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ABSTRACT
Measurement of the apparent conductivity of salt marsh sediments using electro-
magnetic induction (EMI) is a rapid alternative to traditional methods of salinity
determination that can be used to map soil salinity across a marsh surface. Soil salinity
measures can provide information about marsh processes, since salinity is important
in determining the structure and function of tidally influenced marsh communities.
While EMI has been shown to accurately reflect salinity to a specified depth, more
information is needed on the potential for spatial and temporal variability in apparent
conductivity measures that may impact the interpretation of salinity data. In this study
wemapped soil salinity at two salt marshes in the Narragansett Bay, RI estuary monthly
over the course of several years to examine spatial and temporal trends inmarsh salinity.
Mean monthly calculated salinity was 25.8 ± 5.5 ppt at Narrow River marsh (NAR),
located near the mouth of the Bay, and 17.7 ± 5.3 ppt at Passeonkquis marsh (PAS)
located in the upper Bay. Salinity varied seasonally with both marshes, showing the
lowest values (16.3 and 8.3 ppt, respectively) in April and highest values (35.4 and 26.2
ppt, respectively) in August. Contour plots of calculated salinities showed that while the
mean whole-marsh calculated salinity at both sites changed over time, within-marsh
patterns of higher versus lower salinity were maintained at NAR but changed over time
at PAS. Calculated salinity was significantly negatively correlated with elevation at NAR
during a sub-set of 12 sample events, but not at PAS. Best-supported linear regression
models for both sites included one-month and 6-month cumulative rainfall, and tide
state as potential factors driving observed changes in calculated salinity. Mapping
apparent conductivity of salt marsh sediments may be useful both identifying within-
marsh micro-habitats, and documenting marsh-wide changes in salinity over time.

Subjects Ecosystem Science, Soil Science, Aquatic and Marine Chemistry
Keywords Tidal marsh, Apparent conductivity, Soil salinity

INTRODUCTION
Salt marshes are productive ecosystems that by nature of their position in the landscape are
subject to many natural and anthropogenic stressors. In the Northeast US there is concern
about the impact of accelerated sea level rise on salt marsh hydrology (e.g., Watson et al.,
2017), and how changes in marsh flooding might impact vegetation community structure
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(Smith et al., 2017). Changes in vegetation communities may impact ecosystem services
provided by salt marshes, and hence may have implications for their conservation and role
in coastal ecosystems. For example, plant community structure can influence belowground
biomass accumulation, which in northeastern US salt marshes is an important mechanism
for marsh accretion that can mitigate the effects of sea-level rise (Bricker-Urso et al., 1989;
Turner, Swenson & Milan, 2000). Alteration of vegetation community structure may also
impact the provision of other ecosystem services such as nutrient storage, habitat availability
for fauna, and fisheries production (Kelleway et al., 2017).

Tidal inundation is an important determinant of salt marsh vegetation community
structure, realized in part through the species-specific differences in physiological responses
of plants to salinity. As sea level rises the extent of tidal inundation will increase, potentially
altering the distribution of plant species across a marsh. Since increased inundation
will alter soil porewater salinity, and the primary route of water uptake in salt marsh
plants is through porewater (e.g., Al Hassan et al., 2017), measurement of soil porewater
salinity could provide insight into potential vegetation community changes resulting
from sea-level rise (Silvestri & Marani, 2004). However, few studies have examined whole-
marsh porewater salinity, in part because of the labor-intensive sampling required and the
difficulty in consistently obtaining porewater samples at depth. An alternative is to estimate
salt marsh porewater salinity by measuring the apparent conductivity (ECa) of salt marsh
sediments using electromagnetic induction, which can generate sufficient data over the
course of several hours to map soil salinity across a marsh surface. This approach provides
estimates of soil salinity even in areas where the saturated zone is deep, or where there are
clay or fine sediment layers with low hydraulic conductivity rendering porewater difficult
to sample.

Measurement of ECa in soils has been used since the mid-20th century to aid in mineral
and petroleum exploration and extraction, and over the past 40 years to characterize
the salinity of agricultural soils (DeJong et al., 1979). More recently the emergence of
portable instrumentation capable of rapid field measurements has allowed for its use in
the estimation of other soil parameters (Robinson et al., 2004). In simplest terms, at a given
temperature ECa is primarily influenced by four characteristics: soil composition, i.e,
mineral or clay content; bulk density; moisture content; and ion concentrations, which can
be representative of soil salinity (Corwin & Lesch, 2005). Each of these characteristics affects
the bulk conductivity of soils, which in turn influences the extent to which an induced
electromagnetic field can be generated through the soil. ECa is determined bymeasuring this
induced electromagnetic field, which in turn reflects the average conductivity, influenced
by all soil characteristics, over a volume of soil (Doolittle, Petersen & Wheeler, 2001).
Differences in instrument response can be experimentally calibrated to changes in a
selected soil characteristic, allowing, under the assumption that all other characteristics are
constant, for a proxy measure of changes in that characteristic in the soil.

