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ABSTRACT
Background. Soil aggregate-size classes and microbial communities within the ag-
gregates are important factors regulating the soil organic carbon (SOC) turnover.
However, the response of soil bacterial and fungal communities in aggregates to litter
decomposition in different aggregate-size classes is poorly understand.
Methods. Soil samples from un-grazed natural grassland were separated into four dry
aggregate classes of different sizes (2–4 mm, 1–2 mm, 0.25–1 mm and <0.25 mm).
Two types of plant litter (leaf and stem) of Leymus chinensis were added to each of
the four aggregate class samples. The CO2 release rate, SOC storage and soil microbial
communities were measured at the end of the 56-day incubation.
Results. The results showed that the 1–2 mm aggregate had the highest bacterial
Shannon and CO2 release in CK and leaf addition treatments, and the SOC in the<0.25
mm aggregate was higher than that in the others across the treatments. The relative
abundance of Ascomycota was higher in the 2–4 mm and <0.25 mm aggregates than
in the 1–2 mm and 0.25–1 mm aggregates in the treatment without litter addition, and
the relative abundance of Aphelidiomycota was lower in the 2–4 mm and <0.25 mm
aggregates than in the 1–2 mm and 0.25–1 mm aggregates. Also, litter addition
increased the relative abundance of Proteobacteria and Bacteroidetes, but decreased
the relative abundance of Acidobacteria, Gemmatimonadetes, and Actinobacteria. The
relative abundance of Ascomycota and Aphelidiomycota increased by more than 10%
following leaf litter addition. The bacterial Shannon index had a significantly positive
and direct effect on SOC concentration and CO2 release, while the fungal Shannon
index was significantly correlated with SOC concentration. Our results indicate that
the soil bacterial diversity contributes positively to both carbon emissions and carbon
storage, whereas soil fungal diversity can promote carbon storage and decrease carbon
emissions.

Subjects Microbiology, Soil Science
Keywords Soil bacterial and fungal diversity, Soil aggregate, Litter decomposition

INTRODUCTION
Litter decomposition is a key step in the carbon cycle (Bonan et al., 2013; Schmidt et al.,
2011;Wieder, Bonan & Allison, 2013), especially in grassland ecosystems, which cover 40%
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of the earth’s land surface (Lu et al., 2017), and possess about 20% of the soil organic
carbon (SOC) stocks globally (Schuman, Janzen & Herrick, 2002). The majority of studies
have shown that litter decomposition usually depends on three main drivers: climate
factors (soil moisture and temperature) (He et al., 2010; Riggs et al., 2015; Wang, Zeng &
Zhong, 2016; Zhong et al., 2017), litter quality (i.e., its chemical composition) (Hishinuma
et al., 2017; Zhang et al., 2016), and decomposer activity (Jia et al., 2016; Keiser & Bradford,
2017). In addition, there is increasing evidence that soil microbial communities influence
litter decomposition rates over and above climate and litter quality controls (Bradford
et al., 2016; Schimel & Schaeffer, 2012). Studies on litter decomposition have focused on
the bacterial community composition and have confirmed the involvement of a series
of colonizers in the litter decomposition process (Fanin & Bertrand, 2016). Soil fungi are
also one of the major microbial decomposers of plant litter, being able to decompose the
recalcitrant component (Liang et al., 2017).

Soil aggregates are the basic units of soil structure (Bronick & Lal, 2005) and are generally
sub-divided into macro-aggregates (>0.25 mm) and micro-aggregates (<0.25 mm)
(Yang, Liu & Zhang, 2017). Soil microbial community compositions are non-uniformly
distributed in the soil aggregates and may be sensitive to changes in soil environments
(Six et al., 2004). In general, the distribution of bacteria in soil varies with aggregate size
(Neumann et al., 2013), and the microbial biomass associated with soil aggregates has been
reported to be heterogeneously distributed (Wang, Li & Zheng, 2017). Only a few studies
have used sequencing analysis to assess the bacterial communities of aggregates (Gupta &
Germida, 2015). Although our previous study found the distribution of soil bacteria and
fungi in aggregates to be inverse (Yang, Liu & Zhang, 2019), very little is known regarding
their contribution to litter decomposition in different aggregate fractions. In addition, soil
microbial processes are regulated by constraints in soil pH, which is considered to be an
important factor controlling the balance of fungal to bacterial growth in the soil (Lauber et
al., 2009; Rousk et al., 2010).

