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ABSTRACT
Background. G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis
guineensis Jacq.) causing basal stem rot (BSR) disease and consequentmassive economic
losses to the oil palm industry. The pathogenicity of this white-rot fungus has been
associated with cell wall degrading enzymes (CWDEs) released during saprophytic
and necrotrophic stage of infection of the oil palm host. However, there is a lack of
information available on the essentiality of CWDEs in wood-decaying process and
pathogenesis of this oil palm pathogen especially at molecular and genome levels.
Methods. In this study, comparative genome analysis was carried out using the
G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme
(CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed
for gene identification in G. boninense NJ3 and the produced protein sequences were
analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and
plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes
from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma
sp. and five selected pathogenic fungi for CAZymes characterization. Functional
annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot
(WEGO) andwas used for selecting candidate PHI genes related to cell wall degradation
of G. boninense NJ3.
Results. G. boninense was enriched with CAZymes and CWDEs in a similar fashion to
G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related
fungal strains. The role of polysaccharide and cell wall degrading enzymes in the
hemibiotrophic mode of infection of G. boninense was investigated by analyzing the
fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago
maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa.
Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens
including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to
the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several
candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and
laccase were identified as potential CWDEs that contribute to the plant host interaction
and pathogenesis.
Discussion. This study employed bioinformatics tools for providing a greater un-
derstanding of the biological mechanisms underlying the production of CAZymes
in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and
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lignocellulosic-degrading enzymes would further facilitate in elucidating the infection
mechanisms through the production of CWDEs by G. boninense. Identification of
CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for
functional studies of genes associated with the fungal virulence and pathogenicity using
systems biology and genetic engineering approaches.

Subjects Agricultural Science, Bioinformatics, Computational Biology, Microbiology
Keywords Ganoderma boninense, Cell wall degrading enzyme, Comparative genomics, Oil palm
pathogen, In silico analysis

INTRODUCTION
Cell wall degrading enzymes (CWDEs) are part of the carbohydrate-active enzymes
(CAZymes) produced by plant pathogens for penetrating and degrading the plant cell walls,
and these CAZymes have been directly linked to devastating crop diseases (Zhang, Bruton
& Biles, 2014; Somai-Jemmali et al., 2017; Gawade et al., 2017). Plant pathogenic fungi,
especially among the fungal families of Ascomycota, Basidiomycota, Chytridiomycota,
and Zygomycota, have been reported to contain the highest number of CAZymes (Zhao
et al., 2013; Kubicek, Starr & Glass, 2014). Differences in composition and structure of the
woody components are commonly mirrored with the types of lignocellulolytic enzymes
produced by invading pathogenic fungi (King et al., 2011). In fact, many plant pathogens
particularly white rot fungi are well-endowed with high copies of CWDEs as compared to
decay-feeding saprotrophs and have been demonstrated to be highly competent producers
of lignocellulolytic enzymes for host-specific attack, and subsequent biomass degradation
(King et al., 2011; O’Connell et al., 2012).

Interestingly, genome and transcriptome analyses indicate different profiles of CAZymes
were produced by pathogenic fungi during different stages of pathogenesis transition
from biotrophic to necrotrophic lifestyles (O’Connell et al., 2012; M’Barek et al., 2015).
Enzymatic production of CWDE by pathogenic fungi has been found to be correlated
with the degree of pathogenicity and cell wall disintegration of infected plant hosts (Kang
& Buchenauer, 2000; Wanjiru, Zhensheng & Buchenauer, 2002; Lyu et al., 2015; Somai-
Jemmali et al., 2017). Considering the importance of CWDE in the uptake of nutrients from
plant host, these hydrolytic enzymes are considered as the key pathogenicity determinant
among plant pathogens (Brito, Espino & González, 2006; Kubicek, Starr & Glass, 2014;
Bravo Ruiz, Di Pietro & Roncero, 2016).

Ganoderma boninense is a causative agent of basal stem rot (BSR) disease that beset
the oil palm industries with devastating economic losses due to the reduced lifespan
and eventual death of the infected oil palm (Chen et al., 2017). Due to the toxicity and
environmental issues of chemical pesticides, the Ganoderma disease is currently managed
mainly through cultural practices such as the removal of dead trees and infected stumps
prior to or during replanting but these strategies remain ineffective in preventing the
spread of the G. boninense in affected plantations (Hushiarian, Yusof & Dutse, 2013; Sahebi
et al., 2015). Recent research works in overcoming the Ganoderma disease have been
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mainly aimed at understanding the oil palm molecular defense response via transcriptional
analysis, and profiling of proteins and metabolites of the infected oil palm (Nusaibah et al.,
2016; Sahebi et al., 2017; Ho et al., 2018). The spread of G. boninense in oil palm plantation
has been attributed to two main routes specifically spore dispersal and root contact with
G. boninense infected palm tissues (trunk, bole, and roots) (Paterson, 2007; Chen et al.,
2017). Importantly, root infection via cell wall degradation has been suggested as the main
mode of Ganoderma infection based on the spread of infection from root to the base of
mature palm trees (Rees et al., 2009).