Application of ECa measures in salt marshes to map soil porewater salinity was
first explored in the early 2000s (Paine et al., 2004) but later developed by Moore et al.
(2011). The approach uses an electromagnetic induction (EMI) instrument to measure
ECa at a series of sample points across a marsh surface. At a subset of sample points,
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ECa is calibrated with soil porewater salinity, measured using a sipper technique
(Portnoy & Valiela, 1997). The resulting calibration curve is then used to calculate salinity
based solely on ECa, which can then be mapped in a GIS to develop contours of salinity
values across the marsh surface. This technique has been used to examine the relationship
between plant species distribution and soil salinity during the growing season, but to our
knowledge no earlier studies have looked at inter-annual changes in soil salinity patterns.
In this study, we measured ECa across two southern New England salt marshes along an
estuarine salinity gradient over a period of 2 years to investigate intra-marsh variability in
soil salinity, as well as potential drivers of seasonal changes in mean salinity observed at
each marsh. The underlying assumption of this technique is that in uniformly saturated
soils, such as those found in salt marshes, the contribution of soil moisture content to ECa

will be constant, and that variability contributed by other soil characteristics is limited, such
that changes in ECa values will accurately reflect changes in porewater salinity. To begin to
evaluate the validity of this assumption, we also examined changes in the relationship of
ECa and measured porewater salinity at our sites with respect to potentially confounding
factors such as bulk density, percent moisture of the soil, and marsh elevation. Our results
will provide information about the magnitude of seasonal salinity change observed at
a marsh, as well as identify potential drivers of that change. Our study will also aid in
evaluating ECa as a surrogate for porewater salinity, provide insight into potential factors
influencing ECa in salt marsh soils, and help identify environmental factors that could
confound the relationship between ECa and salinity. This information may allow for more
widespread application of the technique, for example to use in monitoring the trajectory
of marsh degradation or recovery during salt marsh restoration efforts.

MATERIALS & METHODS
Site descriptions
The study area was two salt marshes sites located in the Narragansett Bay estuary, Rhode
Island, USA (Fig. 1). The southern site (NAR) was near the mouth of the Pettaquamscutt
sub-estuary (41◦26′49.6′′N, 71◦26′58.0′′W), and had a total area of 5.89 ha. The upland edge
of the site was bordered by an equal proportion of private residences and forest habitat.
The marsh surface consisted of low marsh habitat dominated by short form Spartina
alterniflora, and high marsh habitat dominated by Spartina patens, Distichlis spicata, and
Juncus gerardii. The high marsh—upland border consisted primarily of Iva frutescens, and
small patches of Typha spp. and Schoenoplectus spp. The northern site (PAS) was within
the Passeonkquis Cove sub-estuary (41◦44′52.8′′N, 71◦23′5.2′′W), and had a total area of
2.35 ha. The upland edge of the site was bordered by an approximately 100m-wide patch
of trees and dense understory vegetation, transitioning to dense residential land use. The
marsh surface consisted of low marsh habitat dominated by tall form Spartina alterniflora,
and high marsh habitat dominated by Spartina patens and Distichlis spicata. The high
marsh—upland border consisted primarily of Iva frutescens, with a 0.68 ha patch of Typha
spp. at the northern edge of the border.
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Figure 1 Location of the two salt marsh study sites Narrow River marsh (NAR) and Passeonkquis
marsh (PAS) in the Narragansett Bay estuary, Rhode Island, USA.

Full-size DOI: 10.7717/peerj.8074/fig-1

Field measurements
A Geonics Model EM38-MK 2 Conductivity Meter (Geonics Ltd, Mississauga, Ontario,
Canada) was used in horizontal mode, held 50 cm over the marsh surface, to record ECa

readings. The readings were the result of an induced current generated by the instrument
through a maximum penetration depth of approximately 1.0 m of soil at randomly
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distributed sample points across each marsh surface (Geonics Limited, 2014). ECa values in
milliSeimans meter−1 (mS m−1) along with the latitude and longitude of the sample point
and vegetation characteristics were entered into an ArcGIS shapefile using ArcPad software
(ESRI, Redlands, CA) on a Trimble Nomad hand-held field computer (Trimble Navigation
Ltd., Sunnyvale, CA USA). Samples were taken approximately every 30 days beginning
October, 2015 through October 2017 (n= 24 sample events). Both sites were surveyed on
the same day at approximate 10:00 am (NAR site) and 12:00 pm (PAS site). The surveys
consisted of a random transect pattern walked across the marsh surface, with ECa values,
vegetation characteristics, and sample point position recorded approximately every 5 m.
Porewater salinity measures were taken at a randomly selected sub-set of sample points
(mean frequency of 29.6% of the points across both marshes) using a sipper consisting of
a 0.5 m long piece of 1.0 mm diameter serrated metal tubing inserted in the soil to a depth
of 0.25 m. Once inserted, approximately 25 ml of porewater was withdrawn and its salinity
measured using a refractometer. Porewater salinity readings, when taken, were also stored
in the ArcGIS shapefile.

Following field sampling, shapefiles were transferred to a GIS where contour maps of
calculated salinity across each marsh surface were created using the ArcGIS version 10.3
Spatial Data Analyst, inverse distance-weighted interpolation function (ESRI, Redlands,
CA). ECa data were first converted to calculated salinity values using marsh and survey-
specific calibration curves constructed from a least-squares regression of ECa values and
measured porewater salinities. Calculated salinity values were then used in the ArcGIS
software inverse distance-weighted interpolation function to create marsh-specific contour
maps for each sample event.

