has shown lead to higher performance: judicious use of GPU memory and

use of data-parallel algorithms and implementation methods.

Memory size
The limited amount of on-device GPU memory constrains the amount of data that can be

processed at any given time on a GPU. Because GPU memory requirements vary as data

moves through the implementation pipeline, it is impossible to provide for full usage of

available GPU memory at every processing step.

The approach taken in Arioc is to let the user specify a batch size that indicates the

maximum number of reads that can be processed concurrently. In computations where

available GPU memory is exceeded (for example, in performing gapped local alignment),

Arioc breaks the batch into smaller sub-batches and processes the sub-batches iteratively.

Arioc also uses about 65 GB of page-locked, GPU-addressable host-system memory

for its lookup tables. Data transfers from this memory are slow because they move across

the PCIe bus, but the data-transfer rate is acceptable because comparatively little data is

transferred during hash-table lookups.

Memory layout
The Arioc implementation pays particular attention to the layout of data in GPU memory.

Memory reads and writes are “coalesced” so that data elements accessed by adjacent

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 10/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

groups of GPU threads are laid out in adjacent locations in memory. Arioc therefore

uses one-dimensional arrays of data to store the data elements accessed by multiple GPU

threads. Although this style of in-memory data storage leads to somewhat opaque-looking

code, the improvement in the speed of GPU code is noticeable (sometimes by a factor of

two or more).

Minimal data transfers between CPU and GPU memory
Although data can theoretically move between CPU and GPU memory at speeds

determined by the PCIe bus, experience has shown that application throughput is

decreased when large amounts of data are moved to and from the GPU. For this reason,

Arioc maintains as much data as possible in GPU memory. Data is transferred to the CPU

only when all GPU-based processing is complete.

Divergent flow of control in parallel threads
Divergent flow of control in adjacent GPU threads can result in slower code execution.

Branching logic is therefore kept to a minimum in GPU code in Arioc. Although this

problem was encountered in previous GPU sequence-aligner implementations (Schatz et

al., 2007), it is empirically less important in the Arioc implementation than the effect of

optimized GPU memory access.

Analysis of alignment results
We used the human reference genome release 37 (Genome Reference Consortium, 2014) for

throughput and sensitivity experiments. We evaluated published results for a number of

CPU-based and GPU-based read aligners (Supplementary Table T1) and identified four

whose speed or sensitivity made them candidates for direct comparison with the Arioc

implementation. These included two widely-used CPU-based read aligners and two recent

GPU-based implementations (software versions listed in Supplementary Table T1):

• Bowtie 2 (Langmead & Salzberg, 2012) (CPU)

• BWA-MEM (Li, 2013) (CPU)

• SOAP3-dp (Luo et al., 2013) (GPU)

• NVBIO (NVidia, 2014) (GPU)

We parsed the SAM-formatted output (SAM/BAM Format Specification Working Group,

2013) from each aligner and aggregated the results reported by each aligner for each

read. We examined the POS (position), TLEN (paired-end fragment length), and AS

(alignment score) fields to ensure the consistency of the set of mappings reported by each

aligner. For SOAP3-DP, which does not report alignment scores, we derived scores from

the mapping information reported in the CIGAR and MD fields. We computed local

alignments using the following scoring parameters: match = +2; mismatch = −6; gap

open = −5; gap space = −3, with a threshold alignment score of 100 (for 100 nt reads) or

400 (for 250 nt reads).

We used simulated (Mason) reads to evaluate sensitivity for both paired-end and

unpaired reads. For each aligner, we used high “effort” parameters so as to maximally

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 11/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808

favor sensitivity over throughput. For each read mapped by each aligner, we compared the

POS and CIGAR information reported by the aligner with the POS and CIGAR generated

by Mason. We assumed that a read was correctly mapped when, after accounting for

soft clipping, one or both of its ends mapped within 3 nt of the mapping generated by

Mason. (Supplementary Table T4 explains our choice of a 3 nt threshold.) To illustrate

sensitivity and specificity, we plotted the cumulative number of correctly-mapped and

incorrectly-mapped reads reported by each aligner, stratified by the MAPQ score (Li, Ruan

& Durbin, 2008) for each read.