We designed a two-factor incubation experiment in the laboratory: one was litter
quality (leaf and stem), while the other was soil aggregate size. The SOC mineralization,
SOC content, soil pH, and soil microbial community were measured at the end of the
incubation period. We hypothesized that (1) the soil bacterial and fungal communities
are unevenly distributed in the aggregate fractions, (2) different aggregate sizes respond
differently to the quality of the litter addition, and (3) the correlation between soil properties
and soil microbial diversities controls litter decomposition.

MATERIAL AND METHODS
Material collection and preparation
The soil samples were collected from one type of ungrazed natural grassland located in
Guyuan, Hebei Province, China (41◦46′N, 115◦41′E, elevation 1,380 m) in May of 2018,
the initial stage of growing season. This area is a typical temperate zone characterized by
a mean annual precipitation of 430 mm and a mean annual temperature of 1.4 ◦C. The
minimum monthly mean air temperature is −18.6 ◦C in January and the site reaches a
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Table 1 Mean (±standard error (SE), n= 3) total carbon (TC), total nitrogen (TN), and carbon to nitrogen ration (C/N) for different soil aggre-
gate size classes and litter types.

Soil aggregates Litter type

2–4 mm 1–2mm 0.25–1 mm <0.25 mm Leaf Stem

SOC (g kg−1) 13.27(0.1)ab 11.87(0.2)b 5.20(0.2)c 14.17(0.3)a TC (g kg−1) 411.96(0.1)c 424.19(0.1)a
TN (g kg−1) 1.67(0.03)bc 1.73(0.03)b 1.07(0.07)c 1.90(0.06)a TN (g kg−1) 17.20(0.1)a 14.30(0.1)c
C/N ratios 7.95(0.01)a 6.86(0.01)b 4.86(0.02)c 7.46(0.01)a C/N ratios 23.95(0.1)c 29.66(0.1)a

Notes.
Different letters in the same row indicate a significant difference at P < 0.05 using least significant difference tests.

maximum of 21.1 ◦C in July. The site has a calcic-orthic Aridisol soil with a loamy-sand
texture.

In brief, the top layer (0–15 cm) of the soil (∼200 kg) at one location was collected in
plastic bags with a shovel, and was quickly transported to the laboratory by car, upon which
the plant roots and leaves were carefully removed by hand and the soil was air-dried. The
soil was sieved to separate large macro-aggregates (2–4 mm), macro-aggregates (1–2 mm),
meso-aggregates (0.25–1 mm) and micro-aggregates (<0.25 mm) according to Yang, Liu
& Zhang (2017). In brief, the undisturbed soil was shaken through four sieves (4, 2, 1 and,
0.25 mm) for 2 min, and the large macro-aggregates (2–4 mm) were collected from the
two mm sieve, macro-aggregates (1–2 mm) from the one mm sieve, and meso-aggregates
(0.25–1 mm) from the 0.25 mm sieve, and the micro-aggregates (<0.25 mm) were passed
through the 0.25 mm sieve. Soil aggregates were stored hermetically at room temperature
after until collecting the litter samples.

In September 2018, two types of plant litter (leaf and stem) were obtained from the
dominant species (Leymus chinensis) in the same location from where the soil samples were
collected. The litter was brought to the laboratory, and dried at 65 ◦C to constant weight.
In order to avoid the effects of litter size on decomposition, the plant litter was cut into
ca. 1-cm-long sections for the incubation experiment. Some basic characteristics for the
soils in Table 1 were cited from our previous studies (Yang, Li & Zhang, 2019; Yang, Liu &
Zhang, 2017; Yang, Liu & Zhang, 2019).

