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PURPOSE: To investigate whether multi-view convolutional neural networks can improve a
fully automated lymph node detection system for pelvic MR Lymphography (MRL) images
of patients with prostate cancer.METHODS: A fully automated computer-aided detection
(CAD) system had been previously developed to detect lymph nodes in MRL studies. The
CAD system was extended with three types of 2D multi-view convolutional neural networks
(CNN) aiming to reduce false positives (FP). A 2D multi-view CNN is an efficient
approximation of a 3D CNN, and three types were evaluated: a 1-view, 3-view, and 9-view
2D CNN. The three deep learning CNN architectures were trained and configured on
retrospective data of 240 prostate cancer patients that received MRL images as the
standard of care between January 2008 and April 2010. The MRL used ferumoxtran-10 as a
contrast agent and comprised at least two imaging sequences: a 3D T1-weighted and a 3D
T2*-weighted sequence. A total of 5089 lymph nodes were annotated by two expert
readers, reading in consensus. A first experiment compared the performance with and
without CNNs and a second experiment compared the individual contribution of the 1-view,
3-view, or 9-view architecture to the performance. The performances were visually
compared using free-receiver operating characteristic (FROC) analysis and statistically
compared using partial area under the FROC curve analysis. Training and analysis were
performed using bootstrapped FROC and 5-fold cross-validation.RESULTS: Adding multi-
view CNN significantly (p < 0.01) reduced false positive detections. The 3-view and 9-view
CNN outperformed (p < 0.01) the 1-view CNN, reducing FP from 20.6 to 7.8/image at 80%
sensitivity.CONCLUSION: Multi-view convolutional neural networks significantly reduce
false positives in a lymph node detection system for MRL images, and three orthogonal
views are sufficient. At the achieved level of performance, CAD for MRL may help speed up
finding lymph nodes and assessing them for potential metastatic involvement.
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ABSTRACT11

PURPOSE: To investigate whether multi-view convolutional neural networks can improve a fully automated

lymph node detection system for pelvic MR Lymphography (MRL) images of patients with prostate cancer.

12
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METHODS: A fully automated computer-aided detection (CAD) system had been previously developed

to detect lymph nodes in MRL studies. The CAD system was extended with three types of 2D multi-view

convolutional neural networks (CNN) aiming to reduce false positives (FP). A 2D multi-view CNN is an

efficient approximation of a 3D CNN, and three types were evaluated: a 1-view, 3-view, and 9-view 2D

CNN. The three deep learning CNN architectures were trained and configured on retrospective data of

240 prostate cancer patients that received MRL images as the standard of care between January 2008

and April 2010. The MRL used ferumoxtran-10 as a contrast agent and comprised at least two imaging

sequences: a 3D T1-weighted and a 3D T2*-weighted sequence. A total of 5089 lymph nodes were

annotated by two expert readers, reading in consensus. A first experiment compared the performance

with and without CNNs and a second experiment compared the individual contribution of the 1-view,

3-view, or 9-view architecture to the performance. The performances were visually compared using

free-receiver operating characteristic (FROC) analysis and statistically compared using partial area under

the FROC curve analysis. Training and analysis were performed using bootstrapped FROC and 5-fold

cross-validation.
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RESULTS: Adding multi-view CNN significantly (p < 0.01) reduced false positive detections. The 3-view

and 9-view CNN outperformed (p < 0.01) the 1-view CNN, reducing FP from 20.6 to 7.8/image at 80%

sensitivity.
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CONCLUSION: Multi-view convolutional neural networks significantly reduce false positives in a lymph

node detection system for MRL images, and three orthogonal views are sufficient. At the achieved level

of performance, CAD for MRL may help speed up finding lymph nodes and assessing them for potential

metastatic involvement.
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INTRODUCTION35

Approximately 220,000 men are diagnosed with prostate cancer (PCa) in the USA each year, and36

27,000 die as a consequence of the disease (Siegel et al., 2017). Assessment of lymph node status is37

crucial in determining the best treatment for a patient. MR Lymphography (MRL) is currently the only38

imaging modality with a reported negative predictive value over 95% for detection of metastatic lymph39

nodes (Fortuin et al., 2014). In a prospective study using histopathology as a reference standard, MRL was40

shown to be an accurate imaging technique with sensitivities up to 91%, at 98% specificity (Harisinghani41

et al., 2003). In contrast, conventional MRI has a substantially lower diagnostic accuracy, according to42

a meta-analysis reporting a pooled sensitivity of 39% with a pooled specificity of 82% (Hövels et al.,43