We used the YanHuang data to measure throughput using both paired-end and

unpaired reads. For this analysis, we recorded throughput across a range of “effort”

parameters chosen so as to trade speed for sensitivity. We defined “sensitivity” as the

percentage of reads reported as mapped by each aligner with alignment score (and, for

paired-end reads, TLEN) within configured limits.

Prior to computing alignments, all of the GPU-aware aligners spend a brief period of

execution time initializing static data structures in GPU device memory. We excluded this

startup time from throughput calculations for these aligners.

RESULTS
Each of the read aligners we tested is able to map tens of millions of reads to the human

genome in an acceptably short period of time. All of the aligners, including Arioc, were

capable of mapping simulated reads with high accuracy. With sequencer reads, Arioc

demonstrated up to 10 times higher throughput across a wide range of sensitivity settings.

Evaluation with simulated data
With simulated Illumina read data, Arioc mapped paired-end reads to their correct origin

in the reference genome with sensitivity and specificity comparable to all four of the

aligners to which we compared it (Fig. 7 and Supplementary Figures S1–S8). Although

each aligner uses a slightly different computational model for MAPQ, all of the aligners

maintain a very high ratio of correct to incorrect mappings until mappings with relatively

low MAPQ scores are considered.

Evaluation with sequencer-generated data
We used experimental data from the YanHuang human genome project to evaluate speed

(Fig. 8 and Supplementary Figure S9). Across a wide range of sensitivity settings, Arioc’s

speed on a single GPU is about 10 times that of the CPU-based aligners to which we com-

pared it, and two to three times that of the GPU-based aligners to which we compared it.

With this data, throughput decreases with increasing sensitivity for all of the aligners,

with a steep decrease near each aligner’s maximum sensitivity. This is apparent even with

BWA-MEM and SOAP3-dp, although we were unable to “tune” these aligners across as

wide a range of sensitivity settings as the others.

When executed concurrently on multiple GPUs in a single machine, Arioc’s throughput

increases in proportion to the number of GPUs (Fig. 9). At lower sensitivity settings,

overall throughput is limited by PCIe bus bandwidth. Scaling improves at higher

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 12/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808

Figure 7 Correctly-mapped versus incorrectly-mapped simulated reads. Total correctly mapped versus
incorrectly mapped reads, plotted for decreasing MAPQ, for 1 million simulated 100 nt paired-end
Illumina reads (2 million total reads). Results for unpaired reads and for 250 nt reads are similar
(Supplementary Figures S1–S8).

sensitivity settings, where throughput is limited by the number of dynamic-programming

computations carried out on the GPUs.

DISCUSSION
Apart from its potential for high throughput, the Arioc implementation demonstrates

that an increase in throughput can be achieved without losing sensitivity. Furthermore, by

sacrificing throughput, Arioc can be “pushed” to a comparatively high level of sensitivity.

Performance characteristics
The shape of the speed-versus-sensitivity curves we observed illustrates that read aligners

achieve increased sensitivity by exploring a proportionally larger search space per

successful mapping. Arioc’s search-space heuristics cause it to find high-scoring mappings

(that is, perfect or near-perfect alignments) rapidly within a relatively small search space.

For reads that do not map with high alignment scores, however, Arioc must explore more

seed locations and compute more dynamic programming problems before it can report

a satisfactory mapping. For example, in the experiment shown in Fig. 8, Arioc computed

about 8 times as many dynamic-programming alignments at the high end of its sensitivity

range as it did at the low end of the range.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 13/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808

Figure 8 Throughput versus sensitivity. Speed (measured as the number of 100 nt query sequences processed per second) plotted versus sensitivity
(expressed as the overall percentage of mapped pairs). Data for 10 million 100 nt paired-end reads from the YanHuang genome. Workstation
hardware: 12 CPU cores (24 threads of execution), one NVidia K20c GPU. Results for unpaired reads are similar (Supplementary Figure S9).