Experimental design and incubation study
The three replicates of air-dried soil samples (200 g dry weight) of each aggregate size class
(2–4, 1–2, 0.25–1, and <0.25 mm) were placed at the bottom of 1,000 mL jars. The jars
were new and unused, and we did not sterilize them beforehand because our incubator has
the function of ultraviolet sterilization. The two plant litter types (3 g of dry matter) were
combined with 200 g of dry soil in the microcosms. Although air drying of soil sample is
not representative of the communities that originally existed in the soil, it can represent
the difference in the distribution of microbes in our incubation conditions (Yang, Liu &
Zhang, 2019). No litter addition was used as the control check (CK). There were a total of
72 microcosms (4 aggregate size× 3 litter types× 3 replications× 2 sampling times). The
moisture content was adjusted to 30% by weighing each microcosm and adding distilled
water, and 30% is the maximum field water capacity of the soil (Yang, Liu & Zhang, 2019).
Each jar was covered with perforated cling film to reduce humidity loss while allowing
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gaseous exchange. The jars were pre-incubated for 3 days at a constant temperature of
25 ◦C. After the pre incubation period, the jars weremaintained for 56 days at 25 ◦C. During
the 56-day incubation, the soil moisture of each microcosm was maintained consistently
by weighing each microcosm every week and adding distilled water. After 28 and 56 days
of incubation, 36 microcosms were retrieved, respectively. Litter was removed from each
microcosm, cleaned with water to remove adhering soil particles, dried (65 ◦C, 48 h) and
weighed.

Soil aggregate respiration measurements
Soil aggregate respiration was measured at the end of the incubation. In brief, small vials
with five mL of 1 MNaOH were placed in the incubation jars to trap CO2 for 24 h. The soil
respiration (g CO2- C g−1 soil day−1) was estimated by titrating two mL NaOH from each
trap with 0.1 M HCl after adding two mL 1 M BaCl2 (1:1) and a phenolphthalein indicator
using a Digital Burette continuous E (VITLAB, Grossostheim, Germany) according to Yang
et al. (2018). At the end of the soil respiration incubation, 10 g of soil sample was collected
immediately after the removal of the plant litter and stored at −80 ◦C for microbiological
sequencing. The remaining soil samples were air-dried for SOC and pH assays. SOC
concentration was measured using an elemental analyzer (TOC, Elementar, Germany),
and soil total nitrogen (TN) was measured using the FOSS Kjeltec 2300 Analyser Unit
(FOSS, Hillerød, Sweden). Soil pH was determined after shaking a soil water (1: 2.5 wt/vol)
suspension for 30 min.

Soil DNA extraction and sequencing
Genomic DNA was extracted from each soil aggregate sample using an E.Z.N.A. R©

stool DNA Kit (Omega Bio-tek, Norcross, GA, USA) according to the manufacturer’s
instructions. All extracted DNA samples were stored at−20 ◦C before further analysis. The
V3-V4 regions of the bacterial 16S rRNA gene were amplified using universal primers 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-
3′) (Lane et al., 1985), and the fungal ITS gene was amplified by the ITS1 (5′-
CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′)
primers (White et al., 1990). The PCR program was as follows: 5 min initial denaturation
at 95 ◦C; 25 cycles of denaturation at 95 ◦C (30 s), annealing at 56 ◦C (30 s), elongation
at 72 ◦C (40 s); and a final extension at 72 ◦C for 10 min. PCR reactions were performed
in triplicate 25 µL mixtures containing 2.5 µL of 10× Pyrobest Buffer, 2 µL of 2.5 Mm
dNTPs, 1 µL of each primer (10 Mm), 0.4 U of Pyrobest DNA Polymerase (TaKaRa), and
15 ng of template DNA. The amplicon mixture sequenced on an Illumina HiSeq 2500
platform (Biomaker, Beijing).

Processing of sequencing data
The extraction of high-quality sequences was first conducted with the QIIME package
(Quantitative Insights Into Microbial Ecology) (v1.2.1). The original sequence data were
sorted into valid reads after demultiplexing and quality-filtering with the following rules:
(i) 300-bp reads were truncated at any site receiving an average quality score of <20 over
a 50-bp sliding window, and truncated reads shorter than 50 bp were discarded; (ii) exact
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barcode matching, less than two nucleotide mismatches in the primer, and no ambiguous
characters in the read; (iii) only overlapping sequences longer than 10 bp were assembled
according to their overlapped sequence (Chen et al., 2018). The unique sequence set was
classified into operational taxonomic units (OTUs) under the threshold of 97% identity
using UCLUST.