2008).44

PeerJ reviewing PDF | (2018:10:32234:1:1:CHECK 25 Sep 2019)

Manuscript to be reviewed



MRL is MR imaging with a contrast agent based on ultra-small super-paramagnetic particles of iron45

oxide (USPIO), which result in signal intensity differences between metastatic and normal lymph node46

tissue (Heesakkers et al., 2008; Daldrup-Link, 2017). Analysis of MRL images by radiologists is very47

time-consuming, with average reading times up to 80 minutes, and requires readers with a very high level48

of experience for the assessment of the images (Thoeny et al., 2009).49

MRL interpretation time, as well as its dependence on high experience level, can be reduced via50

computer-aided detection (CAD) systems. The first goal of CAD is to reduce search time by detecting all51

lymph nodes visible in the MRL images, whether healthy or diseased, and present each one subsequently52

to the human reader for interpretation. In other words, such a CAD system is not intended to detect disease,53

but rather to detect a certain type of anatomical structure (i.e. the lymph nodes). A modest number of54

studies have been published on the development of lymph node CAD systems, most of them using CT55

imaging rather than MR imaging (Kitasaka et al., 2007; Roth et al., 2014, 2016; Seff et al., 2014).56

We have previously shown that a feature-based CAD system levering anatomical models with an57

atlas approach can, after being properly trained, sensitively detect lymph nodes in abdominal MR58

imaging (Meijs et al., 2015; Debats et al., 2016). However, the number of false positive detections was too59

high for clinical application. Various types of conventional image features were explored but we could not60

find a set that was able to discriminate true lymph nodes from false positive detections with high enough61

accuracy.62

Recently, deep learning and, more specifically, convolutional neural networks (CNNs) have been63

shown to outperform conventional machine learning strategies based on hand-crafted features. Deep64

learning is successfully applied in the field of medical image analysis outperforming classical machine65

learning and achieving expert performance (De Fauw et al., 2018; Litjens et al., 2017). Examples of66

the application of CNNs in abdominal imaging: kidney segmentation (Thong et al., 2016), pancreas67

segmentation (Cai et al., 2016), and prostate segmentation (Cheng et al., 2016). Due to hardware and data68

constraints, recent studies use 2D CNNs (Greenspan et al., 2016). However, lymph nodes are nodular69

structures for which 3D information is needed to discriminate them from tubular structures, as both can70

appear as a blob-like structure in a 2D image. Fully 3D CNNs have a strongly increased neural complexity71

compared to 2D CNNs, and therefore require much more training data, a disadvantage that has induced72

research into multi-view 2D CNNs. A three-orthogonal-views CNN (”2.5D representation”) has been73

used for lymph node detection in CT images (Roth et al., 2014) and was recently expanded to random74

views (Roth et al., 2016). In pulmonary nodule classification, nine views (adding six additional oblique75

views to the standard orthogonal planes) were shown to outperform 3 orthogonal views in a multi-view76

CNN utilized for false positive reduction (Setio et al., 2016).77

In this study, we hypothesize that a multi-view CNN can be used to reduce false positive CAD for78

lymph node detection in MRL images. We extend a conventional CAD system with a 1-view, 3-view, and79

9-view CNN optimized for MRL imaging. We compare the performance of the extended system and the80

original system using bootstrapped free-response receiver operating characteristic (FROC) analysis.81

METHODS82

Lymph node detection methods83

The flow chart of the lymph node detection method is shown in Figure 1. It comprises two stages: initial84

lymph node detection (upper blue pipeline) and false positive reduction (lower blue pipeline).85

Initial lymph node detection method86

The lymph node detection stage comprised an existing prototype described in Debats et al. (2016). The87

prototype is based on a pattern recognition system that is configured to work with MRL data sets.88