Elevation values were collected using an RTK GPS Global Navigation Satellite System
(GNSS) receiver (Trimble Navigation Limited, Dayton, Ohio) at approximately 100
locations per marsh. Each sample location was selected at approximately 5 m intervals
along randomly-placed transects across the marsh surface. Elevations were referenced to
nearby benchmarks, and the WGS84 ellipsoid model was used to determine vertical and
horizontal position. The National Geodetic Survey Geoid 12A (CONUS) model was used
to calculate elevations from orthometric heights (North American Vertical Datum of 1988
[NAVD88]), and all points were projected to North American Datum of 1983 (NAD83)
Universal TransverseMercator zone 19. Digital elevationmodels (DEMs)were created from
survey points using the inverse distance weighting function in ArcGIS software. Elevation
values corresponding to sample point locations were interpolated from the DEMs for
12 sample events corresponding to maxima and minima values of mean whole-marsh
calculated salinity. Three sample events were chosen to bracket each of two occurrences of
maxima and minima over the course of the study. Interpolated elevations ranged from 0.24
to 0.76 m above mean sea level (MSL) for NAR, and from 0.49 to 1.04 ft above MSL for
PAS. We estimated bulk density and moisture content of soil by collecting 6 soil cores of 25
cm depth along a randomly-placed transect from the upland to seaward edge at each site.
Two cores were collected at the mid-point of the high and low marsh zones as determined
by dominant plant species, and at the mid-point of the transect (mid marsh). Each core was
sectioned in 5 cm increments and a soil subsample from each depth was weighed, dried,
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and then re-weighed to determine bulk density and percent moisture. Permission for this
non-invasive field study was provided by RI Department of Environmental Management,
under collection permits #2015-31-F–2018-31-F.

Total rainfall was obtained from the NOAA National Centers for Environmental
Information, Climate Data Online website (https://www.ncdc.noaa.gov/cdo-web/)
for the stations Kingston, RI (41◦29′25.1′′N, 71◦32′34.8′′W), located approximately
9 km northwest of NAR, and Providence, RI (41◦50′33.7′′N, 71◦23′6.7′′W), located
approximately 10.5 km north of PAS. Daily rainfall amounts were aggregated into
cumulative amounts over 24 h, 36 h, 1 month, 3 month, and 6 month periods prior to
each sample event. Using Spearman Rank Correlation analysis we found that 24 h and 36
h values were significantly correlated (r2= 0.88, p= 0.001), as were 1 month and 3 month
cumulative values (r2= 0.45, p= 0.001). We therefore included only 24 h, 1 month, and 6
month cumulative rainfall in linear regression models to examine the effect of cumulative
rainfall and tide height on mean calculated salinity. Tide heights were obtained using
online tide charts containing the time of low and high tides and corresponding tide heights
relative tomean lowwater (NOAATides andCurrents, https://tidesandcurrents.noaa.gov/).
We used data from sites at Narragansett Pier, RI (41◦25′56.0′′N, 71◦27′25.2′′W) located
approximately 2 km south of NAR, and Pawtuxet Cove, RI (41◦44′53.6′′N, 71◦23′0.6′′W)
located approximately 1.3 km north of PAS. Tide height was extrapolated at time of
sampling from predicted tide ranges and expressed as a proportion of the maximum tide
height for the tide cycle during which the sample occurred.

Data analysis
We examined temporal variability in calculated salinity for each marsh by plotting mean
calculated salinity versus sample date. Calculated salinities were derived from ECa data that
were converted to calculated salinity values using marsh and survey-specific calibration
curves constructed from a least-squares regression of ECa values and measured porewater
salinities at points where sipper measurements were taken. The slopes of the calibration
curves ranged from 0.018 to 0.081 (mean 0.044 ± 0.016) at NAR, and from −0.099 to
0.144 (mean 0.054± 0.016) at PAS. Coefficients of determination ranged from 0.12 to 0.92
(mean 0.49 ± 0.19) at NAR, and from 0.01 to 0.84 (mean 0.40 ± 0.22) at PAS.

The effect of cumulative rainfall and tide height on mean calculated salinity in the
marsh was examined by constructing a series of linear regression models and evaluating
the models using small sample Akaike Information Criteria (AICc), which accounts for
biases that might arise from relatively small sample size (Burnham & Anderson, 2002).
Candidate linear regression models (n= 15) were ranked by computing AICc differences
or Akaike weights as 1AICc = AICci − AICcmin (Burnham & Anderson, 2002, pp. 70–72).
We then selected models best supported by the data as having 1AICc values between 0.00
and 2.00 (Burnham & Anderson, 2002, pp. 75–77), and calculated the relative importance
(w+ (j)) of each parameter by summing the Akaike weights of all models that included
this characteristic (Burnham & Anderson, 2002, pp. 167–169). Relative importance values
provide ameans to incorporate selection uncertainty in the evaluation of a set of parameters,
and larger values of w+(j) indicate whether a parameter may be a better predictor variable
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(Burnham & Anderson, 2002). Statistical analyses were performed with SAS for Windows
ver. 9.41 (SAS Institute, Inc., Cary, NC, USA).

We examined intra-marsh spatial and temporal variability in calculated salinity by
plotting calculated salinity versus elevation at the sample points. We used least-squares
regression of calculated salinity and corresponding elevation values obtained using the
DEM for a given marsh and sample event for a sub-set of 12 sampling events chosen to
correspond with maxima and minima in mean salinity values observed over time. We then
compared regression statistics to trends in overall mean salinity for each marsh over time.

RESULTS
For the NAR marsh, salinity was high at the seaward edge and low at the terrestrial border
across the spring to fall growing season (Fig. 2). For PAS, contour plots show a more
uniform distribution of salinity values across the marsh surface, particularly at calculated
salinity minima (Fig. 3). During the October 2017 calculated salinity maximum, there was
some evidence of a pattern of lower salinity towards the upland border (Fig. 3A, upper
edge of the marsh in the plot), but that pattern was not evident during the other maximum
or the minima.