Statistical analysis
The Shannon index was calculated as follows (Begon, Harper & Townsend, 1986):

Shannon =−
∑(

Ni
N

)
ln
(
Ni
N

)
;

where N is the total OTUs of the sample, Ni is the number of individuals in group i.
The SOC, TN, and C/N ratios for the soil aggregates and plant litter were analyzed

using a one-way analysis of variance (ANOVA) with a least significant difference (LSD)
test at a significance level of P < 0.05 using SPSS, version 19.0. Two-way ANOVA was
used to test the effects of soil aggregate size and litter type on bacterial Shannon, fungal
Shannon, SOC, CO2 release, soil pH and litter mass loss. The structural changes in the soil
bacterial and fungal phyla were tested by nonmetric multidimensional scaling (NMDS)
based on Bray-Curtis similarity matrices using CANOCO, version 5.0. The relationship
between environmental variables (pH and SOC) and bacterial/fungal communities were
tested by redundancy analysis (RDA) using CANOCO. For RDA analysis, the significance
of the effect of each variable, based on its eigenvalue, was tested using the Monte Carlo
Permutation test, and the resulting significance level was determined by the F ratio and P-
value. Hypothetical relationships among SOC, soil pH, bacterial diversity, fungal diversity,
and soil respiration were quantified by structural equation modeling (SEM) using AMOS,
version 21.0, and we used the non-significant chi-square (χ2) test (the model has a good
fit when 0≤χ2

≤ 2 and 0.05 < P ≤ 1.00) and the root mean square error of approximation
(RMSEA, the model has a good fit when 0 ≤ RMSEA ≤ 0.05 and 0.10 < P ≤ 1.00) to test
the goodness of the model according to Yang, Liu & Zhang (2019).

RESULTS
Microbial diversities and properties of the soil aggregates
The microbial diversities and properties of the soil are listed in Table 2. According to
the two-way ANOVA, the 1–2 mm aggregate had the highest bacterial Shannon and CO2

release in CK and leaf addition treatments, and the SOC in the <0.25 mm aggregate was
higher than that in the others across the treatments. Soil pH in the 0.25–1 mm aggregate
was higher than that in the others across the treatments. In two litter addition treatments,
the litter mass loss in the 1–2 mm and 2–4 mm aggregate was significantly higher than that
in 0.25–1 mm and <0.25 mm soil aggregate on both day 28 and day 56.

Response of soil bacteria and fungi to litter addition
The soil bacterial and fungal community structures of the four aggregates were distinct
from each other in the NMDS plots in the three litter-addition treatments (Fig. 1). The
relative abundances of the dominant bacterial and fungal phyla in the soil aggregates
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Table 2 Diversity of the bacterial and fungal communities and soil properties in each aggregate under litter addition conditions.

Litter
addition

Sizes Bacterial
Shannon

Fungal
Shannon

Soil organic
carbon (g kg−1)

CO2 release
(mg C kg−1 day−1)

Soil pH Litter mass loss (%)

Day 28 Day 56

CK 2–4 mm 6.75(0.10) 4.06(0.16) 13.19(0.05) 61.78(4.9) 7.93(0.01)
1–2 mm 6.96(0.03) 3.19(0.07) 11.39(0.10) 89.47(3.5) 8.02(0.01)
0.25–1 mm 6.83(0.04) 3.52(0.30) 5.12(0.01) 23.28(3.5) 8.25(0.01)
<0.25 mm 6.87(0.04) 4.01(0.04) 14.10(0.04) 43.28(3.5) 8.02(0.01)