A set of image features are defined, which are implemented as feature filters, each of which uses one89

of the available MR images as input and has a feature map as output. Several image features are computed,90

including91

• image intensity of the VIBE, MEDIC and FLASH images, scaled by the mean µ and standard92

deviation σ within each image volume93

• Hessian-based blobness, vesselness, and sheetness features94

• atlas features that provide positional information based on segmented pelvic anatomical structures.95
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After feature calculation, a voxel classification is performed which results in a lymph node likeli-96

hood between 0 and 1 for each voxel. For the voxel classification, a GentleBoost-classifier is used with97

regression stumps as weak learners. The number of weak learners is set to 200.98

After voxel classification, a 3D likelihood map is obtained. On the likelihood map, we perform local99

maxima detection using a spherical window with a diameter of 10 mm, which is the maximum size of100

non-enlarged lymph nodes in MRL. After the local maxima detection, a merging step is performed to101

eliminate plateau-shaped maxima using connected component analysis. All maxima comprising more102

than one voxel are reduced to only the voxel nearest to their center of gravity. The location and likelihood103

of the remaining maxima define the lymph node detection points.104

False positive reduction method using multi-view CNNs105

The false positive reduction stage is an extension to the initial lymph node detection method described106

in the previous paragraph. For each lymph node candidate, one or more small patches (65×65×1) are107

extracted around the candidate position. The set of candidate patches is presented to a convolutional108

neural network (CNN) classifier that discriminates between lymph nodes and false positive detections109

from the previous stage. We use a multi-view CNN, which takes multiple input patches across different110

branches. This idea was successfully explored for pulmonary nodule detection in CT (Setio et al., 2016)111

as well as for lymph node classification (Roth et al., 2014, 2016).112

Three sets of views are considered in this paper, each one a subset of the set of views presented in113

Figure 2. The 1-view set uses only the original 2D plane image information and may be limited in its114

ability to discriminate lymph nodes from, for example, blood vessels. The 3-view set adds two orthogonal115

planes which may allow incorporation of 3D structure and more surrounding information. The 9-view set116

provides a more finely sampled 3D view as the 3-view set and might allow better 3D shape assessment.117

The CNN architecture is shown in Figure 3 for the 3-view configuration. Each patch in the candidate118

set is input to a 5-layer CNN branch consisting of three convolutional layers and two max-pooling layers.119

The pooling operations occur after the first and second convolutional layer. Subsequently, the feature120

maps of the different branches are concatenated in the feature dimension and fed to the last layers of the121

CNN. Weights between view branches are not shared; this allows each branch to learn filters for each view122

separately. In all layers, rectified linear units (Relu) are used as non-linearities. The detailed configuration123

of the CNN architecture is given in Table 1.124

Network weights were optimized using standard stochastic gradient descent with a learning rate of125

10−4 and a Nesterov momentum of 0.9. The loss function was categorical cross-entropy and a λ2 of126

0.0005 was used for regularization. Finally, during training, a dropout of 20% was applied to the fully127

connected layers. Batches of 32 multi-view patches where used during training for 200 epochs. Each128

epoch was defined as 200 mini-batches. Patches where randomly selected from the training set and added129

to a mini-batch while making sure that each mini-batch had a balanced class distribution. Training was130

stopped if validation accuracy did not improve for more than 20 epochs.131

Data collection132

Imaging133

The lymph node detection system was evaluated using retrospectively collected MRL images of a134

consecutive set of patients who fulfilled the following inclusion criteria:135

• Biopsy-proven prostate cancer136

• Ferumoxtran-10 MRL between January 2008 and April 2010137

• Successful acquisition of VIBE, MEDIC, and FLASH image volumes138

A total of 240 patients were included in the analysis. Each patient underwent MR imaging enhanced139

with the USPIO-based lymph node specific contrast agent ferumoxtran-10 (Sinerem R©, Guerbet, Paris,140

France) at the Radboud University Medical Center in Nijmegen, The Netherlands, as part of their clinical141

evaluation. The contrast agent was administered intravenously, 36 to 24 hours before MR imaging was142

performed. All patients received a drip infusion with a duration of approximately 30 minutes, containing143

a dose of 2.6 mg Fe per kg body weight. Immediately before the MR examination, Buscopan (20 mg i.v.144

and 20 mg i.m.) and Glucagon (20 mg i.m.) were administered in order to suppress bowel peristalsis.145

All imaging was performed using a 3.0 Tesla MR imaging system (Magnetom TrioTim; Siemens,146

Erlangen, Germany). Images were acquired in the coronal plane, covering the whole pelvis. Two MR147
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series, called VIBE and MEDIC respectively, were used in this analysis. The scan parameters are shown148

in Table 2. All MRL studies had sufficient image quality to be included; none needed to be discarded.149

