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ABSTRACT

Background. Ulcerative colitis is a type of inflammatory bowel disease posing a great
threat to the public health worldwide. Previously, gene expression studies of mucosal
colonic biopsies have provided some insight into the pathophysiological mechanisms
in ulcerative colitis; however, the exact pathogenesis is unclear. The purpose of this
study is to identify the most related genes and pathways of UC by bioinformatics, so as
to reveal the core of the pathogenesis.

Methods. Genome-wide gene expression datasets involving ulcerative colitis patients
were collected from gene expression omnibus database. To identify most close genes,
an integrated analysis of gene expression signature was performed by employing robust
rank aggregation method. We used weighted gene co-expression network analysis to
explore the functional modules involved in ulcerative colitis pathogenesis. Besides,
biological process and pathways analysis of co-expression modules were figured out by
gene ontology enrichment analysis using Metascape.

Results. A total of 328 ulcerative colitis patients and 138 healthy controls were from
14 datasets. The 150 most significant differentially expressed genes are likely to include
causative genes of disease, and further studies are needed to demonstrate this. Seven
main functional modules were identified, which pathway enrichment analysis indicated
were associated with many biological processes. Pathways such as ‘extracellular matrix,
immune inflammatory response, cell cycle, material metabolism’ are consistent with the
core mechanism of ulcerative colitis. However, ‘defense response to virus’ and ‘herpes
simplex infection’ suggest that viral infection is one of the aetiological agents. Besides,
‘Signaling by Receptor Tyrosine Kinases’ and ‘pathway in cancer’ provide new clues for
the study of the risk and process of ulcerative colitis cancerization.

Subjects Bioinformatics, Gastroenterology and Hepatology
Keywords Ulcerative colitis, Bioinformatics analysis, Genes and pathways

INTRODUCTION

Ulcerative colitis (UC) is a subtype of inflammatory bowel disease (IBD), which is

a kind of idiopathic, chronic, recurrent, debilitating and nonspecific inflammatory
condition, and its characteristic is the alternate periods of remission and active disease
(Planell et al., 2013; Strober, Fuss ¢ Mannon, 2007). Worldwide, UC is more common
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than Crohn’s disease (CD). Both diseases are more common in industrialized countries,
particularly in North America and Western Europe, although their incidence is rising in
Asia. The whole morbidity reported is between 1.2 and 20.3 cases per 100,000 persons per
year, and the prevalence is between 7.6 and 245 cases per 100,000 persons per year (Danese
& Fiocchi, 20115 Loftus, 2004). No sex preponderance exists in UC (Bernstein et al., 2006).
The peak age at onset of the disease was 30—40 years (Cosnes et al., 2011). A total of 8—14%
of patients have a family history of IBD and first-degree relatives to patients with UC
have four times the chance of developing the disease (Childers et al., 2014). Studies have
confirmed that genes, environment, intestinal microorganisms and autoimmune factors
are involved in the etiology of UC (Chu et al., 2016; Dignass et al., 2012). However, the
exact pathogenesis of UC is not clear.

With the progress of genome-wide research, more and more genes closely related
to UC have been discovered. The research of DNA microarrays by Lawrance, Fiocchi
& Chakravarti (2001) discovered that the differentially expressed genes (DEGs) in UC
inflammatory sites, in addition to the expected variety of cytokine, chemokine related
genes, and inflammation-related HNL, NGAL, proliferation-related GRO, as well as the
tumor-related DD96, DRAL, MXI1, and immune-related IGHG3, IGLL2, CD74. An
RNA Microarray study of IBD, including six UC patients, found that genes related to
functions of biosynthetic and metabolic processes, electrolyte transport, such as HNF4G,
KLF5, AQP8, ATP2B1, and SLC16A, were significantly down-regulated in UC samples.
Nevertheless, the over-expressed genes are mainly involved in such biological processes as
Cell motility, Immune and inflammatory response, Antimicrobial response, Regulation of
Cell growth and proliferation, and cytokine chemotaxis. For example, CORO1A, MMP12,
TIMP1, PTGDS, CD79A, POU2AF1, TNFRSF7, IGFBP5, FSCN1, CCL11, etc (Wu et
al., 2007). More recently, a similar study involving 67 UC patients showed significantly
up-regulation of genes including SAA1, DEFA5&6, MMP3&7, S100A8&9 (Noble et al.,
2008). A meta-analysis of 2,693 UC patients reported about 30 gene loci closely related
to UG, including not only TNFSF15, NKX2-3, IL12B, MST1, IL18RAP, HLA, IBD5,
RNF186/OTUD3/PLA2G2E, DLD/LAMBI, IL10, CARD9, IFNG/IL26, JAK2, IL23R, but
also novel FCGR2A, 5p15, 2p16, CARD9 and ORMDL3 (McGovern et al., 2010). However,
genetics only explains 7.5% of the disease variation, with small predictive ability for
phenotypes, and are currently limited in clinical practice (UK IBD Genetics Consortium e
The Wellcome Trust Case Control Consortium 2, 2009).

The aim of this article is to further explore the interaction of genes related to the
pathogenesis of UC and the interaction of the enriched signal pathways, elucidating
underlying pathogenic events that may contribute to find new and valuable therapeutic
targets of the disease.