Lignocellulolytic enzymes of G. boninense have been shown to be predominant
in instigating oil palm infection and cell wall-degrading processes (Goh, Ganeson &
Supramaniam, 2014; Jumali & Ismail, 2017; Surendran et al., 2018). Direct roles of CWDEs
in the hemibiotrophic infection of oil palm roots were first demonstrated via macroscopic
examination of enzymatically-degraded root outer cell layers and invaded root and stem
tissues of G. boninense-infected tissues (Rees, 2006; Rees et al., 2009). In the initial stage
of infection, the fungal mycelia behave as biotrophs that absorb the plant nutrient by
penetrating the oil palm root surface and culminating in rapid growth spread in oil palm
lower stem. During the necrotrophic stage, the fungus attacks the host cell walls by excreting
host of enzymes including CWDEs that led subsequent cell death and multiplication of
basidiocarps in decayed palm woods (Rees et al., 2009; Chong, Dayou & Alexander, 2017).

Despite the important roles of CWDEs in the oil palm pathogenesis, information about
genomic features andmechanisms underlying the pathogenicity ofG. boninense in oil palm
is severely lacking. The necessity for establishing a reliable genetic model for understanding
Ganoderma-oil palm interactions is highlighted in recent reports of draft genome sequences
of different strains of G. boninense which could facilitate the identification of CWDEs as
pathogenicity factors essential for successful invasion of oil palm cells (Sulaiman et al.,
2018; Utomo et al., 2018). A deeper understanding on the genetic composition of CWDEs
as part of carbohydrate-acting enzymes of G. boninense and the biological mechanisms
conferring the fungal ability to produce CWDEs are important in our efforts to elucidate
the plant-pathogen interactions at the genome and molecular levels. Therefore, this
research work was devised to obtain genomic insight of CWDEs in G. boninense through
computational and comparative genome analysis. Genome sequence of G. boninense NJ3
that was isolated from Indonesian oil palm field was used for the comparative genome
analysis (Mercière et al., 2015). In this study, CAZymes specifically auxiliary protein (AA),
glycosyltransferase (GT), carbohydrate binding modules (CBMs), carbohydrate esterases
(CE), glycoside hydrolases (GH) andpolysaccharide lyases (PL) inG. boninenseNJ3 genome
were annotated using CAZy annotation pipeline. Direct comparison of CAZymes wasmade
with close relative and model strain G. lucidum as the reference Ganoderma strain. Further
comparison was carried out with five selected pathogenic Basidiomycetes in the search for
genetic patterns underlying G. boninense hemibiotrophic infection strategy. Identification
of the responsible genes forG. boninense CAZymes includingCWDEswill broaden genomic
understanding on the molecular mechanisms of the fungal wood-decaying abilities and oil
palm pathogenesis.
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MATERIALS & METHODS
Ganoderma boninense NJ3 genome
The G. boninense NJ3 assembled genome was obtained from the NCBI assembly
database (GenBank assembly accession: GCA_001855635.1). The assembly level is
at contig level and was sequenced using Illumina HiSeq 454 in 2016. Comparative
genome analysis was carried out by comparing CAZymes dataset of G. boninense NJ3
with previously-reported genome sequence of Ganoderma lucidum (Chen et al., 2012b),
Melampsora larici-populina (Duplessis et al., 2011), Ustilago maydis (Kämper et al., 2006),
Moniliophthora perniciosa FA553 (Mondego et al., 2008), Armillaria solidipes 28-4 (Sipos
et al., 2017) and Armillaria mellea DSM 3731 (Collins et al., 2013). Except for G. lucidum,
archival CAZymes information of the other referenced fungal genomes was retrieved
from Joint Genome Institute MycoCosm portal in May 2018 (Grigoriev et al., 2014)
(https://mycocosm.jgi.doe.gov/mycocosm/home).

Prediction of genes
The contigs from theG. boninense NJ3 assembly was processed using Augustus gene predic-
tion tool for the identification of genes (http://augustus.gobics.de/). Gene prediction was
carried out using ‘‘augustus –species=phanerochaete_chrysosporium gboninense_NJ3.fna
>gboninense_NJ3_augustus.gff’’ command where gboninense_NJ3.fna was the assembled
contigs file. Phanerochaete chrysosporium was chosen as the gene prediction model as
it was the closest species to G. boninense in Augustus based on the NCBI taxonomy
browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). A GFF file
containing the genes predicted and their annotations was produced by Augustus
and the protein sequences were then extracted via the command ‘‘getAnnoFasta.pl
gboninense_NJ3_augustus.gff’’. The predicted genes dataset of the G. boninense NJ3
genome has been deposited at European Nuclear Archive (ENA) under the accession
number PRJEB34805.

dbCAN pipeline analysis
The produced protein sequences fromAugustuswas searched against the dbCAN:AnHMM
(Hidden Markov Model) based database for carbohydrate-active enzyme annotation.
dbCAN release 6.0 was downloaded in May 2018. The downloaded database was converted
into a HMM formatted database using hmmpress (part of HMMER3 software package).
hmmscan was run with the following parameters; –domtblout results.out.dm. hmmscan-
parser.sh (from dbCAN) was used to process the results table with e-value 1E-3 as filter.

