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ABSTRACT
River inflow prediction plays an important role in water resources management and
power-generating systems. But the noises and multi-scale nature of river inflow data
adds an extra layer of complexity towards accurate predictive model. To overcome this
issue, we proposed a hybrid model, Variational Mode Decomposition (VMD), based
on a singular spectrum analysis (SSA) denoising technique. First, SSA his applied to
denoise the river inflow data. Second, VMD, a signal processing technique, is employed
to decompose the denoised river inflow data into multiple intrinsic mode functions
(IMFs), each with a relative frequency scale. Third, Empirical Bayes Threshold (EBT)
is applied on non-linear IMF to smooth out. Fourth, predicted models of denoised and
decomposed IMFs are established by learning the feature values of the Support Vector
Machine (SVM). Finally, the ensemble predicted results are formulated by adding the
predicted IMFs. The proposed model is demonstrated using daily river inflow data
from four river stations of the Indus River Basin (IRB) system, which is the largest
water system in Pakistan. To fully illustrate the superiority of our proposed approach,
the SSA-VMD-EBT-SVM hybrid model was compared with SSA-VMD-SVM, VMD-
SVM, Empirical Mode Decomposition (EMD) based i.e., EMD-SVM, SSA-EMD-SVM,
Ensemble EMD (EEMD) based i.e., EEMD-SVM and SSA-EEMD-SVM.We found that
our proposed hybrid SSA-EBT-VMD-SVMmodel outperformed than others based on
following performance measures: the Nash-Sutcliffe Efficiency (NSE), Mean Absolute
Percentage Error (MAPE) andRootMean Square Error (RMSE). Therefore, SSA-VMD-
EBT-SVM model can be used for water resources management and power-generating
systems using non-linear time series data.
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INTRODUCTION
Reservoirs are recognized as one of the most powerful tool in integrated water resources
management. They are considered the major solution in water-related problems like
urban and industrial water supply, hydro-power generation, irrigation, flood control
and conservation of ecology (El-Shafie et al., 2008). However, the reservoir system is a
challenging problem due to its complexity as reservoirs should neither be too empty to
operate nor too filled with water to allow capture of flood water (Amnatsan, Yoshikawa &
Kanae, 2018). A reservoir’s optimized operation depends on the accuracy of river inflow
prediction, which is an essential element not only in reservoir operation but also for many
hydrological management problems. Accurate prediction results in better decisions such
as, flood and drought controls, the supply of drinking water, water resources management
and many optimal environmental operations (El-Shafie et al., 2008; Erdal & Karakurt,
2013; Zhou et al., 2018;Wang, Qiu & Li, 2018;Dehghani et al., 2019). Over the past decades,
numerous methods have been developed for accurate river inflow prediction. Literature
related to river inflow prediction can be found from these (Kisi, 2005; Easey, Prudhomme
& Hannah, 2006; Londhe & Charhate, 2010; Adnan et al., 2017a; Zaini et al., 2018). These
models are broadly classified into three categories: physical-based models, data-driven
models, and hybrid models (Chen et al., 2018). All these models have been widely used to
predict rivers flow and other hydrologic analyses (Erdal & Karakurt, 2013; Hao et al., 2017;
Chen et al., 2018; Darwen, 2019; Wang, Qiu & Li, 2018). Physical-based models extract the
inherent behaviors of hydrological variables by conceptualizing their physical process and
characteristics. However, physical-basedmodels require a large amount of data and detailed
mathematical equations, which may raise the issue of estimating huge parameters and the
expensive computational costs (Chen et al., 2018). Moreover, due to the unavailability of
long hydrological data, especially in developing countries, it is difficult to obtain these
parameters, which limits the application of these models. Comparative to physical-based
models, Data-Driven (DD) models are further classified into Traditional Statistical (TS)
and Artificial Intelligence (AI)models to predict linear and non-linear data, respectively. TS
models, also called Box and Jenkinsmethodology (Box & Jenkins, 1970;Box & Pierce, 1970),
(Al-Masudi, 2013) includes the Autoregressive (AR), the Autoregressive Moving Average
(ARMA) and the Autoregressive Integrated Moving Average (ARIMA) models are widely
applied for predicting river inflow data. Adnan et al. (2017b) used the ARIMA model to
predict the streamflow. They tookmonthly streamflow data and concluded that application
of ARIMA can be useful in generating precise prediction. However, the disadvantages of
TS models are that the river inflow data must be linear which limits the application of
these models (Wang, Qiu & Li, 2018). To overcome these drawbacks, AI models have
been introduced which includes Artificial Neural Network (ANN), Multi-Layer Perceptron
(MLP), Generalized Regression Neural Network (GRNN), Adaptive Neuro Fuzzy Inference
System (ANFIS) (Salih et al., 2019), Multivariate Adaptive Regression (MAR), M5 Model
Tree (Yaseen, Kisi & Demir, 2016), Support Vector Machine (SVM), Extreme Learning
Machine (ELM) (Yaseen et al., 2016), fuzzy logic and Radial Basis Neural Network (RBNN)
(Othman & Naseri, 2011; Yang et al., 2017; Malik & Kumar, 2018; Mosavi, Ozturk & Chau,
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2018; Kim et al., 2019). These AI techniques have been successively applied in hydrology
to accurately predict the river inflow/outflow data (Othman & Naseri, 2011; Valipour,
Banihabib & Behbahani, 2013; Shamim et al., 2016; Yang et al., 2017; Malik & Kumar,
2018; Mosavi, Ozturk & Chau, 2018). Yaseen et al. (2016) evaluated the potential of ELM
algorithm to validate its superiority over other AI methods and suggested that ELM
model outerperform than the other models to predict monthly streamflow. Yaseen, Kisi
& Demir (2016) investigated the usefulness of three types of regression models i.e., least
square-SVM, MAR and M5 model tree to forecast the monthly streamflow. Their study
indicated that SVM model generally perform superiors than the other models. Among AI
techniques, SVM, as the most widely used method, has been considered an effective tool
in solving many non-linear mapping relationships to precisely predict rivers flow (Garsole
& Rajurkar, 2015; Adnan et al., 2018; Bafitlhile & Li, 2019), water level (Behzad, Asghari &
Coppola Jr, 2009) and many other non-linear problems (Wu & Lin, 2019). However, all
these AI models needs to be carefully optimized as hydrological time series data becomes
more and more complex due to rapid climate and other changes. For that purpose,
bio-inspired techniques i.e., genetics algorithm, evaluationary programming, differential
evolution, etc., are combined with AI methods to optimize their parameters to enhance its
precision (Zheng et al., 2013). However, there is a drawback for such bio-inspired based AI
methods. First, they ignore the multi-scale nature of hydrological data. Second, they do not
incorporate with noises, which is inherited part of hydrological data. Developing a single
model to predict river inflow data is a challenging task due to its non-stationary, multi-scale
and noisiest characteristics (Yang et al., 2016; Yaseen et al., 2017; Yu et al., 2017; Al-Sudani,
Salih & Yaseen, 2019; Rezaie-Balf et al., 2019a; Rezaie-Balf et al., 2019b; Rezaie-Balf, Kisi &
Chua, 2019). Therefore, using the raw river inflow data may not provide useful results, but
applying data pre-processingmethodsmay improve the performance of TS or AI techniques
known as hybrid models (Okkan & Serbes, 2013; Chitsaz, Azarnivand & Araghinejad, 2016;
Chen et al., 2018; Wu & Lin, 2019).