Gene Expression Omnibus is a public database, and dozens of gene expression datasets
about UC patients are freely available, which provide very valuable information, and it
could be reused to provide new insights into the molecular pathogenesis of UC. In addition,
due to the small sample size in single dataset and discrepancies of the characteristics among
multiple heterogeneous datasets, individual genome-wide gene expression datasets could
have restricted capability in forecasting the functional gene networks. Thus, it is necessary
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to gather those datasets and synthetically integrate those massive data through systems
biology tools, and finally receive the stable and credible results (Marques et al., 2010; Rung
& Brazma, 2017; Seifuddin et al., 2013).

The robust rank aggregation (RRA) analysis is a strict tool of systems biology, which can
be adopted to the comparison of multiple gene ranking lists obtained from experiments
on different platforms greatly expanded the sample size, making the identification of genes
related to diseases more reliable and valuable (Kolde et al., 2012). The theory of RRA is that
by looking at the location of genes respectively in each ranked list and comparing it with
a randomly shuffled baseline list, each gene will be assigned a p-value, and the better the
location in these ranked lists, the smaller the p-value will be. The final ranking of genes is
based on the P value, and logarithmic fold changes (logFC) can be calculated as needed to
determine the importance of genes together with the P-value.

In the current, systematic review and comprehensive integration of genome-wide gene
expression datasets in UC is still missing. Therefore, we performed the systematic review
and comprehensively integrated those genome-wide gene expression datasets through RRA
to identify the most probable causative genes of UC. We hope to mark out some deepening
insights into UC pathogenesis and provide some molecular target for therapeutic.

Moreover, we would use weighted gene co-expression network analysis( WGCNA)
to categorise those important and aberrantly expressed genes into several biologically
functional modules (Langfelder ¢~ Horvath, 2008; Prom-On et al., 2010), which could be
biologically meaningful gene clusters and play important roles in UC pathogenesis.

MATERIALS & METHODS

Datasets search and eligibility criteria

On the Gene Expression Omnibus (GEO) home page (http://www.ncbi.nlm.nih.gov/geo/),
“UC biopsy” was used as the search term, and the datasets in the search results were filtered
according to the following criteria: (1) the gene expression profile measured by microarray
chip technology; (2) the dataset was a comparison between active UC patients’ tissue and
non-UC patients’ healthy tissue; (3) Sample size should be at least 5; (4) The database
provided raw data or gene expression. Fragments Per Kilobase of transcript per Million
fragments mapped (FPKM) matrix files for these datasets and can be used for reanalysis.
The raw data is the direct information measured by instrument, in CEL format, which
can be processed by R and converted into TXT format of gene expression FPKM matrix.
The gene expression FPKM matrix files provided by the website should not have been
normalized. Datasets that did not meet the above criteria are excluded.

Robust Rank Aggregation (RRA) analysis

The data set of a single platform is difficult to reach a large sample size, and the result is of
low credibility. We used the RRA analysis method to comprehensively compare and analyze
the results obtained from the genetic difference analysis of each platform, and selected the
genes with strong consistency and difference, so as to make the final differentially expressed
genes (DEGs) more convincing. Multiple packages of R software were applied for data
processing and statistical analysis (R Core Team, 2018; Gentleman et al., 2004).
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Affy package for data preprocessing

read.AnnotatedDataFrame(), read in the grouping information file for the samples(UC
patients and controls); read.csv(), read in the annotations files of gene expression
omnibus platform (GPL), including the conversion of probes to gene symbols; eset.rma <-
justRMA(), datExpr=exprs (eset.rma), these two-step functions apply the RMA method to
normalize original files, with the purpose of adjusting the overall characteristics of a single
sample to make it more suitable for comparison.

Surrogate variable analysis (SVA) package for batch effect removing
Batch effect is caused by different samples under different conditions such as experiment
time, experiment environment, instrument, etc., and merely data normalization cannot
remove batch effect. SVA package were used to remove the batch effects from different
samples of the same platform (Chen et al., 2011; Leek et al., 2012). This step is performed
using Empirical Bayes method, whose core function is ComBat Finally, gene expression
value matrix files with row name as gene symbol and column name as sample number were
obtained for each platform for further analysis.

Limma package for differential genes analysis

The limma package is a comprehensive package with many options for loading data,
data pre-processing (background correction, intra-group normalization and inter-group
normalization), and differential genetic analysis. The function of empirical Bayes linear
regression method for finding differential genes is very popular. At the same time, limma
package is very scalable. Both one channel and tow channel data can be analyzed for
differential genes, even including quantitative PCR and RNA-seq data types (Ritchie et al.,
2015).

The gene expression matrix files obtained in the last step were used for differential
gene analysis between UC and Control groups by Limma package respectively, so as to
acquire the DEGs of each platform (Wettenhall & Smyth, 2004). MakeContrasts() as the
key function and gene rank lists of different platforms were generated. In the process, the
False Discovery Rate (FDR) is calculated by benjamini-hochberg correction method, which
means a adjusted P-Value, but the P-Value is still used as the basis for the significance
judgment of the result.

RobustRankAggreg package for RRA analysis

The RobustRankAggreg package was used to implement RRA analysis for Gene rank
lists of different platforms to generate the most valuable DEGs (Kolde et al., 2012). Core
functions: list(), rankMatrix(), aggregateRanks Genes with P value < 0.05 and [logFC|>1
were selected, and the smaller the P value, the higher the ranking, often small P value of the
gene corresponds to a large |logFC|. The final result was visualized by pheatmap package.