The calibration coefficients for the least-squares regressions of porewater salinity versus
conductivity for the 24 sample events ranged from 0.13 to 0.92 at the NAR site and
0.01–0.75 at PAS (Table 1). The coefficients, as well as error prediction parameters, were
highly variable between events, without any consistent patterns or trends in the values
at either site. Calculated salinities for each sampling event at NAR ranged from 16.3 to
35.4 ppt, with an overall mean for the entire study of 25.8 ± 5.5 ppt (Table 2). Calculated
salinities at PAS ranged from 8.3 to 26.2 ppt, with an overall mean for the entire study of
17.7 ± 5.3 ppt (Table 2). While the overall mean calculated salinity showed a difference of
8.1 ppt between the two sites, for a given sample event the differences varied from 0.8 to
15.8 ppt. Mean calculated salinities for both sites showed maxima during the September
16, 2016 and October 27, 2017 sampling events (Fig. 4). Mean calculated salinities showed
minima during the May 4, 2016 and June 15, 2017 sampling events for NAR, and the May
4, 2016 and July 21, 2017 sampling events for PAS (Fig. 4).

Linear regression models of whole-marsh calculated salinity versus environmental
factors best supported by the data included one-month and 6-month cumulative rainfall
and tide state for both sites (Table 3). At NAR, 6-month cumulative rainfall had the highest
relative importance, about 1.7 times that of tide state and 3 times that of one-month
cumulative rainfall (Table 4). At PAS, the factors 6-month and one-month cumulative
rainfall had essentially equivalent relative importance, slightly greater than that of tidal
height (Table 4).

Soil bulk density ranged from 0.16 to 0.34 g cm−3 across the two sites (Table 5) and
differed amongmarsh zones at PAS (ANOVA: df = 2, F = 7.952, p= 0.006; Tukey–Kramer
test: lowmarsh differs significantly frommid and highmarsh). Soil percentmoisture ranged
from 69.0 to 84.3% (Table 5), and, when averaged across the entire marsh, was greater
at PAS (81.5 ± 3.6%) than at NAR (74.9 ± 11.5%; t -test: df = 28; t = 2.105; p= 0.044).
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Figure 2 Contour plots of calculated salinity across the marsh surface of NAR generated using inverse
distance weighted interpolation corresponding to the (A) and (B) mean calculated salinity maxima, and
(C) and (D) mean calculated salinity minima.

Full-size DOI: 10.7717/peerj.8074/fig-2

Percentmoisture also differed among zones at PAS (ANOVA: df = 2, F = 27.276, p< 0.001;
Tukey–Kramer test: low marsh differs significantly from mid and high marsh).

Calculated salinity was significantly negatively correlated with elevation at NAR during
the 12 sample events on or around the salinity maxima and minima (Table 6). Slopes of
the regression equations did not differ significantly between the maximum and minimum
events. Elevation at NAR across all sample points during the 12 sample events ranged from
1.06 to 1.90 ft, with a mean of 1.54 ft. At the PAS site, calculated salinity was significantly
negatively correlated with elevation for only the June and August 2017 maxima, and the
October 2016 and September 2017 minima (Table 6). At PAS slopes of the regression
equations also did not differ significantly between the maximum and minimum events.
Elevation at PAS across all sample points during the 12 sample events ranged from 0.62 to
1.02 m, with a mean of 0.87 m.
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Figure 3 Contour plots of calculated salinity across the marsh surface of PAS generated using inverse
distance weighted interpolation corresponding to the (A) and (B) mean calculated salinity maxima, and
(C) and (D) mean calculated salinity minima.

Full-size DOI: 10.7717/peerj.8074/fig-3

DISCUSSION
Contours of calculated salinity showed both inter- and intra-marsh differences at our sites,
and differences were variable over time throughout the study. At NAR, contours showed an
expected pattern of soil salinity with higher values near the creek edge and lower towards
the upland border. This pattern was generally maintained except during one period of high
salinity incorporating the September 16, 2016 sampling event, when overall marsh salinity
was at its highest. This sampling event followed a period of relatively severe drought in the
region which occurred from early spring through the fall of 2016. During this drought,
the impact of evapotranspiration on marsh hydrology may have been more pronounced
and could have resulted in reduced groundwater recharge from uplands, and hence greater
seawater influence. Several studies have modeled salt marsh groundwater dynamics and
water table position by considering groundwater flow as a shallow, rigid aquifer in contact
with a sinusoidally oscillating reservoir, and predicted the potential for greater seawater
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Table 1 Coefficients of calibration (root mean square error dependent means), sum of squared resid-
uals, predicted residual sum of squares, and calibration coefficients from least squares regressions of
apparent conductivity (ECa) values andmeasured porewater salinities for 24 sample events at the (a)
southern (NAR) and (b) northern (PAS) study sites.