Leaf 2–4 mm 6.77(0.03) 2.43(0.04) 14.65(0.10) 213.95(3.8) 7.77(0.01) 29.3(3.2) 39.4(2.0)
1–2 mm 6.87(0.06) 2.47(0.05) 14.66(0.10) 281.60(0.8) 7.82(0.01) 32.4(1.0) 43.3(1.5)
0.25–1 mm 6.72(0.02) 2.51(0.08) 8.60(0.10) 148.68(1.4) 7.87(0.01) 25.9(2.0) 33.9(2.1)
<0.25 mm 6.73(0.03) 2.45(0.08) 16.87(0.20) 178.68(1.4) 7.73(0.01) 16.9(2.1) 21.9(2.0)

Stem 2–4 mm 6.81(0.04) 2.77(0.02) 14.29(0.12) 160.42(4.9) 7.87(0.01) 26.3(3.0) 36.3(1.5)
1–2 mm 6.82(0.03) 2.90(0.1) 13.61(0.10) 207.17(5.1) 7.91(0.01) 29.8(2.0) 40.8(3.0)
0.25–1 mm 6.65(0.05) 2.80(0.04) 9.00(0.50) 24.75(7.3) 8.03(0.02) 22.1(2.1) 30.1(3.0)
<0.25 mm 6.85(0.01) 2.47(0.15) 16.66(0.04) 49.75(7.3) 7.85(0.01) 10.9(3.0) 15.9(2.0)

Two-way ANOVA

Litter * *** *** *** *** ** **

Sizes ** ** *** *** *** *** ***

Litter× Sizes ns *** *** *** *** *** ***

Notes.
Values are means (±SE) of three measurements.
The highest value among the four aggregate sizes are in bold.
Level of significance:
*P < 0.05.
**P < 0.01.
***P < 0.001.
ns. not significant.

are presented in Fig. 2. Proteobacteria and Acidobacteria were the main microflora in the
soil aggregates in all three treatments, accounting for about 60% of the total abundance
(Figs. 2A–2C). The relative abundance of Ascomycota was higher in the 2–4 mm and <0.25
mm aggregates than in the 1–2 mm and 0.25–1 mm aggregates in the treatment without
leaf and stem addition, and the relative abundance of Aphelidiomycota was lower in the 2–4
mm and <0.25 mm aggregates than in the 1–2 mm and 0.25–1 mm aggregates (Fig. 2D).
However, leaf and stem addition increased the relative abundance of Ascomycota and
Aphelidiomycota dramatically (Figs. 2E and 2F). The response of soil bacteria to leaf and
stem addition was weak, changing less than 10% compare with the treatment lacking litter
addition. Leaf and stem addition increased the relative abundance of Proteobacteria and
Bacteroidetes, but decreased the relative abundance of Acidobacteria, Gemmatimonadetes,
and Actinobacteria (Figs. 3A, 3B). However, the changes in soil fungi in response to leaf
and stem addition were approximately 40% compared with no litter addition treatment,
and the relative abundance of Ascomycota and Aphelidiomycota increased more than 10%
following the addition of leaf litter (Figs. 3C, 3D).

The relationship between soil properties and microbial diversities
RDA biplots were used to assess the physicochemical properties that influenced the
abundance of the bacterial and fungal families. Overall, the combination of variables
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Figure 1 Nonmetric multidimensional scaling (NMDS) ordinations based on the mean abundance value of the bacterial phyla under no lit-
ter addition (A), leaf addition (B), and stem addition (C), and the fungal phyla under no litter addition (D), leaf addition (E), and stem addition
(F). Communities are indicated by colored symbols as follows: red circles, 2–4 mm; blue triangles,1–2 mm; green plus signs, 0.25–1 mm, and purple
times signs,<0.25 mm.

Full-size DOI: 10.7717/peerj.8078/fig-1

explained 65.9% and 31.5% of the bacterial (Fig. 4A) and fungal (Fig. 4B) community
structure variances, respectively. Significant correlation was found between soil pH and
soil bacterial communities (F = 7.51, P = 0.008), and SOC was also significantly correlated
with the bacterial communities (F = 5.91, P = 0.028). In addition, the fungal communities
were significantly correlated with the soil pH (F = 4.42, P = 0.042) but not by SOC
(F = 2.41, P = 0.091).