WGCNA

In order to clarify the main role of DEGs in the pathogenesis of UC, this method is used to
cluster genes with close relationship in the same module. The weighted gene co-expression
network was constructed by the WGCNA package of R.
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First, an appropriate gene expression FPKM matrix file is required. A number of genes
and suitable samples were extracted from the raw data, and the matrix file is the FPKM of
these genes for each sample. The DEGs generated in the RRA analysis were only the most
important genes, and could not present the overall picture of the co-expression network.
In order to cover most valuable difference genes, we adjusted the cut off value to p < 0.05
and |logFC|>0.14. In other studies, [logFC| values are often different in order to select
sufficient and relatively high value genes for WGCNA. For example, Yan et al. selected
[logFC|>0.26 (Yan et al., 2018), while Lu et al. (2014) set [logFC|>0.585 in order to get
more differentiated genes . Besides, only samples from the same platform can be combined
for WGCNA. To make the results more convincing, we selected GPL570 with the largest
sample size, including 143 UC patients and 79 controls from eight datasets.

Then, hclust() was used to hierarchical clustering of samples by average method and
results in the initial sampletree. The following we defined sample clustering height = 80 to
remove the isolated samples from the group, so as to obtain a more hierarchical sampletree
for further analysis.

The core process of WGCNA is to build a scale-free distributed topological network,
making the functional modules developed more cohesive (Langfelder ¢~ Horvath, 2008). In
the view of many relevant references prove that when the scale-free fit index is greater than
0.85, the network already conforms to the scale-free network distribution (Lancu et al.,
2015; Zhang & Horvath, 2005). We set an appropriate soft threshold power value to make
the generated Scale free Topology Model Fit >0.85.

Next, module identification was realized by Dynamic Tree Cut method, setting
minModuleSize = 30 and deepSplit = 2. Further, mergeCloseModules(), a function
that can be merged automatically, completes the merging of similar modules by setting
the minimum height for merging modules at 0.3. Finally, some genes that could not be
classified into any functional module were uniformly collected into the grey60 module.
Incidentally, the colors of each module are randomly assigned.

Functional enrichment analysis

Functional enrichment analysis was performed by Metascape (http://metascape.org)
accord to the genes assigned to each module (Tripathi et al., 2015). In the results, the top
10 biological processes with the minimum p value of each module were listed, which
reflected the functional characteristics of the modules.

Statistical analysis
The version of R used for statistical analysis was 3.5.0 (R Core Team, 2018). In all cases,
P < 0.05 was considered statistically significant.

RESULTS

UC microarray datasets

In the end, 14 datasets from five platforms were selected. Details of datasets were shown
in Table 1, including GSE number, sample size, Source types, detection platform, data file
type and authors. In the study, the number of UC patients in each dataset ranged from
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Table 1 Summary of those 14 genome-wide gene expression datasets involving UC patients.

Gene expression Samples Source Gene expression Data file PMID

Omnibus Series (UC patients/ types Omnibus type

(GSE) number controls) Platform

(GPL)
1 GSE9452 8/5 Colonic biopsies GPL570 Raw data (.CEL) 19177426
2 GSE10714 3/3 Colonic biopsies GPL570 Raw data (.CEL) 20087348
3 GSE13367 16/20 Colonic biopsies GPL570 Raw data (.CEL) 19834973
4 GSE14580 24/6 colonic biopsies GPL570 Raw data (.CEL) 19700435
5 GSE22619 10/10 Sigmoid colon GPL570 Raw data (.CEL) 21621540
6 GSE36807 15/7 Colon pinch biop- GPL570 Raw data (.CEL) 24155895
sies
7 GSE38713 22/13 Colonic biopsies GPL570 Raw data (.CEL) 23135761
8 GSE47908 45/15 Colonic biopsies GPL570 Raw data (.CEL) 25358065
9 GSE73661 67/12 Colonic biopsies GPL6244 Raw data (.CEL) 27802155
10 GSE59071 74/11 Colonic biopsies GPL6244 Raw data (.CEL) 26313692
11 GSE48958 718 Colonic biopsies GPL6244 Raw data (.CEL) 25546151
12 GSE6731 5/4 Cecum, Sigmoid, GPL8300 Raw data (.CEL) 17262812
Rectum colon
13 GSE53306 16/12 Colon tissue GPL14951 Matrix File (non- 26034135
normalized.txt)

14 GSE65114 16/12 Colonic biopsies GPL16686 Raw data (.CEL) NULL

three to 74, and the number of normal controls ranged from three to 20. The total number

of samples enrolled in the final study was 328 UC patients and 138 healthy controls.

150 significant Differentially Expressed Genes (DEGs) between UC

and non-UC Patients

The top 100 up-regulated genes and the top 50 down-regulated genes by Robust Rank
Aggregation (RRA) analysis were shown in Table S1. P < 6.11E-07 and |logFC|>1 reminded
significant differences of the top 100 up-regulated genes. Besides, the top 50 down-regulated
genes had significant difference index of p < 6.32E-07 and |logFC|>1 (Table S1).

In order to highlight the effect of the presentation, Fig. 1 displayed the logFC for unique
dataset platforms and multi-dataset platforms of the top 50 up-regulated and top 50 down-
regulated genes. Green represents down-regulation and red represents up-regulation. The
colors deepen with the increase of |logFC| respectively. The similarity of color saturation
reflects the consistency of these important genes in the datasets of each platform.