Annotation by PhiBase 4.5 database
PhiBase 4.5 was downloaded for local analysis from http://www.phi-base.org. The raw
sequence file was converted into a blast database using makeblastdb (part of the ncbi-
blast+ software package). A local blastp run was deployed to identify homologs of PhiBase
4.5 in G. boninense NJ3 predicted protein sequences. Blastp was run with the parameters
-outfmt 6 -max_target_seqs 1 -max_hsps 1 -evalue 0.1.
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Gene ontology and WEGO chart
Gene ontology of PhiBase 4.5 homologs in G. boninense NJ3 was obtained using Blast2GO
5.2.5 pipeline. Using local blastp function in Blast2GO, the sequences of the homologs were
annotated against the NCBI NR (non-redundant) protein database. The NR database was
downloaded in April 2019. E-value chosen was 0.1 and number of blast hits was set to 10.
Other parameters remained at default values. The gene ontologies were then mapped onto
the sequences by mapping the latest Blast2GO database with the blasted sequences. Next,
InterProScan 5.33–72 was ran locally to obtain protein domain annotations. The XML file
produced was then loaded in Blast2GO. Lastly, the annotation tool in Blast2GO merged
and verified the gene ontologies obtained between both gene ontology annotationmethods.
Blast2GO annotation parameters were left at default values. Functional classification of
PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) software
(Ye et al., 2006). To generate the WEGO chart, the results from Blast2GO annotation were
exported in WEGO native format. The WEGO chart was then generated by uploading to
http://wego.genomics.org.cn/. Datasets ofG. boninense NJ3 Augustus gene annotation, GO
annotation and protein ID from PhiBase 4.5 analysis are provided in supplementary files.

RESULTS & DISCUSSION
Characterization of carbohydrate-active enzymes (CAZymes) in
G. boninense
In this study, the draft genome of G. boninense NJ3 was used for identifying and
characterizing the carbohydrate-active enzymes in fungal genome. To identify CAZymes in
G. boninense NJ3, the assembled dataset was further processed using Augustus pipeline to
produce predicted genes peptide sequence for CAZymes analysis via the dbCAN pipeline.
Comparative analysis for CAZymes characterization in G. boninense was carried out
using G. lucidum genome sequence as the reference Ganoderma spp. strain owing to the
high-quality genome sequence and well-established genomics studies of this closely-related
Ganoderma strain. We hypothesized that G. boninense is enriched with a high number of
CAZymes similar to G. lucidum that provide wood-degrading capabilities and contribute
to the disparate nutritional strategy of hemibiotrophic G. boninense and saprophytic
G. lucidum, respectively.

Following analysis, a total of 755 CAZymes was identified in G. boninense NJ3 as
compared to 489 CAZymes found in G. lucidum (Fig. 1). Overall, about 465 copies of cell
wall degrading enzymes (CWDEs) comprising of glycoside hydrolase (GH), carbohydrate
esterase (CE) and polysaccharide lyase (PL) were found in the G. boninense NJ3 genome.
From the total CWDEs, 348, 102 and 15 genes were found for GH, CE and PL, respectively
(Table S1). The amount of CWDEs found in G. boninense is comparatively higher when
compared with G. lucidum (273 GHs, 30 CEs, 10 PLs). A richer and highly similar set of
CWDEs was observed in G. boninense NJ3 that enables degradation of woody structures
such as hemicellulose and pectin for nutrient uptake and growth in similar means to
G. lucidum which harbored one of the richest sets of polysaccharide-degrading enzymes
in the sequenced genome of Basidiomycota fungi (Chen et al., 2012b). Interestingly, G.
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Figure 1 Comparison of carbohydrate-active enzymes (CAZymes) inGanoderma spp. Overview of
CAZymes profile in (A) G. boninense NJ3 and (B) G. lucidum. Abbreviations: GH Glycoside hydrolase, CE
Carbohydrate esterase, PL polysaccharide lyase, CBM carbohydrate binding module, AA auxiliary activity,
GT glycosyltransferase.

Full-size DOI: 10.7717/peerj.8065/fig-1

boninense NJ3 possesses a higher number of CEs of about 102 copies as compared to G.
lucidumwith 30 copies of CEs that are important for plant cell wallmodification. In addition
to polysaccharide-deacetylating CE enzymes, G. boninense NJ3 also harbors a diverse array
of GHs that are crucial in the hydrolysis of cellulose and hemicellulose components of
the plant biomass. Common GH in white rot fungi such as GH6 and GH7, and universal
CWDEs of cellulolytic GH1, GH3 and GH5 for degradation of cellulose, hemicellulose
and pectin were observed in both Ganoderma spp. Importantly, G. boninense possesses
several GHs that were not found in G. lucidum specifically polysaccharides-acting GH109
(α-N-acetylgalactosaminidase), GH145 (L-Rh α-α-1,4-GlcA α-L-rhamnohydrolase),
GH135 (α-1,3-galactosaminogalactan hydrolase) and GH131 (broad specific β-glucanase)
that degrade both cellulose and hemicellulose. In terms of polysaccharide-active enzymes,
both Ganoderma spp. contained multiple copies of pectic-acting PL8 and PL14 while PL4
(rhamnogalacturonan endolyase), PL12 (heparin-sulfate lyase) and PL15 (alginate lyase)
were only found in G. boninense.