Ethical approval and informed consent150

The scientific use of clinically obtained image data was approved by the CMO Regio Arnhem-Nijmegen151

(the institutional review board). The IRB approval number is CMO2016-3045. All patients provided152

written informed consent for the use of their clinical images for research purposes.153

Annotation154

To train the system and assess the performance of the automated lymph node detection, reference lymph155

node annotations were created for each MRL. The annotation comprised a consensus reading by two156

expert readers: an MD researcher specially trained in reading MRL scans (2 years of MRL experience,157

>300 MRLs), and an abdominal radiologist (>10 years of MRL experience, >1000 MRLs).158

The T1-weighted (VIBE) sequence, which is insensitive to USPIO contrast, was used for localization159

and assessment of shape and size of the lymph nodes. In the VIBE images, the individual lymph nodes160

were interactively segmented using the application Lymph Node Task Card, developed by Siemens,161

Malvern, PA (USA). The T2*-weighted (MEDIC) sequence was used to assess USPIO uptake for the162

clinical diagnosis of the patient but was not used in our analysis. A total of 5089 lymph nodes were163

annotated, 21 per patient on average. All lymph nodes visible in the images were annotated; none were164

excluded based on small size or otherwise.165

Training and performance evaluation166

The first stage Gentleboost classifier was trained with training sets containing feature data from randomly167

selected equal amounts of background voxels and lymph node voxels. To avoid partial volume effects and168

annotation errors, edge boundary voxels were excluded from the voxel training set. This was implemented169

by including only training voxels that were within a 4 mm radius of the center of gravity of the annotated170

lymph node. Lymph nodes with a volume of less than 0.1 ml (approx. 195 voxels) were excluded from171

the training set.172

The multi-view convolutional networks were trained with all lymph nodes (true positives and false173

negatives from the first stage) and a random subset of false positives from the first stage. For each lymph174

node candidate, nine image patches were extracted within a cube of 52 × 52 × 52 mm (65 × 65 × 65175

voxels) which encloses the candidate. The nine patches are extracted on planes corresponding to the176

planes of symmetry of a cube. Three of the planes run parallel to pairs of faces of the cube. These planes177

are commonly known as axial, coronal, and sagittal planes. The other six planes run diagonally from one178

edge of the cube to the opposite edge, as shown in Figure 2.179

To obtain an unbiased performance estimate, a commonly used 5-fold cross validation scheme was180

used. Available data were randomly split into five parts at the patient level, ensuring each part had an181

equal number of true positive lymph nodes. In each of the five cross-validation runs, four folds were used182

for training and one fold was used as the test set. In the training, three folds were used to train the CNN183

and one fold was used as the validation set. The predicted outputs in the 5 independent cross-validation184

runs were collected and used for statistical analysis.185

Experiments186

The first experiment assesses the general effect of adding the second-stage multi-view CNN to the lymph187

node detection system. The diagnostic performance is determined using a free-response receiver operating188

characteristic (FROC) analysis. The curves are compared analytically and statistically using bootstrapping189

analysis.190

The second experiment assesses the effect of the number of views on the performance of the lymph191

node detection. Multiple statistical comparisons are made between the 1-view, 3-view, and 9-view192

configuration.193

Both experiments were performed using a one-sided bootstrap test on the partial area under the FROC194

curve (pAUC) ranging from 0.25 false positives per lymph node to 32 false positives per lymph node.195

Bonferroni correction was applied to account for multiple comparisons.196

Statistical analysis197

The authors have used NumPy and SciPy to conduct the bootstrap statistical tests. A p-value less than198

0.05 was considered statistically significant.199
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RESULTS200