The expression of the above 100 DEGs in all samples of GPL570 platform was shown
in the heatmap (Fig. 2). Among them, the 50 up-regulated genes mainly include: (1)
Closely associated with inflammatory response, such as S100A8&9, CXCL1&8&10&11&13,
CCL19&20, CHI3L1, IL1B, ILIRN, VNNI, IDO1; (2) MMP1&3&7&9&10&12, PIM2,
TIMP1, SERPINBS are closely related to extracellular matrix organization process; (3)
LCN2, SELL, CFB, CD27, CSF3R, C2, LAX1, CFI are associated with immune response;
(4) DMBT1, DUOX2& A2, and TNIP3 are associated with viral and other infections;
(5) REG1A, REG3A, REG1B, PLAU, TFF1, ADM, WARS are closely related to positive
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Figure 1 Top 50 up-regulated and top 50 down-regulated genes in UC. The vertical axis shows the gene
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the color, the greater the difference; numbers in the figure show the logFC of DEGs, which was calculated
by the limma package of R.
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regulation of cell proliferation process; (6) Other genes with scattered functions, such as
PI3, OLFM4, IGFBP5, SPINK4, SLC6A14, and AQP?Y, are related to cell cycle progression
and cell metabolism.

In addition, the other 50 down-regulated genes mainly include: (1) PHLPP2, VIPR],
APOBEC3B, PTGDR were associated with the regulation of immune inflammatory
response; (2) AQP8, ABCG2, SLC26A2, CA7, BEST4, TRPMS6, which involve in
transmembrane transport functions; (3) CHP2, ENTPD5, SGK2, CNTFR, CLDNS,
CDHR1, CNTN3, CD177, which are related to cell proliferation, migration, and adhesion;
(4) SATB2, PPARG, BMP3, HEPACAM2, GUCA2B, GUCA2A, FMO5, CKB, CA1, MAOA
and DHRS11 are closely related to biological processes such as cell cycle and metabolism;
(5) Other genes are mainly involved in nutrient metabolism, drug and chemical reactions,
and chemotactic regulation of cytokines. And a small number of genes do not yet have a
clear function.

Color stratification displayed the difference of expression between the two groups. In
the top several genes with the greatest difference, genes such as MMP1, REG1A and AQP8
had been confirmed to abnormally expressed in UC (Planell et al., 2013).

5,344 DEGs were clustered into seven functional modules through
WGCNA

Appropriate samples and genes were screened to construct gene expression FPKM matrix
files. Data sets must come from the same platform to be combined into a single matrix file
for analysis, and we selected all samples from the GPL570 platform with the largest sample
size. After adjusting the cut off value of RRA process to p < 0.05 and |logFC|>0.14, 5344
DEGs were obtained, which was more suitable for WGCNA.

When soft-threshold power was set to 10, the scale-free topology index was >0.85, and
mean connectivity was infinitely close to 0 (Fig. 3A). The analysis produced 8 co-expression
modules, among which seven modules contained more genes and were the main functional
modules (Fig. 3B). The number of genes in each module ranged from 97 to 1,718. The
module with the largest number of genes was the blue module and the second largest
module is the black module with 1,398 genes. Blue and black modules also contain the
largest number of the150 most important DEGs. Therefore, we believe that the pathways
involved in the two modules dominate the occurrence and progress of UC. The detailed
gene names were listed in Table S2. The network heatmap plot showed that these major
modules maintain a good independence from each other (Fig. 3C).

Co-expression modules were enriched to obtain significant pathways
Table 2 listed the functional enrichment analysis results of seven major co-expression
modules. Biological processes from were ranked by Logl0(P), and having the greatest
|Log10(P)| was considered critical.

The genes of the blue module were significantly enriched in the ‘extracellular matrix
organization, lymphocyte activation, blood vessel morphogenesis, leukocyte migration
and inflammatory response’. Also, ‘nucleobase-containing small molecule metabolic
process, small molecule catabolic process, isoleucine degradation’ pathways were the most
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Figure 3 Plots in the WGCNA analysis using gene expressions in 328 UC patients and 138 controls
from GPL570 datasets. (A) Influence of soft-threshold power on scale-free topology fit index. (B) Influ-
ence of soft-threshold power on the mean connectivity. (C) Cluster dendrogram of coexpression genes
and functional modules in UC. More than 15 modules were identified by Dynamic Tree Cutting method
with a medium sensitivity (minModuleSize = 30, deepSplit = 2) to branch splitting. Merged Dynamic
shows the seven functional modules obtained by merging similar modules in Dynamic Tree Cut (Height
> 0.3). (D) The construction of co-expression modules by WGCNA. Each module was assigned a unique
color identifier. The progressively saturated red colors indicated the higher overlap among these func-
tional modules.

Full-size Gal DOI: 10.7717/peer;j.8061/fig-3

important pathway enriched in the black module. Besides, the genes of salmon module
were mainly enriched in the biological processes of ‘interferon signaling, defense response
to virus and herpes simplex infection’. The cyan module was enriched into functional
pathways involved in multiple fields, including protein regulation, neutrophil immunity,
tyrosine kinase pathway, cancer-related pathways and many other aspects. In addition,
the enriched pathways of Grey60 and midnightblue modules were closely related to
inflammatory response, while the ‘Cell Cycle’ and ‘Cell Cycle Checkpoints’ were the results
of green module functional enrichment (Table 2).