Apart from CWDEs, both fungal genomes harbored other CAZymes including
carbohydrate binding module (CBM), auxiliary activity (AA) and glycosyltransferase
(GT) that are essential for lignin depolymerization and carbohydrate utilization from the
host plant. During wood decaying process, access to the structural woody components
was aided by CBMs that formed a two-domain structure together with catalytic domains
(CDs) of cellulases by increasing the enzyme concentration on the substrate surfaces.
Overall, a total of 290 copies of CAZymes was identified in G. boninense NJ3 as compared
to 176 copies in G. lucidum. Of these, 67 CBMs, 145 AAs and 78 GTs were identified from
G. boninense. Both Ganoderma spp. strains have a similar set of CBMs except for CBM19
(chitin-binding function) and CBM32 (pectic-binding) were unique forG. boninense while
CBM12 (chitin-binding) was only found inG. lucidum. Although white rot fungi have been
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associated with the lack of CBMs, G. lucidum and G. boninense contained 10 and 12 out
of 16 total families of CBMs, respectively. It is notable that G. boninense possessed high
copies of CBM1, an important fungal CBM that uses cellulose and chitin as substrates
for polysaccharide-degrading activities (Mello & Polikarpov, 2014; Várnai et al., 2014).
Both fungi shared similar GTs except for GT65 and GT41 that were found only in G.
boninense while GT31 was present only in G. lucidum. The ability of Ganoderma spp. to
utilize nutrient from plant tissues relied heavily on the synergistic actions of cellulolytic
and ligninolytic enzymes that include redox AA enzymes (Zhou et al., 2018). Laccase
(AA1_A1), ferroxidase (AA1_A2), class II peroxidase (AA2), GMC oxidoreductase (AA3),
radical-copper oxidase (AA5), 1,4-benzoquinone reductase (AA6) and iron reductase
(AA8) were among AA enzymes identified in both sets of fungal genomes. From this
comparative analysis, G. boninense was found to be endowed with significantly higher
copies of the redox enzymes especially lignin-acting laccase (AA1) and peroxidase (AA2)
and oxidoreductase (AA3) enzymes as compared to G. lucidum.

Lignocellulolytic enzymes production has been well-documented in white rot
Ganoderma spp. for wood decomposition and subsequent feeding and propagation on the
woody substrates (Silva, Melo & Oliveira, 2005; Paterson, 2007; Zhou et al., 2013). Apart
from wood-degrading enzyme producing capabilities and plant pathogenicity, Ganoderma
species are generating much research interest for therapeutic applications through the
production of bioactive polysaccharides and terpenoids such as ganoderic acid (Boh, 2013;
Wu et al., 2013). Owing to its therapeutic and biotechnological potentials, G. lucidum has
been developed as model medicinal mushroom through extensive biochemistry, genomics,
and genetic engineering research, and this saprophytic mushroom is in fact endowed with
an extensive set of CAZymes encoded in its genome (Xu, Xu & Zhong, 2012; Chen et al.,
2012b; Liu et al., 2012; Yu et al., 2012). In this study, the genome sequence of G. boninense
NJ3, a pathogenic fungal isolate from oil palm plantation in Indonesia (Mercière et al.,
2015), was employed for identifying genes involved in the production of cell wall degrading
and carbohydrate active enzymes. By comparing CAZymes ofG. boninense NJ3 with model
G. lucidum, profiles of these closely-related Ganoderma spp. can be acquired especially in
terms of the cell wall degrading abilities of the lesser-studied G. boninense. Based on the
results obtained, G. boninense NJ3 was found to be enriched with an extensive repertoire
of CAZymes in similar fashions but with significantly higher numbers of lignocellulosic-
degrading enzymes as compared to the non-pathogenic G. lucidum, hence, underlining the
essentiality of CAZymes in cell wall degradation for the fungal growth and nutrient uptake.
Differences in CAZymes characteristics especially CWDEs and polysaccharide-active AAs
can be linked and predetermined by the nutritional strategy of eitherGanoderma spp. hence
providing genomic insight and characterization of plant cell wall degradation mechanism
of these industrially-important fungi.