In recent years, hybrid models through data pre-processing techniques have received
great attention and commonly applied in non-linear, multi-scale and noisiest time series
data such as hydro-meteorology, climatology, finance and economic as powerful alternative
modeling tools against alone physical-based or DD models (Chen et al., 2018; Zhang et al.,
2018; Rezaie-Balf et al., 2019b; Nazir et al., 2019; Wu & Lin, 2019). Until now, various data
pre-processing-based hybrid models have been developed to address these non-linearity
issues present in river inflow series. Among all, five main data pre-processing algorithms,
i.e., Fourier Analysis, Wavelet Transform (WT) (Daubechies, 1990), and SSA (Golyandina,
Nekrutkin & Zhigljavsky, 2001), are combined with TS and AI methods to form a hybrid
model. All data pre processing techniques can be used either to decompose non-linear
and multi-scale data into the time-frequency domain or to denoise the time series data.
Rezaie-Balf, Kisi & Chua (2019) employed EEMD data pre-processing method to enhance
the performance ofMARandM5Model Tree. They demonstrated that EMD-MARprovides
more robust results to predict one-day aheaf river flow. Various studies shows that use of
WA have gained popularity in handling multi-scale nature of complex hydrological data
by combing with NN and other DD methods. Mouatadid et al. (2019) explores the use of
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WA-Long Short-termmemory network (WA-LSMN) for robust irrigation flow forecasting.
Their proposedmethodology provides appropriate results rather than the satndalone LSMN
model. Nazir et al. (2019) developed a WA-based hybrid model to predict the river inflow
data of four stations and shown that their proposed model was better than the simple
ARIMA and ANN models. Later, an EBT approach was be developed to enhance the
precision of WA (Chipman, Kolaczyk & McCulloch, 1997; Johnstone & Silverman, 2005).
In the EBT method, a mixture of priors is selected for the distribution of multi-scale
components derived from WA. The posterior median is calculated from selected priors to
estimate noise free multi-scale components (To, Moore & Glaser, 2009). Moreover, use of
EMD (Huang et al., 1998) and EEMD (Wu & Huang, 2009) with DD models also became
popular to study the non-stationary complex hydrological data (Rezaie-Balf, Kisi & Chua,
2019) However, all data pre-processing techniques have some drawbacks with different
aspects to decompose the non-linear, multi-scale and noisiest data. The most widely used
WA depends heavily on the selection of wavelet basis function (Wang, Qiu & Li, 2018),
the application of EMD is limited by its own mathematical mode mixing and sensitivity
to denoise property (Nazir et al., 2019), and EEMD suffers a strict mathematical theory
(Qian et al., 2019; Wu & Lin, 2019). However, there is a need for developing new hybrid
approacheswith efficient decompositionmethods that predict the non-linear, high irregular
and noise-corrupted data with high precision. Several new data pre-processing approaches
have been proposed and VMD is commonly used because of its efficient mathematical
sound and more precise multi-scale components separation (Ali, Khan & Rehman, 2018;
Wu & Lin, 2019; Lei, Su & Hu, 2019). VMD, as a data decomposition method, has been
applied in the field of signal processing and wind speed prediction (Liu, Mi & Li, 2018;
Lei, Su & Hu, 2019). Rezaie-Balf et al. (2019a) proposed a new hybrid model comprised on
Variational Mode Decomposition based ELM (VMD-ELM) to forecast short-term water
demand. Their pre-processing method i.e., VMD, provides better results when compared
with the simple ANN and ELM models. Later, the performance of VMD is enhanced by
coupling with EEMD and Random Forest Algorithms (EEMD-VMD-RFA) (Rezaie-Balf,
Kisi & Chua, 2019).