(a.)
NAR sample
date

Coefficient of
variation

Sum of
squared
residuals

Predicted
residual sum
of squares

Calibration
coefficient
(r2)

30 Oct 2015 29.842 79191 110199 0.78
4 Dec 2015 39.236 97394 122353 0.56
30 Dec 2015 52.270 180068 223680 0.46
29 Jan 2016 49.536 180847 249408 0.16
7 Mar 2016 27.860 40988 64366 0.66
6 Apr 2016 63.626 156358 235861 0.13
4 May 2016 30.083 94784 124701 0.25
1 June 2016 18.678 15643 22136 0.92
24 June 2016 29.803 121322 164145 0.63
4 Aug 2016 29.259 182849 242562 0.44
16 Sept 2016 28.051 199277 271598 0.27
7 Oct 2016 22.674 128346 164483 0.61
28 Oct 2016 31.011 245924 303635 0.42
1 Dec 2016 28.961 530237 612677 0.41
30 Dec 2016 49.937 311022 367100 0.37
29 Jan 2017 34.739 192455 241947 0.41
2 Mar 2017 40.657 182386 205666 0.66
29 Mar 2017 51.991 285369 354594 0.37
3 May 2017 34.691 73862 218634 0.36
15 June 2017 43.591 265452 320012 0.44
21 July 2017 17.821 63612 101593 0.77
16 Aug 2017 32.059 293982 349819 0.51
14 Sept 2017 26.958 175088 208907 0.67
27 Oct 2017 28.873 153907 185583 0.54

(b.)
PAS sample
date

Coefficient
of variation

Sum of
squared
residuals

Predicted
residual sum of
squares

Calibration
coefficient
(r2)

30 Oct 2015 19.582 17318 26474 0.72
4 Dec 2015 15.152 5285 14160 0.12
30 Dec 2015 19.609 8638 17363 0.58
29 Jan 2016 22.107 11722 18318 0.31
7 Mar 2016 16.840 3413 6002 0.53
6 Apr 2016 14.834 2537 10192 0.34
4 May 2016 21.255 8471 15126 0.33
1 June 2016 21.049 8861 20611 0.13
24 June 2016 19.900 15849 49975 0.01

(continued on next page)
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Table 1 (continued)

(b.)
PAS sample
date

Coefficient
of variation

Sum of
squared
residuals

Predicted
residual sum of
squares

Calibration
coefficient
(r2)

4 Aug 2016 8.183 4505 7272 0.65
16 Sept 2016 14.158 18307 29701 0.19
7 Oct 2016 12.061 12432 16553 0.42
28 Oct 2016 13.408 14472 21083 0.29
1 Dec 2016 15.753 12759 17545 0.28
30 Dec 2016 13.911 6212 8928 0.59
29 Jan 2017 20.937 14154 20493 0.20
2 Mar 2017 22.898 20047 31109 0.29
29 Mar 2017 18.886 12726 15743 0.52
3 May 2017 20.705 9135 13823 0.59
15 June 2017 16.959 11120 18111 0.75
21 July 2017 18.769 10313 21309 0.13
16 Aug 2017 15.431 14303 19796 0.16
14 Sept 2017 14.038 14023 22991 0.52
27 Oct 2017 13.628 10648 18538 0.59

inflow in the absence of groundwater inputs (Montalto, Parlange & Steenhuis, 2007; Li &
Jiao, 2003). In northeast US salt marshes, seawater influence has been shown to diminish
as distance from tidal creeks increases (Hemmond & Fifield, 1982), but during periods of
extreme drought and lowered water table levels the effects of seawater inundation may
be seen even in more interior portions of the marsh. However, globally many factors
affect the characteristic salinity of tidal wetlands, and patterns that we observe locally may
not be apparent depending on wetland type and location (Mitsch & Gosselink, 2000). For
example, extensive freshwater inflow contributes to the characteristic salinities observed
in Mississippi delta, USA wetlands, and marshes can also be influenced by seawater inflow
can also exhibit uniform patterns of high soil salinity. Other examples of unique salinity
patterns in tidal wetlands include observed wider ranges of salinity in Australianmangroves
(Boto & Wellington, 1984), and higher overall salinities in Hudson Bay, Canada wetlands
that are attributed to fossil salt deposits (Price & Woo, 1988).

At PAS, intra-marsh differences were not as distinct, and the marsh often showed
homogeneous salinity patterns exemplified by the September 16, 2016 and July 21, 2017
sample events. This may have been a result of the marsh having a relatively small surface
area, or of enhanced surface freshwater and groundwater inputs. Elevation increases rapidly
in the upland area immediately bordering the marsh, and there is a small stream bordering
the western portion. If the steep elevation serves to focus groundwater to the marsh, that
along with the presence of the stream may result in lower salinity levels during times of the
year when there is little evapotranspiration, and the effect may predominate over that of
tidal inundation.

The NAR site is in the southern portion near the mouth of the Narragansett Bay estuary,
and this probably accounts for its measured mean whole-marsh calculated salinity being
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Table 2 Mean whole-marsh conductivity (±SE), measured porewater salinity, and calculated salin-
ity, and coefficients from least squares regressions used for calibration for 24 sample events at the (a)
southern (NAR) and (b) northern (PAS) study sites. Conductivity and calculated salinity were averaged
across all sample points on the marsh surface, and measured porewater salinity was averaged across the
sub-set of sample points where porewater was collected. Calibration coefficients for the corresponding cal-
ibration curves were constructed from a least squares regression of apparent conductivity (ECa) values and
measured porewater salinities.