Profiling of CAZymes in selected phytopathogenic fungi
Following characterization of CAZymes in G. boninense, the innate ability of this white rot
fungus to cause oil palm BSR disease was further investigated by comparative analysis with
a few selected disease-causing Basidiomycetes. For this purpose, five phytopathogenic
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basidiomycetous fungi exhibiting the biotrophic, hemibiotrophic and necrotrophic
mode of plant infections were employed for comparison with G. boninense. The fungi
of interest were Ustilago maydis (model biotrophic pathogen), Melampsora larici-populina
(biotrophic poplar pathogen), and Moniliophthora perniciosa (hemibiotrophic cacao
pathogen). The remaining two fungi were Armillaria solidipes and A. mellea representing
facultative necrotrophic fungi attributed to root rot in many conifers and ornamentals,
respectively (Kämper et al., 2006; Duplessis et al., 2009; Meinhardt et al., 2014; Koch et al.,
2017). Biotrophs primarily depend on and derive nutrients without killing the hosts
while necrotrophs kill the plant and feed nutrients off the dead cells (Mendgen & Hahn,
2002). On the other hand, hemibiotrophs adopt early asymptomatic biotrophic phase
and then switched to the host-killing necrotrophic stage with distinct disease symptoms,
and decayed tissues (Horbach et al., 2011). Although each fungus may differ in targeting
host and infection mechanisms, these plant pathogens have been found to rely on an
array of hydrolytic enzymes for complete degradation of plant biomass for colonization
and nutrient uptake with or without killing the hosts. In this study, we hypothesized that
pathogenic fungi with necrotizing abilities (necrotroph and hemibiotroph) would harbor
distinct CAZymes profile as compared to non-necrotizing fungi (biotroph) which may be
attributed to specific host preference and interaction.

The profile of CWDE in all six pathogenic fungi was illustrated in Fig. 2. G. boninense
NJ3 contained glycosyl hydrolase (GH) GH2 and GH10 for specialized hemicellulose
degradation in addition to dual cellulose and hemicellulose-degrading activities of GH1,
GH3, GH5, GH12, GH51, and GH131. The ability of this oil palm pathogen to hydrolyse
the pectin component is further provided by GH28, GH105 and necrotroph-specific GH53
and GH78. BiotrophicU. maydis andM. laricis-populina lack GH1, GH6, GH78 and GH95
which were prevalent in the necrotizing fungi (G. boninense NJ3,M. perniciosa, A. solidipes
and A. mellea) (Fig. 2A). Additionally, U. maydis lacked GH7 that is common among
pathogenicwhite rot fungi.On the other hand, biotrophicU. maydis andM. laricis-populina
possess GH26 which was not observed in other 4 necrotizing pathogens investigated in
this study. The lack of GH1, GH6 and GH78 were well-documented in biotrophs which
generally harbor less plant cell wall degrading enzymes than necrotrophs and hemibiotrophs
(Zhao et al., 2013; Li et al., 2017). Obligate necrotrophs (A. solidipes and A. mellea) and
hemibiotrophs (G. boninense NJ3 and M. laricis-populina) were evidently supplemented
with GH3 and GH28 for cellulose, hemicellulose and pectin degradation. From the
analysis, G. boninense NJ3 exhibited the highest copies of GH18 (Chitinase/endo-β-N-
acetylglucosaminidase), GH43 (Hemicellulase), GH79 (Glucuronidase), GH10 (Xylanase)
and harbored unique GH4 (glycosidase), GH89 (α-N-acetylglucosaminidase) and GH109
(α-N-acetylgalactosaminidase) for polysaccharide depolymerization in comparison to
other plant pathogens examined in this study. Taken together, these findings highlighted
the essentiality of several GHs specifically GH3 and GH5 for cell wall degradation by
the phytopathogens that corroborated with previous reports on the plant host infection
interplays by the phytopathogenic fungi (Zhao et al., 2013; Blackman, Cullerne & Hardham,
2014; Chang et al., 2016).
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Figure 2 Profiling of CWDEs in selected phytopathogenic Basidiomycota fungi. Profile of (A) com-
mon GH, (B) CE and (C) PL in the pathogenic fungi. Abbreviations: GH Glycoside hydrolase, CE Carbo-
hydrate esterase, PL polysaccharide lyase.

Full-size DOI: 10.7717/peerj.8065/fig-2

In addition to cellulose and hemicellulose, some plants are enriched with pectins
comprising of homogalacturonan, xylogalacturonan or rhamnogalacturonan as external
barriers against pathogen infections. In G. boninense NJ3, the cell wall-degrading GHs
could work in tandem with pectic-acting enzymes of polysaccharide lyase 8 (PL8), PL12,
PL14 and PL15. Common PL found in pathogens, PL1 and PL3 were not observed
in G. boninense NJ3 which is interesting considering the abundance of these PLs in
necrosis-causing M. perniciosa, A. solidipes and A. mellea (Fig. 2B). Pectin degradation
by pectinolytic enzymes particularly PL4 is common among necrotizing fungi examined
in this study except G. boninense NJ3 and this enzyme had been shown to be highly
expressed during crops infection by necrotrophic Rhizoctonia solani (Zheng et al., 2013;
Chang et al., 2016). Although important for cell wall degradation by fungi, the smaller
amount of pectinases in G. boninense NJ3 may indicate substrate or host preference
specifically monocotyledon-type as compared to dicotyledon-preferred pathogens that
have been associated with increased secretion of pectinases (Zhao et al., 2013; Loyd et al.,
2018). Hemibiotrophic and necrotrophic fungi are well-equipped with the extended set of
CWDEs which enable tailored and extensive production of the cell wall degrading enzymes
during infection.