In this article, we aimed to develop a novel hybrid model to employ two-phase
decomposition based method to efficiently predict the river inflow time series data.
Our proposed method comprised on SSA as denoising, VMD as a data decomposition with
EBT threshold, and SVM as a prediction method. This work is one of the first attempts
known to the authors to use the SSA method as the primary decomposition technique, to
enhance the prediction of daily river inflow records with VMD-EBT and SVM

PROPOSED METHODOLOGY
In this article, a novel hybrid model i.e., SSA-VMD-EBT-SVM is proposed to improve
the accuracy of daily river inflow data. The schematic view of proposed methodology is
illustrated in Fig. 1. The proposed structure is comprised of denoising, decomposition-
threshold, prediction and aggregation steps. In denoising stage, SSA is used to denoise
the river inflow data (Romero et al., 2015). In the decomposition-threshold stage, VMD
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Figure 1 The schematic view of the proposed model, i.e., the SSA-VMD-EBT-SVMmodel.
Full-size DOI: 10.7717/peerj.8043/fig-1

is employed to decompose the denoised daily river inflow series into multiple IMFs
(Rezaie-Balf et al., 2019a). The high irregular IMF is set as threshold with EBT to remove
its sparsity and irregularity (Nazir et al., 2019). Further, in the prediction stage, SVM is
applied on all IMFs to establish the predictionmodels and all predicted IMFs are aggregated
to get a final prediction (Yaseen, Kisi & Demir, 2016). The effectiveness of the proposed
hybrid model is evaluated using daily river inflow data from four stations of Indus River
Basin (IRB) system, Pakistan (a detail discussion will be in ‘Case Study and Experimental
Design’). A brief introduction of SSA, VMD, EBT, and SVM is outlined as follows:

SSA for denoising
For time series analysis, the SSA method is known as a powerful non-parametric method
(Golyandina, Nekrutkin & Zhigljavsky, 2001). SSA combines the principals of time series
analysis, multivariate statistics, dynamical and signal processing (Suhartono et al., 2018).
The reason for using SSA as it is a model-free technique (Romero et al., 2015), which can
be applied on any type of data without any assumption. The main function of SSA is to
decompose the time series data into a trend, seasonal, oscillations, and aperiodic noises
and then reconstruct it after removing aperiodic noises from time series data (Traore et al.,
2017). Unlike other methods of time series analysis, SSA assumes no statistical assumption
about noises while performing analysis and investigating its properties (Traore et al., 2017).

Principles of SSA method
The principle of SSA lies in two stages of decomposition and reconstruction, briefly
described as follows:
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Consider a time series data Y1,Y ,...,Y of length N . The SSA transfer one-dimensional
time series data into multi-dimensional Y1,Y ,...,YK where Yi = (y1,y,...,y)T and
K =N −L+1. These vectors are grouped into a trajectory matrix as:

Y =

y1 ··· yK
...

. . .
...

yL ··· yN

 (1)

called Hankel matrix whose all the diagonal elements i+ j = cons are equal. The only
single parameter in this stage is window length L where 2< L<N (Traore et al., 2017).
The SSA explores the empirical distribution of pairwise-distances between lagged vectors.
The optimality of the SSA method heavily lies on the selection of a window length L as
it determines the quality of decomposition (Traore et al., 2017). To remove noises from
original time series values, eigenvalues are calculated from trajectory matrices which can
be written as:

Y = E1,E2,...,Ed (2)

where d is the number of non-zero eigenvalues in decreasing order (λ1,λ2,...,λd ≥ 0) of
the L∗L matrix of S=YY and Ei is calculated as:

Ei=
√
λiUiV T

i (3)

where i= 1,2,...,d , Ui is eigenvectors and Vi is calculated as following:

Vi=Y T .
Ui
√
λi
. (4)

The first few matrices Ei to Y contributed much larger than that of the last few matrices as
it is likely that these last matrices represents noises in time series data (Traore et al., 2017).
The next step is to partition the set of indices i.e., i= 1,2,...,d into m disjoint subsets i.e.,
l1,l2,...,lm (Romero et al., 2015). Let one of these partitions I = i1,...,ip, then the trajectory
matrix of I is defined as EI = Ei1,...,Eip. Once the matrices have been calculated for all
partitions, then the original time series trajectory matrice is calculated from these partition
matrices as Y = EI = Ei1,...,Eip. This step is simplified by approximating matrix Y only
with first r matrices Y = E1,...,Er . The previous step needs a simplification of r parameter
appropriately (Romero et al., 2015). An approximated time series then recovered from
these subsets of matrices by taking the average of diagonals (Romero et al., 2015, Traore et
al., 2017).