The SEM showed a good fit between soil pH, microbial diversity, SOC, and respiration
(Fig. 5; χ 2 = 0.07, P = 0.79; RMSEA = 0.00, P = 0.80). The fitted models explained 65%
and 59% of the variance in SOC concentrations and CO2 release, respectively (Fig. 5A).
Although an interaction was detected, there was no significant correlation between soil
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Figure 2 The relative abundances of the bacterial (A–C) and fungal phyla (D–F) in different sized ag-
gregates. The abundances that accounted for<1% of all of the classified sequences belong to Others in
the bar graph.

Full-size DOI: 10.7717/peerj.8078/fig-2

bacterial and fungal diversity with a correlation coefficient (R2) of 0.14. The SEM showed
a significant interrelationship between fungal diversity and soil pH (R2

= 0.61, P < 0.001).
The bacterial Shannon index indicated a significantly positive and direct effect on SOC
concentrations and CO2 release (P < 0.05), while the fungal Shannon index showed
significantly correlated with SOC concentrations (P < 0.001). In addition, soil pH was
significantly negatively correlated with SOC concentrations and CO2 release (P < 0.001).
The standardized total effects derived from the SEM revealed that SOC concentrations
were mainly driven by soil pH, followed by the fungal and bacterial Shannon index, while
CO2 release was mainly driven by soil pH, followed by the bacterial and fungal Shannon
index (Fig. 5B)

DISCUSSION
Bacterial and fungal diversity in soil aggregates
Soil microbial diversity can better explain respiration than soil microbial biomass (Yang,
Liu & Zhang, 2019). Furthermore, as macro-aggregates are generally dominated by soil
fungi (Frey, 2005), our study considered the diversity of both the soil bacteria and soil fungi.
The 1–2 mm aggregate possessed both the highest bacterial Shannon and the lowest fungal
Shannon under no litter addition, implying that soil bacteria and fungi in the same resources
and spaces undergo interspecies interactions at the surface of themacro-aggregates (Effmert
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Figure 3 The changed abundances of the dominant bacterial (A, B) and fungal phyla (C, D) in
different-sized aggregates under litter addition compared with no litter addition. The abundances that
accounted for<1% of all of the classified sequences belong to Others in the bar graph.

Full-size DOI: 10.7717/peerj.8078/fig-3

et al., 2012), and in this aggregate, bacterial diversity is favored. Litter addition eventually
resulted in increased respiration; however, the Shannon index of both the bacteria and fungi
decreased in the litter-addition treatment compared with no litter addition. Bamminger et
al. (2014) suggested that litter addition increases microbial biomass and results in a shift
in the composition of the soil microbial community, especially for soil fungi, which is
consistent with the present study. The relative abundance of individual species will increase
dramatically with the addition of litter, particularly that of soil fungi, resulting in a decline
in microbial diversity.

Response of soil bacteria and fungi to litter addition in soil
aggregates
Adding leaf litter to the soil has a positive effect on the soil microbial community as a
result of the increased carbon and nutrient resources (Fanin & Bertrand, 2016). Bacterial
communities are characterized by a series of colonizers during litter decomposition, with
Proteobacteria, Actinobacteria and Bacteroidetes being the most abundant taxa found over
the entire decomposition process (Purahong et al., 2016; Tlaskal, Voriskova & Baldrian,
2016). Our study demonstrates that Proteobacteria, Actinobacteria, Gemmatimonadetes and
Bacteroidetes are the four most-important bacterial phyla within different aggregate sizes
and litter addition treatments. In addition, Sun et al. (2017) found that bacterial abundance

Li and Yang (2019), PeerJ, DOI 10.7717/peerj.8078 9/15

https://peerj.com
https://doi.org/10.7717/peerj.8078/fig-3
http://dx.doi.org/10.7717/peerj.8078


Figure 4 The redundancy analysis (RDA) showing the impact of soil properties (SOC and pH) on bac-
terial (A) and fungal (B) community structures. The significance of the effect of each variable, based on
its eigenvalue, was tested using the Monte Carlo Permutation test, and the resulting significance level was
determined by the F ratio and P-value. Communities are indicated by symbols as follows: circles, no litter
addition; squares, leaf addition; diamonds, stem addition.