DISCUSSION

UC is a type of IBD that affects the large intestine and colon. The pathogenesis of UC is
complex and remains largely unknown. It is believed that genetic features, the immune
response to microbial dysbiosis, mucosal immune response and environmental factors
contribute to the pathogenesis of UC (Danese & Fiocchi, 2011). Though many genes have
been found be involved in UC, the gene networks associated with the etiology of UC has
not been clearly defined.
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Table2 Pathway and Process Enrichment Analysis of those functional coexpression modules in UC.

Modules GO Category Description Count % Log10(P) Logl10(q)
GO0:0030198 GO Biological Extracellular matrix 121 7.05 —49.41 —45.10
Processes organization
GO:0046649 GO Biological Lymphocyte activa- 177 10.31 —48.76 —44.75
Processes tion
GO:0048514 GO Biological Blood vessel morpho- 166 9.67 —45.01 —41.40
Processes genesis
GO:0050900 GO Biological Leukocyte migration 123 7.16 —35.59 —32.42
Processes
GO:0006954 GO Biological Inflammatory re- 152 8.85 —29.70 —26.66
Processes sponse
GO:0001816 GO Biological Cytokine production 143 8.33 —28.99 —25.98
Processes
Blue GO0:0019221 GO Biological Cytokine-mediated 145 8.44 —27.99 —25.04
module Processes signaling pathway
GO:0009611 GO Biological Response to wound- 132 7.69 —25.97 —23.19
Processes ing
R-HSA-109582 Reactome Gene Hemostasis 126 7.34 —25.06 —22.31
Sets
G0:0002250 GO Biological Adaptive immune re- 121 7.05 —23.43 —20.72
Processes sponse
R-HSA-913531 Reactome Gene Interferon Signaling 39 31.71 —50.63 —46.32
Sets
GO:0051607 GO Biological Defense response to 30 24.39 —32.91 —29.64
Processes virus
hsa05168 KEGG Pathway Herpes simplex infec- 21 17.07 —21.50 —18.36
tion
GO:0001817 GO Biological Regulation of cy- 29 23.58 —18.62 —15.55
Processes tokine production
R-HSA-1280218 Reactome Gene Adaptive Immune 29 23.58 —16.47 —13.54
Sets System
GO:0060759 GO Biological Regulation of re- 16 13.01 —15.40 —12.52
Processes sponse to cytokine
stimulus
Salmon GO:0045088 GO Biological Regulation of innate 17 13.82 —11.07 —8.37
Processes immune response
module
hsa04621 KEGG Pathway NOD-like receptor 12 9.76 —9.95 —7.35
signaling pathway
GO0:0035455 GO Biological Response to 6 4.88 —9.15 —6.62
Processes interferon-alpha
GO0:0019883 GO Biological Antigen processing 6 4.88 —9.01 —6.49
Processes and presentation of
endogenous antigen
R-HSA-1640170 Reactome Gene Cell Cycle 100 35.46 —82.79 —78.48
Sets
R-HSA-69620 Reactome Gene Cell Cycle Check- 52 18.44 —44.54 —40.71
Sets points

(continued on next page)
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Table 2 (continued)

Modules GO Category Description Count % Log10(P) Log10(q)
GO0:0044770 GO Biological Cell cycle phase tran- 65 23.05 —44.07 —40.36
Processes sition
GO0:0051301 GO Biological Cell division 66 23.40 —43.83 —40.22
Processes
GO:0006281 GO Biological DNA repair 53 18.79 —31.28 —28.20
Processes
GO:0045787 GO Biological Positive regulation of 40 14.18 —24.29 —21.50
Processes cell cycle
Green GO:0051983 GO Biological Regulation of chro- 24 8.51 —23.76 —21.00
Processes mosome segregation
module
GO0:0051321 GO Biological Meiotic cell cycle 30 10.64 —20.87 —18.24
Processes
GO:0045786 GO Biological Negative regulation of 43 15.25 —20.64 —18.02
Processes cell cycle
GO:0071103 GO Biological DNA conformation 30 10.64 —19.39 —16.81
Processes change
GO:1990778 GO Biological Protein localization 16 7.66 —8.45 —4.38
Processes to cell periphery
GO0:0002446 GO Biological Neutrophil mediated 19 9.09 —6.86 —3.29
Processes immunity
G0:0030029 GO Biological Actin filament-based 23 11.00 —6.76 —3.29
Processes process
R-HSA-9006934 Reactome Gene Signaling by Receptor 18 8.61 —6.76 —3.29
Sets Tyrosine Kinases
hsa04141 KEGG Pathway Protein processing in 10 4.78 —5.56 —2.59
endoplasmic reticu-
lum
GO0:0071407 GO Biological Cellular response to 18 8.61 —5.30 —2.38
Processes organic cyclic com-
pound
Cyan GO0:1903829 GO Biological Positive regulation of 13 6.22 —5.28 —2.38
4 Processes cellular protein local-
module o
ization
hsa05200 KEGG Pathway Pathways in cancer 14 6.70 —4.83 —2.02
GO0:0033120 GO Biological Positive regulation of 5 2.39 —4.77 —1.98
Processes RNA splicing
hsa04810 KEGG Pathway Regulation of actin 10 4.78 —4.63 —1.88
cytoskeleton
GO:0002274 GO Biological Myeloid leukocyte ac- 55 35.26 —45.62 —41.31
Processes tivation
GO:0006954 GO Biological Inflammatory re- 50 32.05 —35.05 —31.69
Processes sponse
GO:0009617 GO Biological Response to bac- 40 25.64 —28.23 —25.09
Processes terium
GO:0001816 GO Biological Cytokine production 42 26.92 —27.52 —24.41
Processes
R-HSA-449147 Reactome Gene Signaling by Inter- 33 21.15 —23.78 —20.76
Sets leukins