VMD as decomposition
The VMD is a non-recursive signal decomposition estimation method introduced by
(Dragomiretskiy & Zosso, 2014; Rezaie-Balf et al., 2019a; Rezaie-Balf et al., 2019b). The
VMD adaptively decomposes complicated original non-linear, non-stationary and multi-
scale signals into band-limited IMFs i.e., uk with a specific bandwidth in the spectral
domain. To achieve a bandwidth of each IMF, the constrained variational optimization
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problem is solved as follows (Dragomiretskiy & Zosso, 2014):

min
{uk },wk

{∑
k

∥∥∥∥∂t [(δ(t )+ j
π t

)
∗uk (t )

]
e−jwkt

∥∥∥∥2
2

}
s.t
∑
k

uk = f
(5)

where wk is the center frequency of kth IMF, δ(t ) is the Dirac function, t is the time
script and k is the number of modes. Moreover,

(
δ(t )+ j

π t

)
is the Hilbert transformation

function which transform uk into an analytical signal to form a one-side frequency. The
spectrum of each mode can be shifted to a base-mode with the e−jwkt term. The above
constrained problem is converted into unconstrained by making use of a quadratic penalty
term i.e., α and Lagrangian multipliers λ, which is easier to address described as follows:

L({uk},{ωk},λ)=α
∑
k

∥∥∥∥∂t [(δ(t )+ j
π t

)
∗uk (t )

]
e−jwkt

∥∥∥∥2
2

+

∥∥∥∥∥f (t )−
K∑
k=1

uk (t )

∥∥∥∥∥
2

2

+

〈
λ(t ),f (t )−

K∑
k=1

uk (t )

〉
(6)

where α denotes balancing parameter. The Eq. (5) can also be solved by an alternate
direction method of multipliers. It is implied that updating uk ωk and λk in two directions
is conducive for realizing the analysis process of VMD, and the solutions of uk ωk and λk
can be calculated as follows:

un+1k (ω)=
f̂ (ω)−

∑
i6=k û

n(ω)+ ( λ̂(ω)2 )

1+2α(ω−ωk)2
(7)

ωn+1
k =

∫
∞

0 ω
∣∣un+1k (ω)

∣∣2dω∮
∞

0

∣∣un+1k (ω)
∣∣2dω (8)

and

λ̂n+1k (ω)= λ̂nk (ω)+τ (f̂ (ω)−
∑
i6=k

ûn(ω)) (9)

where f̂ (ω), un+1k (ω),unk (ω) and λ̂(ω) are the Fourier transforms of f and n denotes the
number of iterations. The termination condition of VMD is defined as follows:∑

k

∥∥un+1k −u
n
k

∥∥2
2∥∥unk∥∥22 <ε (10)

where ε is the tolerance level of the convergence criterion.
From VMD, the IMF uk is obtained from the entire decomposition process according

to the following steps:
1. Set iteration number n= 1, and initialize parameters for VMD including u1k , ω

1 and
λ1.

2. Using the Eqs. (8) and (9), calculate un+1k (ω) and ωn+1
k .
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3. After calculating un+1k (ω) and ωn+1
k , update Lagrangian multiplier using the Eq. (9).

4. If the convergence condition of Eq. (10) is met, the iteration will be stopped, otherwise
n moves to n+1, and again return to step 2. Finally, the IMF are obtained.

EBT as a threshold
In EBT method, the posterior distribution is derived with the help of prior distribution
to remove sparseness and noises from the coefficients derived from wavelets (To, Moore
& Glaser, 2009; Nazir et al., 2019). In this study, we used this wavelet-based denoising
method to remove noises and sparseness of VMD based coefficients. EBTmethod has level-
dependent thresholding approach which deals each IMF according to its own distribution.
EBT assumes a mixture of prior distributions for kth IMF as follows:

pk (IMFk |πk,θ)= (1−πk)δ0(IMFk)+πkγ (θ) (11)

where πk is the probability of non-zero coefficients of IMFk , δ0(θ) presents the Dirac
delta function of zero part of IMFk and γ (θ) is a density of non-zero part of IMFk .
The prior distribution should be chosen in such a way that it belongs to a family of
distributions whose tails decays at polynomial rates. In this regard, Laplace distribution,
exponential distribution and quasi-Cauchy distribution have been employed for non-zero
coefficients of IMFs which are used to estimate noises (Nazir et al., 2019). The probabilities
and parameters of a mixture of prior distributions are estimated through maximum
likelihood estimation. The reason of using a maximum likelihood approach to estimate
unknown is that it determine parameters in such a way that appropriately describe the given
data (Hossain, Kozubowski & Podgórski, 2018). After estimating parameters, the posterior
median θ̃i(IMFk,πk) is calculated from a mixture of prior distribution as follows:

F̃1
(
µ|imf

)
=

∫
∞

µ

f1
(
µ|imf

)
dµ (12)

which is used as an EBT rule for µ̃ given data (Johnstone & Silverman, 2005). Simple hard
rule is further applied to estimate noise-free coefficients of IMFs (Johnstone & Silverman,
2005; Nazir et al., 2019).