False positive reduction performance201

The FROC analysis (Figure 4) shows that adding the multi-view CNN increases the sensitivity of the202

lymph node detection at low FP levels. At a fixed level of sensitivity, the curves clearly show a reduced203

number of false positives. This is confirmed by the statistical analysis (Table 3). The difference in pAUC204

between the stage 1 system and the CNN-enhanced stage 2 lymph node detection with 1, 3, or 9 views205

was statistically significant (p < 0.01 in all cases).206

The FROC analysis also shows that the differences in performance between the three multi-view CNNs207

are small. Statistical tests (Table 3) show that the 3-view and 9-view systems significantly outperformed208

the 1-view system (p < 0.01 in both cases).209

Example images (Figures 5 and 6) illustrate how the multi-view convolutional network correctly210

dismisses false positive lymph nodes and retains true positives.211

DISCUSSION212

Magnetic resonance lymphography (MRL) can help reduce unnecessary surgery or provide image-guided213

treatment in the management of prostate cancer. MRL is, unfortunately, an imaging modality that is214

difficult to read. Tools to help assist MRL reading are essential to help make MRL part of regular215

diagnostic procedures. This study shows that an automatic lymph node detection tool may become more216

feasible when extending an existing prototype with a Deep Learning false positive reduction system. The217

results confirm our hypothesis and show that multi-view convolutional neural networks can improve an218

automated lymph node detection system for pelvic MR Lymphography images of patients with prostate219

cancer. The performance achieved with the new system (5-10FP/85% sensitivity) may allow clinical220

implementation as a tool that helps to reduce the tedious task of finding all lymph nodes.221

Figure 4 shows that adding a multi-view convolutional network enables correct discrimination of222

a substantial number of true positive findings from false positive ones, as evidenced by the strongly223

improved FROC curve. The performance of the enhanced CAD system now reaches for the first time224

a level where we were able to observe several false positives that are likely to have been missed in the225

expert annotation and are in fact true positives (Figure 7).226

The increased performance is mostly due to the ability of the CNN to extract problem specific image227

features. The fact that most of the performance increase is already visible with a 1-view systems means228

that the previously built prototype lacked basic image texture features that could properly describe the229

aspects of the lymph node tissue and its surroundings. It is generally known that lymph nodes are usually230

surrounded by fatty tissue. Yet, in practice, the nodes are often observed very near vessel walls with231

little to no fat in between the node and the vessel wall. These kinds of heterogeneities in the surrounding232

anatomy make it difficult to find and implement hand-crafted features that help discriminate true lymph233

node regions from other regions. The CNN is able to learn image features that capture these more complex234

anatomical surroundings. The relatively small improvement in performance seen when adding the third235

dimension in a 3-view or 9-view multi-view CNN was unexpected. It shows that although the third236

dimension is helpful, it is the in-plane image appearance that provides the most information. This agrees237

with radiology practice in which an in-plane view triggers a lymph node finding and back and forth slice238

scrolling is used as a confirmation.239

Annotation is fundamental in training machine learning systems to perform data analysis in general,240

and in medical diagnosis more specifically. In this study, significant effort was spent on carefully241

annotating the imaging data by trained experts. The advent of deep learning is starting to produce systems242

that operate at or above the expert level (De Fauw et al., 2018). This allows creating systems that can help243

support clinical decision making. On the other hand, the systems start to challenge the expert by detecting244

patterns missed by the expert during system training. In this study as well, lymph nodes were detected245

that the experts had missed. The consequence is that it is difficult to design a system that outperforms246

an expert given that the expert provided the annotations. A possible solution is to do further iterations247

of consensus reading whereby the system output is included in the consensus. This will likely lead to248

improved performance of the CNN and is part of future research.249

This research confirms an earlier observation by Setio et al. that multi-view CNNs are highly suited to250

be used for false positive reduction of a CAD system (Setio et al., 2016). The performance increase in251

our study is similar, although at a low number of false positives the gain in performance is not as high.252
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We believe this might be due to the fact that not all lymph nodes were annotated by the observers and253

as such some false positives are actually true positives. The paper by Setio et al. used the LIDC lung254

nodule dataset which has seen a much more elaborate consensus annotation of experts. This study did not255

observe a significant benefit when using 9-view CNN as compared to 3-view CNN. The difference may256

be attributed to the observation that for lymph nodes, it is the in-plane image appearance that provides257

the most information, while the CT images used for pulmonary nodule detection contain much more258

intersections with small vessels that are hard to distinguish from lung nodules in the in-plane image.259

The amount of training data was limited. For the first stage of the CAD system, this probably didn’t260

affect performance, but for the multi-view CNN, more training data would potentially have resulted in an261

increased performance of the 9-view system with respect to the 3-view system.262

In conclusion, we presented a method using multi-view convolutional networks to improve a fully263

automated lymph node detection system for pelvic MR Lymphography. Our method has reached a level264

of performance where clinical implementation may help reduce reading time.265
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Table 1. Parameters of the multi-view network. Sizes are specified as (width, height, channels).