(continued on next page)
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Table 2 (continued)

Modules GO Category Description Count % Log10(P) Log10(q)
GO0:0097529 GO Biological Myeloid leukocyte 24 15.38 —22.95 —19.96
Processes migration
Grevé0 hsa04380 KEGG Pathway Osteoclast differentia- 19 12.18 —19.58 —16.80
v tion
module
GO0:0030099 GO Biological Myeloid cell differen- 22 14.10 —13.46 —10.91
Processes tiation
hsa04657 KEGG Pathway IL-17 signaling path- 13 8.33 —13.26 —10.73
way
R-HSA-6785807 Reactome Gene Interleukin-4 and 13 8.33 —12.40 —9.89
Sets Interleukin-13 signal-
ing
GO0:0055086 GO Biological Nucleobase- 128 9.23 —27.65 —23.33
Processes containing small
molecule metabolic
process
GO:0044282 GO Biological Small molecule 89 6.42 —24.66 —21.35
Processes catabolic process
hsa00280 KEGG Pathway Valine, leucine and 25 1.80 —-17.79 —14.86
isoleucine degrada-
tion
GO:0090407 GO Biological Organophosphate 100 7.21 —17.71 —14.80
Processes biosynthetic process
hsa00071 KEGG Pathway Fatty acid degrada- 21 1.51 —14.05 —11.23
tion
hsa01200 KEGG Pathway Carbon metabolism 32 2.31 —13.09 —10.39
Black GO0:0033865 GO Biological Nucleoside bisphos- 35 2.52 —12.91 —10.25
Processes phate metabolic pro-
module
cess
hsa04146 KEGG Pathway Peroxisome 26 1.87 —11.98 —9.35
GO:0005975 GO Biological Carbohydrate 79 5.70 —11.64 —9.04
Processes metabolic process
GO:0008610 GO Biological Lipid biosynthetic 87 6.27 —10.22 —7.69
Processes process
GO:0006954 GO Biological Inflammatory re- 19 20.0 —9.68 —5.37
Processes sponse
GO:0006959 GO Biological Humoral immune re- 13 13.68 —8.73 —4.78
Processes sponse
GO0:0002366 GO Biological Leukocyte activation 17 17.89 —8.52 —4.78
Processes involved in immune
response
GO:0050878 GO Biological Regulation of body 12 12.63 —6.04 —3.05
Processes fluid levels
GO0:0030162 GO Biological Regulation of prote- 14 14.74 —5.47 —2.56
Processes olysis
GO0:0045785 GO Biological Positive regulation of 10 10.53 —5.39 —2.51
Processes cell adhesion

(continued on next page)
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Table 2 (continued)

Modules GO Category Description Count % Log10(P) Log10(q)
R-HSA-6785807 Reactome Gene Interleukin-4 and 6 6.32 —5.27 —2.42
Midnightblue Sets Interleukin-13 signal-
module ng
GO:0010817 GO Biological Regulation of hor- 11 11.58 —5.10 —2.31
Processes mone levels
GO:0045766 GO Biological Positive regulation of 7 7.37 —4.74 —2.06
Processes angiogenesis
GO:0001666 GO Biological Response to hypoxia 8 8.42 —4.41 —1.81
Processes
Notes.

‘Count’ is the number of genes contained in enriched pathway. ‘%’ is the proportion of the total number of genes in each module. ‘Log10(P)’ is the p-value in log base 10.
‘Logl10(q)’ is the multi-test adjusted p-value in log base 10.

In this study, 14 genome-wide gene expression datasets were finally included, which
involved a total of 328 UC patients and 138 healthy controls. Integrated analysis using
the RRA method identified quite a few crucially up-regulated or down-regulated genes
(Table 1 & Fig. 1). Some of those genes are novel UC gene signatures and their molecular
roles in UC pathogenesis are still largely unknown. These abnormally expressed genes may
be therapeutic targets for UC and need further research.

The WGCNA clustering criteria have a great biological significance which have been
widely used to explore the molecular mechanisms of various diseases (Yan et al., 2018),
including IBD (Lin et al., 2018; Xie, Zhang & Qu, 2018). In our study, the expressions of
5344 UC associated genes obtained from the RRA analysis were used in the WGCNA
analysis, together with they were classified into seven co-expression biologically functional
modules (Fig. 3B), which highlighted some new insights into the pathogenesis of UC at a
systems level.

By functional enrichment analysis of the modules, we revealed several significant
pathogenic mechanisms closely related to UC. In the absence of clinical traits, the
importance of module is often judged by the number of genes they contain. The blue
and black modules both have more than 1,000 genes, and contain the largest number of
top 150 genes, which are considered to be the two most important modules.