In this study, it was found that all 6 pathogenic fungi possess at least one copy of
carbohydrate esterase 4 (CE4) as one of the polysaccharide-modifying enzymes in the
genomes (Fig. 2C). The genome of G. boninense NJ3 was well-represented with CE16
in addition to CE1 and CE12 that were also found in necrosis-causing M. perniciosa, A.
solidipes and A. mellea while CE2, CE14 and high copies of CE10 were found only in the
pathogenicGanoderma spp. CEs have been associated in the first line of attack during fungal
invasion via the removal of acetylated moieties of saccharides that formed parts of plant
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protection system against hydrolytic enzymes (Ospina-Giraldo, McWalters & Seyer, 2010;
Sista Kameshwar & Qin, 2018). The CE10 enzyme is involved in the degradation of lignin
and cellulosic components of the plant cell wall and was found to be abundant in several
pathogenic fungi including Macrophomina phaseolina, Bipolaris cookei and Corynespora
cassiicola (Islam et al., 2012; Zaccaron & Bluhm, 2017; Looi et al., 2017). In sum, notable
differences in CWDE profiles of hemibiotrophic and necrotrophic fungi can be associated
with the less aggressive nature of biotrophicU. maydis andM. laricis-populina that adapted
the hydrolytic enzyme production specifically for limiting host cell wall damages hence
supporting their host nutrient-dependent growth (Kämper et al., 2006; Duplessis et al.,
2009; Olson et al., 2012).

Profiling of the remaining CAZymes in the six pathogenic fungi was carried out for
comparing and establishing the association between mode of infection and type of genes
present. Generally, glycoside transferase (GT) enzymes are mainly responsible for cell wall
formation in contrast to the more abundant carbohydrate-hydrolysing GHs in the fungal
genomes. As shown in Fig. 3A, the six pathogenic fungi harbored highly similar set of
GTs while GT71 is unique for biotrophs and GT65 was only found in G. boninense NJ3.
Metabolism of starch components of the plant biomass is linked to the presence of starch-
active carbohydrate binding modules (CBMs) including CBM1, CBM20, CBM48 and
CBM50. Only CBM48 and CBM50 were found in all of the studied pathogens while CBM1
was missing in biotrophic U. maydis andM. laricis-populina which in turn, represented the
most in G. boninense NJ3 genome (Fig. 3B). The occurrence of CBMs was often associated
with facilitating the hydrolytic activities of amylolytic GHs such as GH13 and GH15 by
increasing cell-substrate attachment and degradation (Chen et al., 2012a). In particular,
CBM1-containing proteins have been found mainly in nectrotrophs and hemibiotrophs
for promoting cellulose hydrolysis and were shown to elicit plant defense response which
is detrimental for fungi with biotrophic lifestyle (Jones & Ospina-Giraldo, 2011; Klosterman
et al., 2011; Larroque et al., 2012).

For lignin decomposition, all six pathogenic fungi possessed auxiliary activities
(AA) enzymes for AA1, AA3, AA5 and AA6 that encode for ligninolytic and redox
enzymatic activities while phenolic-active AA4 (vanillyl-alcohol oxidase) was found only
in G. boninense NJ3 (Fig. 3C). Another important lignin-modifying enzyme, AA9 also
classified as lytic polysaccharide monooxygenases (LPMO), is involved in lignocellulosic
degradation by oxidizing cellulose in synergistic reactionswith laccase and lignin-modifying
peroxidase enzymes. On one hand, biotrophic fungi M. larici-populina and U. maydis
harbored a smaller set of lignolytic AAs with about 36 (M. larici-populina) and 23 (U.
maydis) as compared to the other studied pathogens. These biotrophic strains contained
lesser copies of AA1 encoding for laccase and multicopper oxidase enzymes that involved
in degradation of lignin barrier. All pathogens possessed AA9 except U. maydis while
AA2 and AA8 were absent in both biotrophic fungi. High copies of AA9 observed in
necrotrophs and hemibiotrophs studied may indicate the importance of these enzymes
during the host attack and cell wall deformation. The identification of cellulose-cleaving
oxidoreductases LPMOs as part of that AA9 family was previously associated with
improved fungal cellulase and wood decaying activities with the presence of reducing
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Figure 3 Profiles of carbohydrate-active enzymes (CAZymes) in phytopathogenic Basidiomycota
fungi. Profiles of (A) selected GT, (B) AA and (C) CBM of the compared plant pathogens. Abbreviations:
GT, glycosyltransferase; AA, auxiliary activity; CBM, carbohydrate binding module.

Full-size DOI: 10.7717/peerj.8065/fig-3

agents (Dimarogona, Topakas & Christakopoulos, 2013; Karnaouri et al., 2014). These
auxiliary redox enzymes played an important role in completing hydrolysis of lignin by
wood-decomposing saprotrophic fungi and have been associated with increased virulence
of parasitic fungi (Hatakka, 1994; Levasseur et al., 2013; Janusz et al., 2017). The abundance
of AAs may contribute to the enhanced ability of G. boninense NJ3 to invade and penetrate
lignin and acetylated saccharides as it switches from biotrophic to necrotrophic parasitism
that involves overlapped biological processes as found in forest pathogen and wood
decayer Heterobasidion annosum sensu lato (Olson et al., 2012). The production of diverse
ligninolytic enzymes by Ganoderma are therefore important for the fungal proliferation off
plant tissues especially in the depolymerizing of the recalcitrant lignin barrier (Hu et al.,
2017; Sarah Jumali & Ismail, 2017; Zhou et al., 2018).