(a.)
NAR sample
date

Mean
conductivity
(mSm−1)

Mean
measured
porewater
salinity (ppt)

Mean
calculated
salinity
(ppt)

Calibration
Coefficient
(r2)

30 Oct 2015 317.7± 24.5 24.3± 4.0 23.4± 1.5 0.78
4 Dec 2015 238.4± 18.8 25.1± 2.9 26.2± 1.3 0.56
30 Dec 2015 249.4± 21.4 23.7± 3.1 24.5± 1.0 0.46
29 Jan 2016 222.7± 20.5 25.6± 2.4 24.7± 0.8 0.16
7 Mar 2016 213.6± 20.2 22.8± 3.8 18.2± 1.6 0.66
6 Apr 2016 191.6± 17.8 21.4± 2.3 21.5± 0.8 0.13
4 May 2016 193.6± 18.3 20.0± 2.5 16.3± 0.9 0.25
1 June 2016 261.5± 24.3 15.9± 3.8 17.7± 1.6 0.92
24 June 2016 305.7± 23.2 22.7± 2.3 20.3± 1.0 0.63
4 Aug 2016 402.6± 21.9 34.0± 2.0 33.9± 1.3 0.44
16 Sept 2016 389.0± 21.6 36.1± 1.3 35.4± 0.4 0.27
7 Oct 2016 388.1± 18.0 34.4± 1.3 34.6± 1.1 0.61
28 Oct 2016 386.7± 19.4 35.3± 1.4 35.2± 1.0 0.42
1 Dec 2016 491.5± 33.9 32.7± 1.4 31.2± 1.1 0.41
30 Dec 2016 263.1± 20.2 29.6± 2.3 28.8± 1.0 0.37
29 Jan 2017 269.6± 16.9 28.8± 2.7 27.1± 1.2 0.41
2 Mar 2017 252.2± 19.4 21.3± 2.4 22.6± 1.3 0.66
29 Mar 2017 253.0± 22.5 23.5± 2.1 23.1± 1.0 0.37
3 May 2017 245.0± 16.9 24.7± 1.9 23.0± 1.0 0.36
15 June 2017 295.7± 20.7 21.6± 2.1 21.3± 0.9 0.44
21 July 2017 347.8± 19.4 26.6± 2.1 24.9± 1.2 0.77
16 Aug 2017 353.9± 18.4 27.9± 1.9 26.7± 0.9 0.51
14 Sept 2017 381.3± 16.8 27.0± 2.1 27.6± 0.9 0.67
27 Oct 2017 339.4± 18.6 30.5± 1.5 30.2± 1.0 0.54

(b.)
PAS sample
date

Mean
conductivity
(mSm−1)

Mean
measured
porewater
salinity (ppt)

Mean
calculated
salinity
(ppt)

Calibration
coefficient
(r2)

30 Oct 2015 249.7± 9.5 20.5± 2.0 21.3± 1.0 0.72
4 Dec 2015 207.7± 7.5 21.9± 1.4 22.4± 0.9 0.12
30 Dec 2015 193.8± 7.6 16.6± 2.8 16.7± 1.2 0.58
29 Jan 2016 176.7± 7.8 15.1± 1.3 14.7± 1.1 0.31

(continued on next page)
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Table 2 (continued)

(b.)
PAS sample
date

Mean
conductivity
(mSm−1)

Mean
measured
porewater
salinity (ppt)

Mean
calculated
salinity
(ppt)

Calibration
coefficient
(r2)

7 Mar 2016 151.7± 6.4 11.9± 1.3 17.4± 0.7 0.53
6 Apr 2016 146.9± 6.7 10.9± 1.6 11.4± 1.0 0.34
4 May 2016 154.1± 6.7 8.7± 1.3 8.3± 0.5 0.33
1 June 2016 183.2± 7.3 9.1± 1.4 8.6± 0.5 0.13
24 June 2016 227.8± 8.7 14.4± 1.7 16.8± 0.8 0.01
4 Aug 2016 272.4± 9.7 22.5± 1.8 23.7± 1.6 0.65
16 Sept 2016 301.9± 10.9 26.7± 1.0 26.2± 1.4 0.19
7 Oct 2016 296.7± 8.6 23.3± 1.4 23.7± 1.3 0.42
28 Oct 2016 251.1± 7.3 25.6± 0.8 25.3± 1.1 0.29
1 Dec 2016 233.7± 5.9 21.8± 1.0 22.0± 1.1 0.28
30 Dec 2016 178.5± 6.1 22.3± 1.3 22.3± 1.3 0.59
29 Jan 2017 172.5± 5.6 18.2± 1.5 18.9± 0.9 0.20
2 Mar 2017 186.2± 8.5 13.7± 1.2 14.1± 0.8 0.29
29 Mar 2017 168.9± 6.2 17.6± 1.6 17.3± 0.9 0.52
3 May 2017 157.7± 6.9 14.7± 2.2 20.0± 1.3 0.59
15 June 2017 199.1± 8.4 10.6± 1.3 12.3± 0.7 0.75
21 July 2017 194.4± 7.1 9.0± 0.5 9.1± 0.4 0.13
16 Aug 2017 240.4± 6.6 12.7± 1.1 13.2± 0.6 0.16
14 Sept 2017 274.3± 6.6 18.4± 1.0 18.1± 0.7 0.52
27 Oct 2017 263.0± 6.1 21.4± 1.5 21.1± 1.0 0.59

Figure 4 Plot of mean whole-marsh calculated salinity versus day of sampling for the NAR and PAS
study sites. The date of the initial sample event October 30, 2015 was designated as day 1. Sample minima
at days 188 and 631 corresponded to the dates May 4, 2016 and July 21, 2017. Sample maxima at days 323
and 729 corresponded to the dates September 16, 2016 and October 27, 2017.

Full-size DOI: 10.7717/peerj.8074/fig-4
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Table 3 Best predictive models incorporating the effect of cumulative rainfall amounts and tide state
at time of sampling on calculated salinity values during 24 sample events at the (a) southern (NAR) and
(b) northern (PAS) study sites.Models best supported by the data, or those having 1AICc values between
0.00 and 2.00, are listed.