To further understand the significance of these functional modules in the pathogenesis
of UC, enrichment analysis was performed using Metascape. The importance of pathways
is based on Logl0(P) values. Important pathways in important modules probably have
the strongest correlation with the symptoms or pathophysiology of UC. The enrichment
analysis of genes in the blue module mainly involved in ‘extracellular matrix organization,
lymphocyte activation, blood vessel morphogenesis, leukocyte migration” which relevant
to inflammatory responses revealed that inflammatory pathway occupies a core position
in various pathways related to UC. Extracellular matrix can regulate inflammation, healing
and fibrosis. The intestinal extracellular matrix is comprised of various macromolecules,
including glycoproteins such as collagens, vitronectin, fibronectin and matricellular
proteins. A recent study has reported that extracellular matrix organization strongly
promotes the occurrence of Intestinal fibrosis which is common in IBD (Latella ef al.,
2014; Wynn & Ramalingam, 2012). The black modules with the second largest number of
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genes and the enriched functional pathways mainly include ‘nucleobase-containing small
molecule metabolic process, small molecule catabolic process, isoleucine degradation’.
The regulation of metabolism of various small molecular substances suggests that many
pathways and metabolism are active in tissue cells when UC is activated. ‘Cell Cycle’ and
‘Cell Cycle Checkpoints’ were the most outstanding pathways of Green module. One study
pointed out that the cell cycle regulates the immune, tolerance and autoimmunity functions
of T cells, and the excessive inflammation of IBD is the loss of immune tolerance caused by
abnormal regulation of the cell cycle (Sturm et al., 2004). The enrichment results of Cyan
module pathway can be seen that immune response-related pathways are still common
and the localization of a large number of proteins inside and outside the cell once again
indicates the activity of cell metabolism. In addition, ‘pathway in cancer’ process conforms
to the recognized fact that UC and colorectal cancer (CRC) are closely related. Studies
have shown that 8 to 10 years after diagnosis of UC, the risk of CRC begins to increase
(Yashiro, 2014). Tyrosine kinase receptor pathway, which regulates cell proliferation and
differentiation and promotes cell survival, has been closely associated with CRC (Herr et
al., 2018). Meanwhile, it has been reported that tyrosine kinase receptor RON is highly
expressed in UC mucosa (Hirayama et al., 2007). Therefore, we believe that tyrosine kinase
pathway plays an important role in the occurrence of UC canceration.

Moreover, there are obvious similarities between the pathway enrichment results of
grey60 module and midnigntblue module. The former chiefly include ‘myeloid leukocyte
activation, inflammatory response, response to bacterium’. The latter also focuses on the
fields of ‘inflammatory response, immune response’. Numerous studies have demonstrated
the association between clostridium difficile infection and UC. Clostridium difficile
toxins may lead to an enhanced inflammatory response in the presence of Clostridium
difficile infection (Martinelli et al., 2014). With regard to other bacteria, salmonella and
campylobacter infections have also been noted to cause an exacerbation of IBD (Malik,
20155 Singh, Graff & Bernstein, 2009). The functional enrichment pathways of salmon
module mainly involve in ‘interferon signaling, defense response to virus and herpes
simplex infection’, of which ‘interferon signaling’ is the most important. There were some
observational studies on the link between Interferon Signaling and UC. It is generally
known that IFN-gamma plays a key role in the early steps of installation of inflammation,
promoting monocyte recruitment and activation, and inducing the expression of other
inflammatory cytokines. IFN-gamma expression was increased in the pouch mucosa of UC
patients compared with controls, and thus it seems to play a pivotal role in UC patients (Leal
et al., 2010). Interferon signaling has been identified as a central aspect of innate immune
response which induces a wide variety of antiviral proteins against pathogens infection.
Moreover, interferon signaling play a crucial role in the response to herpes virus infection
by antagonizing viral replication and spread (Noisakran ¢ Carr, 20015 Su, Zhan & Zheng,
2016). This reminds us that the occurrence of UC is probably a sequential process of herpes
simplex infection-defense response to virus-interferon signaling in a part of patients.

A study reported corticosteroid refractory patients may benefit from antiviral therapy
(Shukla et al., 2015). This subgroup of patients who were refractory to corticosteroid was
likely to undergo above-mentioned sequential process continuously. Therefore, screening
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for herpes virus infection, prompt diagnosis and antiviral therapy may effectively relief
these patients’ condition and reduce colectomy risk. However, the molecular mechanisms
underlying the roles of nucleobase-containing small molecule metabolic process in UC are
still poorly understood and need to be elucidated in the future.

RRA analysis in the study identifies a large amount of significant DEGs that were
drastically up-regulated or down-regulated, plenty of which have been reported in previous
articles. We listed top 100 DEGs in the visualization operation to show the reliability of the
results. The most significant causative genes are likely to be contained in the top 100 genes
and need further experimental verification. Therefore, in our discussion, we will focus on
the genes that are considered to be closely associated with the occurrence and development
of UC.