Layer Type Filter size Stride Image size

Per view

1 Input 65×65×1

2 Convolution 5×5×1 1×1 61×61×24

3 Max Pool 2×2×1 2×2 30×30×24

4 Convolution 5×5×24 1×1 26×26×48

5 Pooling 2×2×1 2×2 13×13×48

6 Convolution 5×5×48 1×1 9×9×96

After view concatenation

7 Fully-connected 1×1×512

8 Logistic regression 1×1×2
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Table 2. Scan parameters of the MRL sequences. TE: echo time; TR: repetition time; PS: pixel size; ST:

slice thickness.

Description Acronym TE TR Flip angle Matrix PS ST

(ms) (ms) (deg) (mm) (mm)

T1-weighted spin echo VIBE 2.45 4.95 10 320×320 0.8×0.8 0.8

T2*-weighted gradient echo MEDIC 11 20 10 320×320 0.8×0.8 0.8
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Table 3. Partial area under the FROC curve (pAUC) for the four different systems. The 95% confidence

intervals are indicated between brackets. P-values were obtained using one-sided bootstrapped

comparison of the systems after which Bonferroni correction was applied. The three rightmost columns

show the p-values of the six pairwise comparisons. CD: candidate detector.

System pAUC p (CD) p (1-view) p (3-view)

CD 24.39 (23.81 - 24.97)

1-view 27.55 (27.14 - 27.97) < 0.01

3-view 28.02 (27.54 - 28.51) < 0.01 < 0.01

9-view 27.91 (27.47 - 28.34) < 0.01 < 0.01 0.86
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Figure 1. Flowchart of the computerized lymph node detection method
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Figure 2. Nine types of patch samplings used to compile a 1-view, 3-view, or 9-view set of patches that

sample the surroundings of a lymph node candidate location for the CNN model. The 1-view set

comprises only the original image view, The 3-view set extends the 1-view set with 2 additional

orthogonal planes, The 9-view set extends the 3-view set with six oblique planes.
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Figure 3. Schematic representation of the multi-view network for three-views. Cyan lines indicate

convolution operations, dark green lines max-pooling operations. The black lines indicate a feature map

concatenation. A full parameter listing is specified in Table 1.
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Figure 4. FROC plot of detection performance. The shaded areas indicate the 95% confidence interval

obtained with bootstrapping.
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Figure 5. A, B: Two examples of false positive image patches (each consisting of nine planes, as

explained in Figure 2) that were correctly dismissed by the CNN false positive reduction stage.
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Figure 6. A, B, C: Three examples of image patches (each consisting of nine planes, as explained in

Figure 2) containing lymph nodes, which were correctly retained by the CNN false positive reduction

stage.
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Figure 7. Example of an image patch (consisting of nine planes, as explained in Figure 2) not annotated

as a lymph node, but with high lymph node likelihood according to the CNN.
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Figure 1
Flowchart of the computerized lymph node detection method, which comprises two
stages: initial lymph node detection (upper blue pipeline) and false positive reduction
(lower blue pipeline).
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Figure 2
Nine types of patch samplings used to compile a 1-view, 3-view, or 9-view set of
patches that sample the surroundings of a lymph node candidate location for the CNN
model.

The 1-view set comprises only the original image view, The 3-view set extends the 1-view set
with 2 additional orthogonal planes, The 9-view set extends the 3-view set with six oblique
planes.
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Figure 3
Schematic representation of the multi-view network for three-views.

Cyan lines indicate convolution operations, dark green lines max-pooling operations. The
black lines indicate a feature map concatenation. A full parameter listing is specified in Table
1.
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Figure 4
FROC plot of detection performance.

The shaded areas indicate the 95% confidence intervals, obtained with bootstrapping.
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Figure 5
Examples of false positives that were correctly dismissed by the CNN false positive
reduction stage.

PeerJ reviewing PDF | (2018:10:32234:1:1:CHECK 25 Sep 2019)

Manuscript to be reviewed



Figure 6
Examples of image patches containing lymph nodes which were correctly retained by
the CNN false positive reduction stage.
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Figure 7
Examples of image patches not annotated as lymph nodes, but with high lymph node
likelihood according to the CNN.
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