Full-size DOI: 10.7717/peerj.8078/fig-4

Figure 5 Structural equationmodel (SEM) based on the effects of the bacterial and fungal Shannon in-
dex on soil pH, SOC, and respiration under litter addition conditions (A), and their standardized total
effects (direct plus indirect effects) derived from the structural equationmodels of SOC and CO2 re-
lease (B). Continuous and dashed arrows indicate positive and negative relationships, respectively. The
width of the arrows is proportional to the strength of the path coefficients. R2 indicates the proportion of
the variance explained and appears above every response variable in the model.

Full-size DOI: 10.7717/peerj.8078/fig-5
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did not show a significant change following the addition of leaf litter, which corroborates
the observations made in the present study. Liang et al. (2017) suggest that the addition
of residues alters the soil microbial community composition and promotes fungal growth
more than bacterial growth, which is in agreement with other studies that found that soil
microorganisms respond to altered residue modifications by changing their community
composition (Phillips et al., 2002) and also supports the observation that saprophytic fungi
play a major role in the decomposition of residues (Meidute, Demoling & Baath, 2008).
Indeed, the fungal relative abundances in our study changed significantly following leaf
litter addition, particularly Ascomycota and Aphelidiomycota. Given that Aphelidiomycota
are not typical soil fungi, but widely present in soil when litter was added, its role in litter
decomposition requires further study.

Interactions between soil pH, SOC and microbial diversity after litter
addition
There is increasing evidence that soil microbial communities influence litter decomposition
rates over and above the climate and litter quality controls (Bradford et al., 2016; Schimel
& Schaeffer, 2012). Adding leaf litter to the soil increases the SOC and soil pH (Sun et al.,
2017), and the soil pH tends to be neutral after adding litter to acid soil. Similarity, in the
present study, the soil pH decreased and tended to neutralize following litter addition,
implying that litter addition regulates the acid–base balance of the soil. In addition, Rousk et
al. (2010) suggested that soil pH has a strong influence on the diversity and composition of
soil bacterial and fungal communities across a gradient. In contrast, soil microbial diversity
also influences soil pH. In the present study, soil fungal diversity decreased after litter
addition, which decreased the soil pH. The composition and diversity of the soil fungal
and bacterial communities are thus often strongly correlated with soil pH (Lauber et al.,
2009). In addition, the SEM showed a significant interrelationship between fungal diversity
and soil pH, and fungal diversity showed significant correlations with SOC concentrations,
especially in the microenvironment of litter addition. The standardized total effects derived
from the SEM revealed that SOC concentrations were mainly driven by soil pH, followed
by the fungal and bacterial diversity, while CO2 release was mainly driven by soil pH,
followed by the bacterial and fungal diversity. Such datasets are valuable in advancing our
understanding of the role of different groups of microorganisms in soil and how microbial
activities in the soil in response to litter addition contributes to nutrient fluxes in specific
soil environments.

CONCLUSIONS
Our study shows a highly different response of bacteria and fungi in soil aggregates to
litter addition. Litter addition increased the relative abundance of Proteobacteria and
Bacteroidetes, but decreased the relative abundance of Acidobacteria, Gemmatimonadetes,
and Actinobacteria. The relative abundance of Ascomycota was higher in the 2–4 mm and
<0.25 mm aggregates than in the 1–2 mm and 0.25–1 mm aggregates in the treatment
without litter addition, and the relative abundance of Aphelidiomycota was lower in the
2–4 mm and <0.25 mm aggregates than in the 1–2 mm and 0.25–1 mm aggregates. Soil pH

Li and Yang (2019), PeerJ, DOI 10.7717/peerj.8078 11/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.8078


and SOC were found to be the determining factors shaping the bacterial communities. The
bacterial Shannon index had a significantly positive and direct effect on SOC concentration
and CO2 release, while the fungal Shannon index showed a significant correlation with
SOC concentration. Our results indicate that soil bacterial diversity contributes positively
to both carbon emissions and carbon storage, whereas soil fungal diversity can promote
carbon storage and decrease carbon emissions.
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