Arioc explores a significantly larger search space for reads that it cannot align with

a comparatively small number of mismatches or gaps. This mitigates the effect of the

heuristics that filter the list of potential mapping locations on the reference sequence. In

particular, gapped mappings that might be missed in an early seed iteration, when seeds are

spaced widely, are detected in later seed iterations. The nature of these heuristics, however,

implies that the additional mappings that Arioc finds when it is configured for higher

sensitivity are generally lower-scoring mappings.

The effect of Arioc’s heuristics on the computation of MAPQ (mapping quality) for

a read is difficult to determine. In some cases, Arioc assigns a lower MAPQ (higher

probability that the read is incorrectly mapped) simply because it computes alignments

in parallel for the read and therefore tends to find more alternative mappings than would

a non-parallelized implementation. On the other hand, by excluding many potential

reference locations (and thus potential alternative mappings) from its search space, Arioc

might incorrectly assign a high MAPQ to a read. In any event, we do not observe any

notable difference overall in Arioc’s MAPQ scoring when compared with other aligners.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 14/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808/supp-1
http://dx.doi.org/10.7717/peerj.808

Figure 9 Throughput on multiple GPUs. Throughput on one, two, and three GPUs (NVidia K20c) in
a single computer for the data shown in Fig. 8. For comparison, 2× and 3× multiples of single-GPU
throughput are also plotted.

GPU-accelerated sequence alignment
Unlike the Smith–Waterman–Gotoh alignment algorithm, parallel list-management

algorithms—in particular, variations of radix sort and of prefix (scan) operations—are

amenable to cooperative parallel-threaded implementation. Much of the intermediate

processing in the sequence-alignment pipeline is thus well-suited to GPU-based imple-

mentation. We exploited this characteristic of the read-alignment process in designing and

developing the Arioc software.

There are two features in the design and implementation of Arioc that distinguish it

from other GPU-based read aligners. First, Arioc embodies a software design that uses the

GPU as an “accelerator” in a task-parallel pipeline. CPU threads execute concurrently with

GPU threads on independent data wherever possible, with synchronization points only

where the GPU has completed processing a set of data. In practice, this means that overall

throughput is GPU-bound and thus insensitive to variations in the time spent executing

CPU threads (including post-processing alignments, reading and writing data files, and

recording performance data).

Second, Arioc is the result of a software-engineering approach that emphasizes the reuse

of existing code as well as the use of data structures that conform to optimal GPU memory

and threading models. In particular, we emphasized data structures that can be represented

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 15/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

in one-dimensional arrays of integers as well as list manipulations that involve simple,

data-independent numerical operations. In this way we were able to make extensive use

of the NVidia Thrust library, a freely-available, well-optimized library implementation of

basic parallel operations on GPU hardware. Arioc’s speed derives from its use of the GPU

for the kinds of computations for which the cooperative threading model is well-suited

(stream compaction, radix sort, parallel prefix reduction, set difference).

We recognize that direct comparisons in speed between CPU-based and GPU-based

software implementations are fraught with difficulties. We attempted to choose compari-

son hardware that was reasonably similar in terms of cost and availability. As more capable

CPU and GPU hardware becomes available, we expect Arioc, like all of the aligners we

evaluated, to deliver higher throughput.

We also foresee further optimization of Arioc’s implementation. For example,

there are newer, faster GPU function libraries that might be used to replace calls to

the Thrust APIs. Also, we have not experimented with low-level optimization of our

Smith–Waterman–Gotoh GPU implementation (Liu, Wirawan & Schmidt, 2013). It is

likely that such optimizations will appreciably improve Arioc’s throughput.

In an effort to keep up with the increasing amount of sequence data used in clinical

and research settings, the usual approach to designing read alignment software has been to

focus on increasing throughput. Experience with both CPU-based and GPU-based aligner

implementations suggests that the most expeditious way to improve throughput is to add

additional computational hardware, that is, to compute read alignments concurrently in

multiple threads of execution. In this regard, therefore, GPU hardware is an attractive

platform for high-throughput sequence-alignment implementations.