MMPI, REG1A and AQP8 have been reported in related literatures (Planell et al.,
2013). MMP1, which belong to metal dependent enzymes family, is known as interstitial
collagenase involved in extracellular matrix turnover (Fanjul-Fernandez et al., 2009).
MMPI expression increased in the colonic mucosa of UC patients compared to normal
controls, and the mucosa up-regulation of MMP1 correlated with the severity of disease
in UC (Wang, Tan ¢» Zhang, 2009).There is growing evidence that MMP-1 reflect acute
tissue injury and involved in the initial steps of ulceration in UC and new blood vessel
formation, but the molecular mechanism underlying its effects remains unclear (McKaig et
al., 2003; Wang & Yan, 2006). In the previous literature it has been pointed out by several
authors that Abnormally high expression of REGIA is present in the colonic mucosa in
UC patients, but its precise molecular mechanism is far from being completely understood
(Planell et al., 2013). Currently several researches reported that AQP8 play important roles
in gastrointestinal diseases, including UC. The expression of AQP8 is a marker of normal
proliferating colonic epithelial cells and AQPS are closely connected with fluid transport in
colon (Zhao et al., 2016). A study reported that AQP8 expression reduced in the ileum of
UC patients while AQP8 was dramatically induced in the colon of UC patients (Zahn et al.,
2007). However, a study with larger number of samples found that the AQP8 expression
was markedly decreased in UC colon tissue compared to healthy subjects in agreement
with the our results (Min et al., 2013).The decrease of AQP8 may lead to the disorder
of colonic mucosal fluid absorption and reduce the secretion of intestinal tract, but its
molecular mechanism is poorly understood (Calamita et al., 2001; Elkjaer et al., 2001).
High expression of DUOX2 and DUOXA2 have been shown in patients with active UC,
especially where inflammation is prominent. Both of them are regulated by inflammation
and crypt-by-crypt basis in UC tissues, which can increase the production of H202. This
process can enhance innate defense, but has the risk of potential DNA damage (MacFie
et al., 2014). Studies have confirmed that DMBT1 and IL-22 mRNA are obviously highly
expressed in UC mucosa, and have a significant correlation. II-22 increased DMBT1
expression by stimulating STAT3 and NF-«B. This process is likely to have an important
effect on the innate immunity of UC mucosa (Fukui et al., 2011). A study of 32 UC patients
found that the detected levels of MMP-9 and LCN-2 in feces of patients with active UC
were significantly increased, and that fecal MMP-9 could be a reliable biomarker of IBD
activity (Buisson et al., 2018). Coincidentally, another report suggested that Serum LCN2
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level significantly increased in patients with active UC, and it can serve as a biomarker of
active UC (Stallhofer et al., 2015).

Among the significantly down-regulated genes, the high ranking ABCG2 also
demonstrated low expression in patients with active UC in a previous study. ABCG2
is an efflux transporter involved in mucosal barrier function, low expression of which may
increase the risk of tissue exposure to carcinogens, bacterial toxins and drugs (Englund
et al., 2007). There are also some genes with significant differences, such as HMGCS2
and PCK1 are novel gene signatures of UC, but still lack of direct experimental evidence.
Therefore, their relationship and value with UC need to be validated in future studies.

As mentioned above, this study creatively applied the RRA method to comprehensively
analyze the DEGs of large samples from multiple platforms. The important DEGs filtered
out are more reliable, and the functional distribution of the DEGs is more concentrated,
which is conducive to clustering clearer functional modules in the process of WGCNA, so
as to reveal an intimate pathway network with UC. The results of our study on important
genes are compared with the results of other similar studies in Table S3. It can be found
that in some studies, the DEGs of RNA microarray between UC and control group have a
great overlap with our result, or at least a similarity in functional distribution.

Since the sample size of our study is larger, the results are more comprehensive.
Some unreported genes still have considerable research value due to their homology
with many genes that have been confirmed to be closely related to UC in gene function
(Kobayashi et al., 2013; Noble et al., 2008; Planell et al., 2013; Wu et al., 2007). Compared to
other data re-analyses researches on UC, almost all of the studies were conducted directly
by functional clustering for a large number of DEGs to display the main mechanisms of
the disease, which can not reflect the importance of the individual genes (Feng et al., 2017;
Song et al., 2018). We innovatively used RRA to summarize and analyze the differential
genes in multiple data sets to obtain the likely important causative genes of UC.

Regarding this study, findings are consistent with many previous research conclusions
and current mainstream views, which reflects the reliability of research methods and results.
However, due to various reasons, the research has some limitations. Firstly, because the
raw data does not provide enough information about clinical traits and disease outcomes
of samples, the correlation degree between modules and clinical traits cannot be analyzed
by WGCNA method, which is limited in the judgment of module importance. Secondly,
as for the setting of cut off value, p < 0.05 is considered to have statistical significance.
LogFC is set based on the similar studies and the appropriate number of genes needed for
the next analysis. The difference in the value set makes a difference in the results, but not
in the essence. Third, the comprehensive analysis of multiple data sets is conducive to the
selection of genes with relatively consistent differences for key research. However, there
are differences in experimental conditions and sample composition of different data sets,
which may cause some valuable information to be cleared in the data processing. Finally,
this study only delineates the possible range of closely related genes through bioinformatics
method, showing the most important pathways related to the pathogenesis. The results still
need to be verified by specific experimental research, and provide help for the progress of
disease diagnosis and treatment.
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CONCLUSIONS

Bioinformatics analysis helps us narrow the scope of our research, which deepens the
understanding of the molecular mechanism and provides theoretical foundation for
molecular target therapy. The biggest characteristic of this study is that in the pathogenesis
of UC, immunity and infection are the two most important factors. We suspect that
the two are most likely to be cause-and-effect in the process of disease initiation and
progression, which is a hot topic in medical research at present. Herpesvirus infection-viral
response-interferon pathway may be the trilogy of corticosteroid refractory UC patients,
who are necessary to accept antiviral therapy.

We can use this research as the basis for further clinical specimens experiment to verify
these genes and pathways, which may lead to future insights into disease pathogenesis,
diagnosis, and treatment.
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