(a.)
NARmodela R2 AICc 1AICc

b

48.77− 0.831(6 MON)− 3.193(TIDE) 0.55 69.12 0.00
44.22− 0.781(6 MON) 0.48 70.13 1.01
47.54− 0.873(6 MON)− 3.124(TIDE)+ 0.531(1 MON) 0.57 70.78 1.66

(b.)
PASmodela R2 AICc 1AICc

b

37.41− 0.873(6 MON)− 3.124(TIDE)+ 0.531(1 MON) 0.80 50.55 0.00

Notes.
a1 MON, cumulative rainfall 30 days prior to sample event; 6 MON, cumulative rainfall 180 days prior to sample event; TIDE,
tide state.

b1AICc = AICci − AICcmin.

Table 4 Relative importance of rainfall and tide parameters in regressionmodels explaining calcu-
lated salinity values during 24 sample events at the southern (NAR) and northern (PAS) study sites.

Parameter NAR relative importance PAS relative importance

24 HR 0.195 0.188
1 MON 0.327 0.999
6 MON 1.000 1.000
TIDE 0.596 0.966

Table 5 Mean bulk density and percent moisture in soil samples to 25 cm depth collected in high, mid,
and lowmarsh locations at the southern (NAR) and northern (PAS) study sites.

Site Location Bulk density (g cm−3) Percent moisture (%)

NAR High marsh 0.31± 0.04 71.3± 3.3
NAR Mid marsh 0.19± 0.01 84.3± 1.4
NAR Low marsh 0.34± 0.29 69.0± 16.8
PAS High marsh 0.24± 0.05 77.1± 0.6
PAS Mid marsh 0.17± 0.02 84.2± 1.4
PAS Low marsh 0.16± 0.03 83.2± 2.4

consistently higher than that at PAS, which is located approximately 35 km to the north
near the head of the estuary. Mean surface seawater salinity at a long-term water quality
sample site in Narragansett Bay, located approximately 1 km north of PAS, averaged 25.1
± 0.8 ppt, while a site approximately 4 km north of NAR averaged 31.5 ± 0.2 ppt (R
McKinney, 2018, unpublished data). These values should approximate the salinity of the
seawater inundating each marsh during flood tides. Salinity of freshwater sources would
likely vary somewhat both spatially and temporally, but most likely had salinities less
than 5 ppt (Dodds, 2002). Nothing is known of the relative contribution of each salinity
end-member to porewater salinity at each site, still it is likely that the lower seawater salinity
near PAS contributed to the lower mean calculated salinities we observed.

McKinney et al. (2019), PeerJ, DOI 10.7717/peerj.8074 14/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.8074


Table 6 Least squares regression statistics for the relationship between calculated salinity and eleva-
tion for a sub-set of 12 sample events corresponding to calculated salinity maxima andminima over the
course of the study at the (a) southern (NAR) and (b) northern (PAS) study sites.

(a.)

NARMinima
Sample date Slope R2 Degrees of freedom p
4/6/2016 −8.42 0.35 44 <0.001
5/4/2016 −25.47 0.54 52 <0.001
6/1/2016 −38.62 0.42 34 <0.001
6/15/2017 −21.72 0.55 58 <0.001
7/21/2017 −36.09 0.59 60 <0.001
8/16/2017 −24.99 0.63 61 <0.001
NARMaxima
Sample Date Slope R2 Degrees of freedom p
9/16/2016 −11.90 0.61 47 <0.001
10/7/2016 −15.56 0.57 52 <0.001
10/28/2016 −9.75 0.33 54 <0.001
9/14/2017 −27.62 0.53 76 <0.001
10/27/2017 −18.05 0.57 54 <0.001
11/21/2017 −24.68 0.55 61 <0.001

(b.)

PAS Minima
Sample date Slope R2 Degrees of freedom p
4/6/2016 0.71 0.01 25 0.643
5/4/2016 −0.34 0.01 30 0.556
6/1/2016 −0.67 0.07 30 0.149
6/15/2017 −4.10 0.37 36 <0.001
7/21/2017 0.03 0.01 29 0.897
8/16/2017 −1.11 0.20 33 0.007
PAS Maxima
Sample date Slope R2 Degrees of freedom p
9/16/2016 −0.25 0.00 25 0.746
10/7/2016 −4.54 0.34 30 <0.001
10/28/2016 0.89 0.07 31 0.124
9/14/2017 −1.51 0.12 39 0.024
10/27/2017 −0.51 0.01 33 0.601
11/21/2017 −0.11 0.00 35 0.907

Mean calculated salinities for the marshes showed maxima roughly corresponding to
late summer, when plant biomass is high and evapotranspiration is assumed to be at its
peak, and minima in early to mid-spring when evapotranspiration is low and snow melt
and rainfall could lead to increased freshwater input to the marshes. Several studies have
suggested a conceptual model of factors influencing near-surface tidal marsh porewater
salinity, lower salinity freshwater inputs arising fromgroundwater flowunder themarsh and
surface water inputs interacting with periodic inputs of higher salinity seawater delivered
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during semi-diurnal flood tides (Barry, Barry & Parlange, 1996; Li & Jiao, 2003; Parlange
et al., 1984). Variation in the position of the water table both spatially and temporally will
determine soil saturation patterns and will influence observed soil salinities across the
marsh surface (Montalto, Parlange & Steenhuis, 2007). Results of multiple linear regression
models of cumulative regional rainfall, a driver of groundwater and surface water inputs,
and tide state versus our observed mean salinities in the marsh lend some support to
this model at our sites, with longer-term cumulative rainfall showing a greater relative
importance in our models than shorter-term precipitation, particularly at the PAS site.
Longer-term cumulative rainfall patterns may be more indicative of the magnitude of
groundwater flow to coastal marshes if groundwater flow in the watershed is relatively
slow, say on the order of 0.002 m day−1 as predicted in soils with hydraulic conductivity
of 0.01 m day−1 (Heath, 1983). However, many other factors not measured or accounted
for in our study, including the timing and magnitude of evapotranspiration, groundwater
flow patterns under a marsh, marsh topography, mean temperature, and variability in tidal
inundation patterns will interact to influence soil saturation and observed patterns of soil
salinity across a marsh.