Nonetheless, the highly data-parallel nature of GPU hardware makes it difficult to reuse

CPU-based techniques in a GPU implementation. A different approach to exploiting

GPU parallelism is to use it for computational tasks that are particularly well-suited to the

hardware, that are difficult to perform efficiently on sequential CPU threads, and that can

improve throughput while maintaining high accuracy. Our results with Arioc demonstrate

the validity of this strategy.

ACKNOWLEDGEMENTS
We are grateful to David Luebke and Cliff Wooley of NVidia Corporation for their help in

understanding some of the nuances of NVidia GPU programming.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by: NIH grants R01-HG007196 and R01-HG006102 (SLS); NSF

grant IIS 1349906 (BL); NSF grants ACI 1261715 and ACI 1040114 (AS, RW); Gordon

and Betty Moore Foundation grant 109285 (AS, RW); and JHU Discovery grants (AS,

BL, SW, RW). Johns Hopkins University is an NVidia “CUDA Center of Excellence.” The

funders had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 16/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Richard Wilton conceived and designed the experiments, performed the experiments,

analyzed the data, wrote the paper, prepared figures and/or tables, and reviewed drafts of

the paper.

• Tamas Budavari reviewed drafts of the paper and collaborated in the design of the

mapping-quality component of the software.

• Ben Langmead wrote the paper, reviewed drafts of the paper and collaborated in the

design of the mapping-quality component of the software.

• Sarah J. Wheelan reviewed drafts of the paper and collaborated in the design of the

dynamic-programming component of the software.

• Steven L. Salzberg wrote the paper and reviewed drafts of the paper.

• Alexander S. Szalay prepared figures and/or tables and reviewed drafts of the paper.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.808#supplemental-information.

REFERENCES
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.

Journal of Molecular Biology 215:403–410 DOI 10.1016/S0022-2836(05)80360-2.

Anderson M, Catanzaro B, Chong J, Gonina E, Keutzer K, Lai CY, Murphy M, Sheffield D,
Su BY, Sundaram N. 2011. Considerations when evaluating microprocessor platforms.
In: Proceedings of the 3rd USENIX conference on hot topics in parallelism. Berkeley: USENIX
Association.

Appleby A. 2014. MurmurHash3. Available at https://code.google.com/p/smhasher/.

Carriero N, Gelernter DH. 1990. How to write parallel programs: a first course. Cambridge: MIT
Press.

Chen Y, Souaiaia T, Chen T. 2009. PerM: efficient mapping of short sequencing
reads with periodic full sensitive spaced seeds. Bioinformatics 25(19):2514–2521
DOI 10.1093/bioinformatics/btp486.

Genome Reference Consortium. 2014. Human Build 37 patch release 5 (GRCh37.p5). Available at
http://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.17/.

Glenn TC. 2011. Field guide to next-generation DNA sequencers. Molecular Ecology Resources
11:759–769 DOI 10.1111/j.1755-0998.2011.03024.x.

Gotoh O. 1982. An improved algorithm for matching biological sequences. Journal of Molecular
Biology 162:705–708 DOI 10.1016/0022-2836(82)90398-9.

Hayden EC. 2014. Is the $1,000 genome for real? Nature News & Comment. DOI 10.1038/na-
ture.2014.14530.

Holtgrewe M. 2010. Mason—a read simulator for second generation sequencing data. Technical
Report TR-B-10-06. Berlin: Institut für Mathematik und Informatik, Freie Universität Berlin.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 17/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.7717/peerj.808#supplemental-information
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/
http://dx.doi.org/10.1093/bioinformatics/btp486
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/
http://dx.doi.org/10.1111/j.1755-0998.2011.03024.x
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1038/nature.2014.14530
http://dx.doi.org/10.1038/nature.2014.14530
http://dx.doi.org/10.7717/peerj.808

Khajeh-Saeed A, Poole S, Perot JB. 2010. Acceleration of the Smith–Waterman algorithm using
single and multiple graphics processors. Journal of Computational Physics 229:4247–4258
DOI 10.1016/j.jcp.2010.02.009.

Kristensen DM. 2011. Moving beyond genome sequencing into personalized genomic medicine:
biological and computing challenges. Genome Biology 12:308
DOI 10.1186/gb-2011-12-10-308.