Support vector machine (SVM) as a prediction method
The SVM is a supervised machine learning method that comprised of statistical learning
principles for nonlinear classification, function estimation, and pattern recognition
applications (Vapnik, 1998). After introducing loss function, SVM can be used as a time
series forecasting as well (Yaseen, Kisi & Demir, 2016;Sanghani, Bhatt & Chauhan, 2018).
The concept behind the SVM is that it maps the complex non-linear high dimensional data
into a high feature space through a nonlinear mapping. After mapping data into a high
feature space, linear regression is performed by SVM in that feature space. Let we have a
training set consists of N sample points,

{
xi,yi

}N
i , where xi is lagged input vector and yi is

the estimated value of a time series data, then the SVM is formulated as follows:

Y = f (x)=wTφ(x)+b (13)

whereφ(x) is a non-linear transfer function projecting the input data into high dimensional
space, wi are the weight vectors and bi is a bias. Estimating the sampled values with the
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range of allowed precision is considered as the problem of finding the minimum value for
‖w‖. This can be summarized as convex programming:

min

(∥∥w2
∥∥

2
+C

N∑
i

(ξ+ξ∗)

)
(14)

subject to
f (xi)−yi≤ ε+ξ∗

yi− f (xi)≤ ε+ξ
ξ,ξ∗≥ 0

(15)

where C is the user-defined penalty coefficient which represents the dispersion between the
weights and objective function. The ξ and ξ∗ termed as the slack variables which describes
how much data exceeds from tolerance. The Lagrangian function is further applied that
uses regression function to replace weight vector and φ(x) given in Eq. (13) as follows:

f (x)=
∑
i

(
αi−α

∗

i
)
K (x,xi)+b (16)

where αi and α∗i are the Lagrangian multipliers and K is called the kernel function. The
possible tested kernels includes linear, polynomial, Gaussian and sigmoid kernels which
are defined respectively as follows:

K (x,xi)= x.xi
K (x,xi)= (γ (x.xi)+ r)d

K (x,xi)= exp(−γ |x−xi|2)

K (x,xi)= tanh(γ (x.xi)+ r) (17)

where γ is the structural parameter, d is a polynomial degree and r represents the residuals
of the system. Different values of , γ and penalty parameter C is used in this study. The
quadratic structure of the Eq. (16) is defined as:

W
(
αi,α

∗

i
)
=

∑
i

yi
(
αi−α

∗

i
)
−ε

∑
i

(
αi+α

∗

i
)
−

1
2

∑
i

∑
j

(αi−α∗i )(αj−α
∗

j )K (xi,xj) (18)

With the following constraints:

N∑
i

(
αi−α

∗

i
)
= 0

0≤αi≤C,i= 1,2,...,N

0≤α∗i ≤C,i= 1,2,...,N . (19)
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Evaluation assessment methods
We assessed and compared the predction performance of our proposed hybrid model
SSA-VMD-EBT-SVM with other existing models (EMD-SVM, EEMD-SVM, VMD-SVM,
SSA-EMD-SVM, SSA-EEMD-SVM, SSA-VMD-SVM) as a benchmark using following
four measures: the Nash-Sutcliffe Efficiency (NSE), Mean Square Error (MSE), Root Mean
Square Error (RMSE) (Ghorbani et al., 2018) and Mean Absolute Error (MAE) (Yaseen et
al., 2018) with following equations respectively;

NSE = 1−

[∑N
t=1(yot −ypt )

2∑N
t=1(ȳot − ȳot )2

]
(20)

MSE =
∑N

t=1(yot −ypt )
2

N
(21)

RMSE =

√∑N
t=1(yot −ypt )2

N
(22)

MAE =
∑N

t=1 |yot −ypt |
N

(23)

where yot is the observed values, ȳot is themean of observed values and ypt is predicted value
of model. Moreover, Taylor diagram is used to prepare a visual comprehension with the
help of polar plot for the evaluation of modeling results. The Taylor diagram represents the
normalization statndard deviation between simulated and observed values with normalized
origin and R2 are represented as directional angles (Darbandi & Pourhosseini, 2018). The
interpretation of Taylor diagram is that an observed point is shown on graph and the
closer the simulated performance measures to the observe point, the better the model
performance (Al-Sudani, Salih & Yaseen, 2019).

Benchmark models for the evaluation of the proposed hybrid model
The proposed hybrid model i.e., SSA-VMD-EBT-SVM is compared with six benchmark
models described as follows:
a. Without denoising: this type of existing models comprised on decomposition and

prediction stages only in which VMD and two different data decomposition methods
i.e., EMD, and EEMD are chosen which decompose non-linear, non-stationary and
multi-scale data into multiple IMFs with the different sound of time-frequency
components. For prediction, the extracted IMFs through EMD, EEMD, and VMD are
predicted with the same prediction method i.e., SVM as used in our proposed hybrid
model. Then, the performance of proposed hybrid model i.e., SSA-VMD-EBT-SVM
is compared with existing benchmark models i.e., EMD-SVM (Yu et al., 2017) and
EEMD-SVM (Rezaie-Balf et al., 2019b) and VMD-SVM (Wu & Lin, 2019).

b With denoising: these models use denoising-decomposition and prediction stages to
predict river inflow data. For denoising, SSA is selected with the same decomposition
and prediction stages as described in (a). Then, the performance of the proposed hybrid
model i.e., SSA-VMD-EBT-SVM is compared with existing benchmark models i.e.,
SSA-EMD-SVM, SSA-EEMD-SVM, and SSA-VMD-SVM.
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Table 1 Test statistics and critical values of the ADF test for all four rivers of the IRB system.