Expression patterns and production of carbohydrate-acting enzymes have been
demonstrated to be correlated with the fungal mode of interactions with host plants.
Transcriptome analysis of G. boninense-treated oil palm transcripts showed very high
expression of a host of distinct up-regulated genes encoding for CAZymes from lignin-
degrading AAs (laccase and AA2 manganese peroxidase), carbohydrate-active CBM and
CE (CBM13, CE10, CE9) to cell wall-hydrolyzing exo-β-1,3-glucanase, chitinase and
polygalacturonase when compared to untreated and Trichoderma harzianum-treated
control samples (Ho et al., 2016). Similar patterns of highly expressed CAZymes transcripts
were observed in necrotrophic A. solidipes that exhibited high number of homologs of
GH18, GH47, CE10, CE4 and polygalacturonase following plant-fungus inoculation
(Ross-Davis et al., 2013). Higher expression of cell wall degrading enzymes (GH, PL, GT)
were observed in necrotrophic Leptosphaeria biglobosa as compared to hemibiotrophic
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counterpart, L. maculans which accumulated higher CBM during early stage of plant
infection (Lowe et al., 2014). Similar CAZymes interplays were suggested in the early
infection of G. boninense that aimed at overcoming the oil palm host defense response
mechanisms including hypersensitive response (HR) leading to the switch from biotrophic
stage to the more aggressive necrotrophic attacks culminating in host cell death and
successful invasion (Bahari et al., 2018). A closer look of the CAZymes in the selected
pathogenic fungi would therefore enable genome-wide profiling of carbohydrate-active
enzymes that are distinct and correlated with the fungal mode of infection. Importantly,
G. boninense NJ3 harbored a distinct set of cell wall degrading and polysaccharide
depolymerization enzymes that were suited for infecting monocot oil palm host through
hemibiotrophic lifestyle.

Potential pathogenicity genes among CAZymes of G. boninense NJ3
Comparative CAZymes analysis of the selected of phytopathogens indicated the correlation
between the fungal nutritional strategy with the profiles of carbohydrate-active enzymes
essential for plant host cell wall degradation and nutrient consumption. Considering
the lack of information of the genes related to the pathogenicity of G. boninense, further
genome-wide analysis of the fungal genome was carried out using the protein sequences
in the Pathogen-Host Interaction Database (PHI database) and functionally classified
according to molecular function, biological process and cellular component via WEGO
analysis. A total of 5,099 annotated PHI genes were obtained from the WEGO analysis of
which membrane (1,682, 24.8%) and metabolic process (2,903, 42.8%) were represented
the highest in respective cellular component and biological process categories (Fig. 4). In
molecular function category, the PHI genes were predominantly annotated with catalytic
activity (3337, 49.2%) including CAZymes-related polygalacturonase (GO:0004650),
cellulase (GO:0008810) and endo-1,4-beta-xylanase (GO:0031176).

Considering the prevalence of carbohydrate-active enzymes and the high percentage
of PHI genes with hydrolase activity, we hypothesized that some of the CAZymes may
directly involve in plant pathogenesis via cell wall degradation by the secreted enzymes. As
shown in Table 1, several genes of G. boninense NJ3 were shown to share PHI homologs
with lignin depolymerization and cell wall degrading enzymes specifically pectic-acting
polygalacturonase (PG)-coding homolog gene (PHI id:4879), endo-1,4-beta-xylanase
GH10 (PHI id:2209), β-glucanase Eng1 (PHI id:6265) and laccase LCC2 (PHI id:552).
CWDEs including pectinase, glycosyl hydrolase and laccase mainly serve as primary
weaponry for fungal attack causing the plant cell wall becoming less compact and more
permeable for consequent digestion by cellulase and hemicellulase enzymes (Chu et al.,
2015). Importantly, PG is one of the first enzymes secreted by pathogenic fungi upon
contact with plant cell wall and these pectinases have been widely studied for their role
in plant pathogenesis especially necrosis and rotting in the infected plants (De Lorenzo &
Ferrari, 2002; Kubicek, Starr & Glass, 2014). This finding corroborated with the reported
polygalacturonase activities from the transcriptome profile of G. boninense-infected oil
palm (Elaeis guineensis) whereby PG transcript was shown to be elevated as compared
to none observed in control unaffected oil palm (Ho et al., 2016). It can be postulated
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Figure 4 G. boninense NJ3 Augustus predicted amino acid sequences PhiBase 4.5 homologs classi-
fied based on gene ontologies. The gene ontology chart was generated using WEGO 2.0 (http://wego.
genomics.org.cn/).