Langmead B, Salzberg S. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods
9:357–359 DOI 10.1038/nmeth.1923.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv
preprint. arXiv:1303.3997v1.

Li G, Ma L, Song C, Yang Z, Wang X, Huang H, Li Y, Li R, Zhang X, Yang H, Wang J, Wang J.
2009. The YH database: the first Asian diploid genome database. Nucleic Acids Research
37(database issue):D1025–D1028 DOI 10.1093/nar/gkn966.

Li H, Ruan J, Durbin R. 2008. Mapping short DNA sequencing reads and calling variants using
mapping quality scores (Supplementary Text). Genome Research 18:1851–1858
DOI 10.1101/gr.078212.108.

Lipman DJ, Pearson WR. 1985. Rapid and sensitive protein similarity searches. Science
227(4693):1435–1441 DOI 10.1126/science.2983426.

Liu Y, Wirawan A, Schmidt B. 2013. CUDASW++ 3.0: accelerating Smith–Waterman protein
database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics
14:117 DOI 10.1186/1471-2105-14-117.

Luo R, Wong T, Zhu J, Liu CM, Zhu X, Wu E, Lee LK, Lin H, Zhu W, Cheung DW, Ting HF,
Yiu SM, Peng S, Yu C, Li Y, Li R, Lam TW. 2013. SOAP3-dp: fast, accurate and sensitive
GPU-based short read aligner. PLoS ONE 8(5):e65632 DOI 10.1371/journal.pone.0065632.

Manavski SA, Valle G. 2008. CUDA compatible GPU cards as efficient hardware
accelerators for Smith–Waterman sequence alignment. BMC Bioinformatics 9(supplement
2):S10 DOI 10.1186/1471-2105-9-S2-S10.

NVidia Corporation. 2014. NVBIO. Santa Clara: NVidia. Available at http://nvlabs.github.io/nvbio.

SAM/BAM Format Specification Working Group. 2013. Sequence Alignment/Map Format
Specification. Available at https://github.com/samtools/hts-specs.

Schatz MC, Trapnell C, Delcher AL, Varshney A. 2007. High-throughput sequence alignment
using Graphics Processing Units. BMC Bioinformatics 8:474 DOI 10.1186/1471-2105-8-474.

Smith TF, Waterman MS. 1981. Identification of common molecular subsequences. Journal of
Molecular Biology 147:195–197 DOI 10.1016/0022-2836(81)90087-5.

Wu TD, Nacu S. 2010. Fast and SNP-tolerant detection of complex variants and splicing in short
reads. Bioinformatics 26(7):873–881 DOI 10.1093/bioinformatics/btq057.

Wilton et al. (2015), PeerJ, DOI 10.7717/peerj.808 18/18

https://peerj.com
http://dx.doi.org/10.1016/j.jcp.2010.02.009
http://dx.doi.org/10.1186/gb-2011-12-10-308
http://dx.doi.org/10.1038/nmeth.1923
http://arxiv.org/abs/1303.3997v1
http://dx.doi.org/10.1093/nar/gkn966
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1126/science.2983426
http://dx.doi.org/10.1186/1471-2105-14-117
http://dx.doi.org/10.1371/journal.pone.0065632
http://dx.doi.org/10.1186/1471-2105-9-S2-S10
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
http://nvlabs.github.io/nvbio
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
http://dx.doi.org/10.1186/1471-2105-8-474
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1093/bioinformatics/btq057
http://dx.doi.org/10.7717/peerj.808

	Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space
	Introduction
	Seed and extend
	Frequency distribution of seed locations
	Limiting the search space
	Reference-location sampling
	Seed-coverage prioritization

	Methods
	Software implementation
	Nongapped alignment
	Gapped alignment
	Lookup table structures
	Restricting the seed-and-extend search space
	Mapping quality (MAPQ)
	Specific concerns for GPU implementation
	Analysis of alignment results

	Results
	Evaluation with simulated data
	Evaluation with sequencer-generated data

	Discussion
	Performance characteristics
	GPU-accelerated sequence alignment

	Acknowledgements
	References