River inflow Test statistic Critical values

Indus river −2.8482 0.2192
Jhelum river −2.9841 0.1617
Chenab river −3.2363 0.0817
Kabul river −2.8369 0.2240

CASE STUDY AND EXPERIMENTAL DESIGN
The largest water system in Pakistan i.e., IRB is considered for application of proposed
architecture as the IRB is Pakistan’s largest source of power generation, irrigation, and
insensible water resource system. Data from its four major rivers are analyzed i.e., the
River Indus, the River Jhelum, the River Chenab, and the River Kabul which contributed
significantly in the water system of IRB. The reason of selecting these tributaries is that
they are facing frequent river flooding each year due to heavy monsoon rain and melting
snow or glacier in Pakistan, glacier-covered 13,680 km2 area which is estimated 13% of the
mountainous areas of Upper Indus Basin (UIB). Melted water from these 13% areas adds
a significant contribution of water in these rivers. Therefore, it is appropriate to use rivers
data of IRB as a representative case study for evaluation of the proposed model.

Data
The daily river inflow dataset used in this study is comprised on 1st January to 31st March
for the period of 2015–2019. To the application of proposed objective, the daily inflow of
Indus River at Tarbela with its two principal left and one right bank tributaries: Jhelum
River at Mangla, Chenab River at Marala and Kabul River at Nowshera respectively are
selected. The daily inflow data is measured in 1,000 ft/s which was acquired from the site
of Pakistan Water and Power Development Authority (WAPDA).

RESULTS
Results of the proposed hybrid model i.e., SSA-VMD-EBT-SVM is defined in stages as
follows:
Denoise-stage results: first, Augmented Dickey-Fuller (ADF) (Said & Dickey, 1985) test is
applied on river inflow data of all selected case studies to confirm the non-stationarity. For
all case studies, results of the ADF test showed that river inflow data is non-stationary in
nature with p-values listed in Table 1. Then the original non-stationary data is processed
with SSA to improve the quality of river inflow data by reducing the noises. In processing
SSA, window length and number of group i.e., L and m parameter must be determined
respectively. Here, different values of L are tested and the optimal value i.e., 90 is selected
that gives the lowest error rate of actual and denoised series. The value of m is selected
according to the eigenvalues of each river inflow.

The eigenvalues of four selected four rivers of IRB system are shown in Fig. 2 for Indus
and Jhelum river inflow, which shows that the values of components of 30, 25, 30 and 20
for Indus, Jhelum, Chenab and Kabul river inflow respectively are clearly larger than those
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Figure 2 Eigenvalues of SSA components. (A) Indus river inflow. (B) Jhelum river inflow.
Full-size DOI: 10.7717/peerj.8043/fig-2

of the remaining components. The denoised river inflow data is reconstructed by using the
selected values of m. The processed inflow data for Indus and Jhelum is shown in Fig. 3.
The mean and standard deviation of original and denoised river inflow data is listed in
Table 2 where it can be observed that mean value remains the same while the standard
deviation of denoised river inflow is reduced through processing.
Decomposition-stage results: after the original river inflow data is processed with SSA, the
denoised data is decomposed into linear and non-linear time-scale oscillations called IMFs
by VMD. The number of IMFs i.e., K must be selected in advance in order to proceed
with any decomposition method. Here, K = 6 is selected as the remaining IMFs tend to be
similar when K > 6. All river inflow data is decomposed into six IMFs. The decomposition
results of Indus river inflow is shown in Fig. 4. For comparison, the same river inflow
data is also decomposed with EMD and EEMD as shown in Figs. 4 and 5, respectively, for
Indus river inflow. It can be seen from Figs. 3–5 that the IMFs extracted through VMD
are smoother than the other decomposition methods i.e., EMD and EEMD. However, due
to the high oscillations of sixth IMF, extracted through VMD, EBT is applied to denoise
IMF. The EBT effectively separate the clear and noisy coefficients of noise dominant IMF
by a mixture of prior distributions as defined in Eq. (12) and preserve valid information
as much as possible. First, to get normal distribution, the scaled transformation is applied
so that each IMF follows N (δi,1). According to the nature of the sixth IMF as depicted in
Fig. 4, the first two IMFs of Fig. 5 and the first three IMFs of Fig. 6 it is known that most
of the coefficients in all noisiest IMFs are zero and few are non-zero out of which fewer
coefficients are either very low or very high in magnitude. By inspecting both zero and
non-zero coefficients of IMFs, a mixture of an atom of probability at zero and different
distributions are considered for non-zero part coefficients of IMF (Johnstone & Silverman,
2005). Laplace distribution is chosen as a prior distribution out of Exponential and Cauchy
distribution for δi. Finally, the valid information of IMFs are preserved with posterior
median threshold estimator which is calculated through Eq. (13).

Nazir et al. (2019), PeerJ, DOI 10.7717/peerj.8043 12/25

https://peerj.com
https://doi.org/10.7717/peerj.8043/fig-2
http://dx.doi.org/10.7717/peerj.8043


Figure 3 Processed inflow data through SSA. (A) Indus river inflow. (B) Jhelum river inflow.
Full-size DOI: 10.7717/peerj.8043/fig-3

Table 2 Summary statistics of original and denoised rivers inflow data. SD* shows standard deviation
value.

River inflow Original inflow Denoised inflow

Mean SD* Mean SD*

Indus river 79.0805 86.1221 79.9920 84.0473
Jhelum river 28.0692 22.5040 28.1654 21.2862
Chenab river 27.3528 24.6649 27.1066 23.4877
Kabul river 31.7901 29.4850 31.4863 27.6831

Prediction results: finally, the denoised and decomposed IMFs of the proposed model i.e.,
SSA-VMD-EBT for all selected rivers are predicted through SVM. For that purpose, the
daily river inflow data from 1st Jan-2015 to 31 st Dec-2018 i.e., 1,461 observations are used
for training and 1st Jan-2019 to 31 st Mar-2019 i.e., 90 observations are used for testing
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Figure 4 SSA-VMD decomposition of Indus river inflow. The series is decomposed into five IMF’s (B,
C, D, E and F) and one residue (G). The aggregate of five IMF’s and residue is represented in A.