In soils with similar clay and organic matter content, ECa values will respond to changes
in soil composition, bulk density, moisture content, and soil salinity (Corwin & Lesch,
2005). Previous studies have suggested ECa could be a reliable means to rapidly assess
soil salinity, particularly in hydric soils (Sheets, Taylor & Hendrickx, 1994; Hanson & Kaita,
1997). In homogenous, uniformly saturated salt marsh soils it may be reasonable to assume
that ECa may accurately reflect changes in soil salinity. However, regression statistics of
the equations used to generate our calculated salinity values, for example the variable
correlation coefficient and slope values observed, could be an indication that other soil
parameters may be influencing ECa values at our sites. Soils at our sites were consistently
at or around 70% moisture, suggesting uniformly saturated soils that would satisfy this
assumption of the technique. We did see some intra-marsh differences in soil bulk density
at PAS that may have contributed somewhat to variability in ECa values. It may also be
possible that our samples may have reflected spatial variation in soil composition at the
sites: if different regions of the marsh differed in soil composition, combining calibration
data across these regions may increase observed variability. Another possible explanation
could be non-homogeneous presence of conductive clay minerals or iron sulfate in the
soils, both of which may directly impact ECa values (Laforet, 2011).

Variability in regression statistics can also be the result of spatial variability in porewater
salinity values, from vagaries in water table levels or groundwater flow at out sites. For
example, in our study ECa values reflected soil characteristics to 0.5 m below the marsh
surface, while porewater salinities used in the calibration equations were measured at a
depth of 25 cm. Spatial variability in soil porewater salinity either above or below our
porewater sample depth would be reflected in ECa values, but not necessarily in our
measured porewater salinity values. Mean plant root biomass at our sites is assumed to be
around 0.4 m below the surface and may impact deeper porewater dynamics that could
would affect ECa values but not be reflected in our porewater salinities. During seasonal
extremes in salinity this could significantly influence interpretation or misinterpret actual
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conditions in the rhizosphere that affect salinity-driven plant zonation patterns. Addition
of a second, deeper porewater salinity sampling point may help to resolve this potential
confounding factor. Differences in soil saturation may also have influenced our measured
ECa values, although to what extent is not clear. In a model of water table dynamics and
groundwater movement in a tidal marsh, Ursino, Silvestri & Marani (2004) found that a
zone of unsaturated, aerated soil could form in a marsh in areas away from the hydraulic
influence of tidal creeks, and that this aerated zone could migrate toward the inner part of
the marsh over time. They also found that evapotranspiration can result in the formation of
an unsaturated aerated layer trapped underneath saturated surface soil, particularly in areas
away from the influence of tidal creek hydrology (Ursino, Silvestri & Marani, 2004). Either
of these phenomena could impact ECa values while conceivably not impacting measured
porewater salinity, and hence may contribute to the variability in calibration statistics.

Correlations of calculated salinity with marsh elevation supported our qualitative
assessment of intra-marsh salinity variation shown by the contour plots. Calculated
salinity at NAR significantly correlated with elevation over all the examined sample events,
reinforcing observed patterns of higher soil salinity near the creek edge and lower salinity
towards the upland border. Previous studies have documented increases with soil elevation,
reaching amaximum just abovemean high sea level and decreasing towards the upland edge
of this marsh (Mahal & Park, 1976; Adam, 1990). These observations could be attributed
to progressively less frequent flooding of the marsh and the associated reduced salt input at
higher elevations near the marsh upland border (Adam, 1990). At very high soil elevations,
above MHSL, soil water salinity tends to decrease due to. At PAS, the lack of significant
correlation may have resulted from the more homogenous salinity patterns observed
across the marsh surface, or may have reflected the predominance of groundwater or
surface freshwater inputs at the site.

CONCLUSIONS
Results of our study suggest that despite variability in calibration coefficients, ECa values
reflect longer-term changes in porewater salinity at a single marsh. Therefore, ECa values
show promise in tracking spatial patterns of soil salinity over time at a given site, which
could aid in identifying changes in marsh biogeochemistry that could ultimately impact
plant zonation. This is particularly true under the assumption that ECa values are a
dependable proxy for direct porewater sampling once calibrated with actual field data: the
relative ease of this technique makes mapping large or repeated spatial areas with EMI
far more efficient than traditional approaches. For example, ECa surveys of a marsh may
aid in identifying areas of irregular seawater or freshwater infiltration and help increase
our understanding of marsh hydrology at a given site. Several studies are underway in
northeast US salt marshes to document shifts in high and low marsh plant communities,
in the context of increased flooding from sea level rise. Fine scale mapping of salinity using
EMI may aid in determining salinity patterns that will drive these shifts before the plant
species migrate. In this way, ECamapping may aid in restoration planning andmonitoring,
especially of low-lying coastal salt marshes vulnerable to sea level rise. However, our results
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also suggest that inter-marsh comparisons of ECa values and calculated salinities should be
interpreted with caution: to accurately compare values, soil composition will either need to
be similar, or between marsh differences adequately characterized and considered during
the calibration process.
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