Full-size DOI: 10.7717/peerj.8065/fig-4

that pectin-acting PG work synergistically with hemicellulases for Ganoderma infection in
similar fashion to necrotrophic infection and virulence of many phytopathogens including
Fusarium spp., the main causative agents of vascular wilt and head blight diseases in
important crops (Gómez-Gómez et al., 2002; Chen et al., 2012b; Paccanaro et al., 2017).
Hemi-cellulosic digestion activities of G. boninense were previously demonstrated to assist
the fungal growth on oil palm hence supporting the association of these PHI genes as
potential pathogenicity factors in oil palm infection (Surendran et al., 2017; Surendran et
al., 2018).

On the other hand, no cutinase (CE5) homolog was found from the CAZymes and
PHIbase analysis of G. boninense NJ3 suggesting the lack of cutinase-mediated cell wall
modification during wood-decaying process which may be compensated by the high
numbers of oxidative AAs and hydrolytic GHs found in the Ganoderma spp. examined
in this study (Table S2). CE5 was found not prevalent in wood-decaying basidiomycetes
including pathogenic H. irregulare and Fomitiporia mediterranea which harbored multiple
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Table 1 List of candidate CWDE-related pathogenicity genes from PHI database analysis. Information of homolog gene from reference organ-
ism is described in the table.

Gene PHI ID Protein ID Organism Function/Role Reference

PG1 PHI:4879 A0A0C4DHY2 Fusarium oxysporum Catalysis of the random
hydrolysis of (1,4)-alpha-D-
galactosiduronic linkages in
pectate and other galacturonans.

Bravo Ruiz, Di Pietro &
Roncero (2016)

Endo-1,4-beta-xylanase
(GH10 family)

PHI:2209 G4N1Y8 Magnaporthe oryzae Catalysis of the endohydrolysis
of (1,4)-beta-D-xylosidic link-
ages in xylans

Nguyen et al. (2011)

Eng1 PHI:6265 C0NFK7 Histoplasma capsulatum Catalysis of the hydrolysis of any
O-glycosyl bond

Garfoot et al. (2016)

LCC2 PHI:552 Q96WM9 Botrytis cinerea Lignin degradation and detoxifi-
cation of lignin-derived products

Schouten et al. (2002)

copies of lignolytic peroxidase enzymes (Floudas et al., 2012; Zhao et al., 2013). Expression
of cutinase was also reported to be non-essential during pathogenesis of other necrotizing
pathogens such as F. solani f. sp. pisi and Botrytis cinerea (Van Kan et al., 1997; Stahl &
Schafer, 1992; Zhao et al., 2013). Combined actions of ligninolytic and cellulolytic enzymes
including laccase and endoglucanase were previously shown to be directly involved
in the wood decaying and infection processes of wheat and cacao by necrotrophic F.
graminearum and Moniliophthora roreri, respectively (Zhang et al., 2012; Meinhardt et al.,
2014). Transcriptome analysis of Ganoderma infected-oil palm seedling demonstrated
the presence of multiple copies of laccase transcripts as compared to none observed
in the sample of beneficial fungus, T. harzianum, indicating the important role of cell
wall degradation in oil palm infection (Ho et al., 2016; Ho et al., 2018). The identification
of these cell wall degrading PHI genes further supported the hemibiotrophic mode of
infection of G. boninense conferred by fungal genotypic capabilities to produce a plethora
of carbohydrate-acting enzymes. Overall, the comparative genome analysis employed in
this study succeeded in characterizing carbohydrate-active enzymes and identifying CWDE
genes that are involved in plant cell wall degradation and pathogenesis of G. boninense.
Further genome analysis of G. boninense strains can be carried out with the recent report
of draft genome of G. boninense G3 strain isolated from Indonesian region (Utomo et al.,
2018). Correlation between the fungal pathogenicity with CWDE production and other
factors can be further validated via targeted transcriptome analysis and gene expression
profiling of targeted genes (Isaac et al., 2018). Functional studies of the cell wall degrading
enzymes in G. boninense shall be pursued for greater understanding on the essentiality of
the enzymatic capacity in the fungal pathogenesis.

CONCLUSIONS
In this study, comparative genome analysis succeeded in the identification of carbohydrate-
acting and cell wall degrading enzymes in hemibiotrophicG. boninense NJ3. The pathogenic
G. boninense NJ3 genome contained an abundant amount of CAZymes and shared many
similar sets of CAZymes to closely-related G. lucidum of which the differences between
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the gene sets can be attributed to the different nutritional strategy of either Ganoderma
spp. Necrotizing fungal pathogens including G. boninense NJ3 exhibited distinct CAZymes
profiles as compared to the non-necrotizing counterparts which can be correlated with host
preference and parasitic lifestyles. Several CWDE-related genes were identified from PHI
analysis including polygalacturonase and laccase which could directly contribute to the
fungal pathogenesis especially through degradation of the plant cell wall. These findings
provide fundamental knowledge on the fungal genetic ability and capacity to secrete
polysaccharide and cell wall degrading enzymes. Greater insight on the fungal phenotype
can be obtained through future studies involving functional and gene expression analysis
of specific genes in the fungal carbohydrate metabolism.
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