Full-size DOI: 10.7717/peerj.8043/fig-4

purposes. The SVM is trained by setting different values of γ and penalty parameter C .
The values of γ = 10 and C = 10,000 are selected. The parameters of SVM are determined
using trial and error basis on which error of training and testing is minimized. according to
minimumprediction error for all river inflow. After estimation of each IMF, the accuracy of
proposed and benchmark models are measured with NSE, MSE, RMSE, MAE, and MAPE.
The performance of proposed hybrid model i.e., SSA-VMD-EBT-SVM is compared with
‘without denoising model’ i.e., EMD-SVM and EEMD-SVM and VMD-SVM and ‘with
denoising models’ i.e., SSA-EMD-SVM, SSA-EEMD-SVM, and SSA-VMD-SVM. The
training results of proposed model i.e., SSA-VMD-EBT-SVM with comparison to all
benchmark models for Indus, Jhelum and Chenab river inflow data are listed in Table 3
and results of Kabul river inflow data is presented in Table 4. Moreover, Taylor diagram,
as shown in Fig. 7, is used to illustrate the efficiency of proposed model. The graph shows
that the proposed model performed very well over other exisiting models. From Tables 3
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Figure 5 The SSA-EMD based decomposition of Indus river inflow. The series is decomposed into five
IMFs (A-E) and one residue (F).

Full-size DOI: 10.7717/peerj.8043/fig-5

and 4 and Fig. 7, it is concluded that the proposed model results fully demonstrate the
effectiveness for all four cases studies with minimum NSE, MSE, RMSE, MAE, and MAPE
compared to all with and without denoising models. The worst prediction models are
those which are handled through without denoising i.e., EMD-SVM and EEMD-SVM.
The validation graphs of proposed model i.e., SSA-VMD-EBT-SVM with comparison to
with denoising models i.e., SSA-EMD-SVM, SSA-EEMD-SVM and SSA-VMD-SVM and
without denoising models i.e., EMD-SVM and EEMD-SVM and VMD-SVM for Indus and
Jhelum river inflow are shown in Fig. 8. From graph, it can be observed that our proposed
model i.e., SSA-VMD-EBT-SVM performed well not only in prediction stage but also in
validation. However, the exisiting models perform only good in prediction stage as shown
in Fig. 8.

Discussion
In this article, we proposed a novel hybrid model to efficiently predict the river inflow
time series data. Our proposed method comprised of SSA as denoising, VMD as a data
decomposition with EBT threshold, and SVM as a prediction method.

In order to understand the applicability of our proposed model i.e., SSA-VMD-EBT-
SVM, two different model strategies are adapted (see Tables 3 and 4). First, without
denoising model strategy is implemented on which the same decomposition method i.e.,
VMD and two different decomposition methods i.e., EMD and EEMD are used. Moreover,
for prediction purpose, SVM which is also adapted in proposed methodology is used
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Figure 6 The SSA-EEMD based decomposition of Indus river inflow. The series is decomposed into five
IMFs (A-E) and one residue (F).

Full-size DOI: 10.7717/peerj.8043/fig-6

here to compare the performance of proposed denoised-decomposed strategy with only
‘without denoising models i.e., VMD-SVM (Wu & Lin, 2019), EMD-SVM (Yu et al., 2017)
and EEMD-SVM (Rezaie-Balf et al., 2019b). From Tables 3 and 4, it can be seen that the
overall performance of without denoising models are poor for all river inflow data with
high NSE, MSE, RMSE, MAE and MAPE values. Specifically, EMD-SVM performed worst
among all without denoisingmodels due to the fact that EMD suffers from themodemixing
problem and fail to produce noiseless IMFs (Di, Yang & Wang, 2014). The proposed model
performed well with the lowest NSE, MSE, RMSE, MAE and MAPE values as compared to
without denoising models.

The second strategy used the concept of denoising and decomposition, here the
same method of denoising which is used in proposed methodology is employed with
different decomposition methods i.e., SSA-EMD-SVM, SSA-EEMD-SVM and with same
decomposition method but without thresholding is adapted i.e., SSA-VMD-SVM. From
Tables 3 and 4, it is observed that the proposedmodel i.e., SSA-VMD-EBT-SVMperformed
well for Indus, Jhelum, and Chenab, but for Kabul river inflow the results of SSA-VMD-
EBT-SVM and SSA-VMD-SVM are same as thresholding the IMF did not enhance the
prediction performance of SVM. Moreover, SSA-EEMD-SVM also performs well among
existing with and without denoising methods for all case studies. Overall, the proposed
SSA-VMD-EBT-SVM model showed a much better agreement between predicted and
observed river inflow data which demonstrates the suitability of SSA, VMD, and EBT
in pre-processing inputs/output data over other decomposition methods i.e., EMD and
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Table 3 Evaluation index of the training prediction error of the proposed model (SSA-VMD-EBT-
MM) with all selected models for Indus, Jhelum and Chenab river inflow.NSE and MAPE are unit free
measures whenever, MSE, RMSE and MAE are measure in 1,000 ft/s. The values of the proposed model
SSA-VMD-EBT-SVM are represented as bold.

Station Models NSE MSE RMSE MAE MAPE

EMD-SVM 0.9946 41.2868 6.4255 5.8657 16.9818
EEMD-SVM 0.9962 39.3084 5.4137 4.5540 11.3814
SSA-EMD-SVM 0.9953 34.0684 5.8368 4.9262 12.9763
SSA-EEMD-SVM 0.9962 28.0560 5.9551 4.9610 12.2437
VMD-SVM 0.9911 68.2308 8.2602 6.8929 19.5466
SSA-VMD-SVM 0.9954 33.5565 5.7928 5.2533 15.60666

Tarbela

SSA-VMD-EBT-SVM 0.9965 32.7355 5.7215 4.7800 10.9320
EMD-SVM 0.9396 31.6725 5.6278 3.2197 16.5250
EEMD-SVM 0.9753 12.9495 3.5985 2.2437 12.1502
SSA-EMD-SVM 0.9912 4.1259 2.0312 1.8052 17.0294
SSA-EEMD-SVM 0.9769 10.8790 3.2984 2.4393 17.4766
VMD-SVM 0.9712 15.1061 3.8866 2.4723 14.8790
SSA-VMD-SVM 0.9731 12.6437 3.5558 2.7425 21.2450

Mangla

SSA-VMD-EBT-SVM 0.9936 3.0168 1.7369 1.7979 7.9978
EMD-SVM 0.9760 14.9508 3.8666 2.1770 10.9986
EEMD-SVM 0.9893 6.6943 2.5873 2.7507 10.8725
SSA-EMD-SVM 0.9748 14.1228 3.7581 2.8346 48.3824
SSA-EEMD-SVM 0.9796 11.4645 3.3859 2.5789 28.3756
VMD-SVM 0.6525 216.738 14.72202 9.9701 47.295
SSA-VMD-SVM 0.9780 12.3627 3.5161 2.6684 38.8350

Marala

SSA-VMD-EBT-SVM 0.9953 6.3790 2.5257 2.0556 10.8084

Table 4 Evaluation index of the training prediction error of the proposed model (SSA-VMD-EBT-
MM) with all selected models for Kabul river inflow.NSE and MAPE are unit free measures whenever,
MSE, RMSE and MAE are measure in 1,000 ft/s. The values of the proposed model SSA-VMD-EBT-SVM
are represented as bold.

Station Models NSE MSE RMSE MAE MAPE

EMD-SVM 0.9156 75.6570 8.6981 4.5491 19.2872
EEMD-SVM 0.9639 32.3744 5.6898 3.0101 12.2574
SSA-EMD-SVM 0.9820 14.1973 3.7679 2.9610 38.3520
SSA-EEMD-SVM 0.9880 9.4604 3.0757 2.4825 32.0053
VMD-SVM 0.9585 37.2792 6.1057 3.4760 17.8121
SSA-VMD-SVM 0.9946 4.2555 2.0629 1.8699 21.0699

Nowshera

SSA-VMD-EBT-SVM 0.9945 4.2555 2.0628 1.8699 21.0699

EEMD. Thus, it is concluded that the appropriate way of denoising, decomposition and
thresholding can effectively enhance the performance of non-linear, non-stationary and
multi-scale time series data.

By applying proposed simulation models in IRB, it is expected that this will provide new
tools for improving inflow prediction over what is possible with the current generation of
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Figure 7 Taylor diagram: performance measures for the Indus (A) and Jhelum (B) river inflow.
Full-size DOI: 10.7717/peerj.8043/fig-7

statistical models as well as help with other land and water management questions. It may
also be helpful in setting policies regarding what appropriate methods should be chosen for
‘denoising-decomposition and prediction’ and in assessing the effects of climate warming.
These modeling efforts are therefore significant both for the scientific issues involved as
well as for the practical relevance of the results.

CONCLUSION
The reliable and accurate prediction of river inflow is essential in order to manage water
resources. In this article, a hybrid prediction model i.e., SSA-VMD-EBT-SVM is proposed
and applied for the prediction of daily river inflow data of four rivers of IRB. The original
river inflow data is denoised with SSA and decomposed into several linear and non-linear
IMFs by usingVMD, then EBT is applied on non-linear IMF to remove noises and sparsities.
Finally, each IMF is predicted with SVM and the predicted results of IMF component are
aggregated as the final prediction results. To compare the performance of the proposed
model, the benchmark model with two different decomposition methods i.e., EMD and
EEMD methods combined with SSA-based denoising and without denoising is selected.
The five performance indicators NSE, MSE, MAE, RMSE, and MAPE are employed
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Figure 8 Validation graph of proposed SSA-VMD-EBT-MM and all other benchmarkmodels. (A) In-
dus river inflow. (B) Jhelum river inflow.

Full-size DOI: 10.7717/peerj.8043/fig-8

to measure the prediction accuracy of proposed SSA-VMD-EBT-SVM, and all other
benchmark models. Based on the results, it is observed that the proposed hybrid model i.e.,
SSA-VMD-EBT-SVM shown the efficient results with minimum errors. In other words,
compared with other models, the proposed hybrid model improves prediction accuracy
and reduces errors. The results from this research will not only beneficial for sustainable
water resource management but also for other non-linear time series data.
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