Phylogenetic revision of the psammophilic Trogloderus LeConte (Coleoptera: Tenebrionidae), with biogeographic implications for the Intermountain Region (#38531)

First submission

Guidance from your Editor

Please submit by 8 Jul 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data. Download from the location described by the author.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 13 Figure file(s)
- 1 Table file(s)
- 3 Raw data file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement?</u>
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

New species checks

- Have you checked our new species policies?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Phylogenetic revision of the psammophilic *Trogloderus* LeConte (Coleoptera: Tenebrionidae), with biogeographic implications for the Intermountain Region

M. Andrew Johnston Corresp. 1

Corresponding Author: M. Andrew Johnston Email address: ajohnston@asu.edu

The genus *Trogloderus* LeConte, 1879, which is restricted to dunes and sandy habitats in the western United States, is revised using morphological and molecular information. Six new species are described from desert regions: *Trogloderus arcanus* **New Species** (Lahontan Trough); *Trogloderus kandai* **New Species** (Owens Valley); *Trogloderus skillmani* **New Species** (eastern Great Basin and Mohave Desert); *Trogloderus verpus* **New Species** (eastern Colorado Plateau); and *Trogloderus warneri* **New Species** (western Colorado Plateau). A molecular phylogeny is presented for the genus and used to infer its historical biogeography. The most recent common ancestor (MRCA) of *Trogloderus* is dated to 5.2 mya and is inferred to have inhabited the Colorado Plateau. Current species most likely arose during the mid-Pleistocene where the geographic features of the Lahontan Trough, Bouse Embayment and Kaibab Plateau were significant factors driving speciation.

¹ Biodiversity Knowledge Integration Center, Arizona State University, Tempe, Arizona, United States

1 Phylogenetic revision of the psammophilic *Trogloderus*

2 LeConte (Coleoptera: Tenebrionidae), with biogeographic

3 implications for the Intermountain Region

4 5

M. Andrew Johnston¹

6

7 ¹ Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, USA

8

- 9 Corresponding Author:
- 10 M. Andrew Johnston
- 11 734 W. Alameda Dr. Suite 144, Tempe, AZ 85282 USA
- 12 Email address: ajohnston@asu.edu

13

14 Abstract

- 15 The genus *Trogloderus* LeConte, 1879, which is restricted to dunes and sandy habitats in the
- western United States, is revised using morphological and molecular information. States
- 17 species are described from desert regions: *Trogloderus arcanus* New Species (Lahontan
- 18 Trough); Trogloderus kandai New Species (Owens Valley); Trogloderus skillmani New Species
- 19 (eastern Great Basin and Mohave Desert); Trogloderus verpus New Species (eastern Colorado
- 20 Plateau); and Trogloderus warneri New Species (western Colorado Plateau). A molecular
- 21 phylogeny is presented for the genus and used to infer its historical biogeography. The most
- 22 recent common ancestor (MRCA) of *Trogloderus* is dated to 5.2 mya and is inferred to have
- 23 inhabited the Colorado Plateau. Current species most likely arose during the mid-Pleistocene
- 24 where the geographic features of the Lahontan Trough, Bouse Embayment and Kaibab Plateau
- 25 were significant factors driving speciation.

26 27

Introduction

- 28 The psammophilic genus *Trogloderus* LeConte, 1879, was originally erected for a unique species
- and specimen of the family Tenebrionidae (sensu Bouchard et al. 2011, Bousquet et al. 2018).
- 30 Described as Trogloderus costatus LeConte, 1879, from Rock Creek, Idaho, this heavily
- 31 sculptured species was thought to be similar to the old-world Scaurini Billberg, 1820, but has
- 32 long since been associated with the desert stink beetles in the genus *Eleodes* Eschscholtz, 1829 in
- 33 what is now considered the tribe Amphidorini LeConte, 1862 (LeConte 1879, Blaisdell 1909,
- 34 Doyen & Lawrence 1979, Bousquet et al. 2018). Blaisdell (1909) described a second congeneric
- 35 species, Trogloderus tuberculatus Blaisdell, 1909, from Los Angeles County, California during
- 36 his revision of the tribe. A third species, *Trogloderus nevadus* La Rivers, 1943, was described
- 37 from the dunes around Pyramid Lake, Nevada (La Rivers 1943). The genus was then revised by
- 38 La Rivers (1946), where the three previously recognized species were sunk to subspecies of an

again monotypic genus and a fourth subspecies, *Trogloderus costatus vandykei* La Rivers, 1946,
 was described from outside Twentynine Palms, California.

 The recognition of subspecies (La Rivers 1946) was supported by invoking the theory of orthogenesis, a teleological view of evolution where species have an internal mutational force that drives them not only to a point of adaptation but then continues to push the species onward towards extinction (Eimer 1898, Mayr 1982; see also Grehan and Ainsworth 1985). Following this reasoning, it was hypothesized that *Trogloderus* has "embarked on that phase of evolutionary growth which seems to characterize any ancient group in the last stages of its existence – they are developing fluidly and rapidly into grotesque caricatures of their plain and drab ancestors" (La Rivers 1946: 35).

Following the 1946 revision, very little systematic research has been dedicated to this genus; except for two additional subspecies described as *Trogloderus costatus pappi* Kulzer, 1960, and *Trogloderus costatus mayhewi* Papp, 1961. All species and subspecies were described from a small number of specimens, with *T. nevadus* having the largest type series of 14 individuals. Subsequent to the above works, specimens in natural history collections have variously been determined as simply *Trogloderus costatus* or somewhat haphazardly assigned to subspecies. The last taxonomic changes to the genus were made by this author (MAJ) in the recent catalog of North American Tenebrionidae to stabilize the nomenclature in anticipation of this revision; namely, the subspecific names were all eliminated while restoring *T. costatus*, *T. tuberculatus*, *T. nevadus*, and *T. vandykei* to specific standing, while *T. costatus mayhewi* (= *T. vandykei*) and *T. costatus pappi* (= *T. tuberculatus*) were invalidated as junior synonyms (Bousquet et al. 2018).

Over the last half century, a large number of *Trogloderus* specimens have been accumulated in North American natural history collections. These, along with targeted fieldwork for molecular vouchers, have made a thorough taxonomic and biogeographic study of *Trogloderus* possible for the first time.

 Trogloderus is distributed throughout the Intermountain Region, which encompasses the generally arid lands of western North America between the Rocky and Sierra Nevada mountains. This region spans the Great Basin and Mojave deserts to the west along with the Colorado Plateau to the east. The most comprehensive biogeographic work on the region was completed by Reveal (1979), based largely on his extensive botanical fieldwork. The vast landscape with limited access, particularly in the state of Nevada, has resulted in a paucity of distributional knowledge and available specimens of beetles in natural history collections (Will et al. 2017).

 The molecular phylogenies inferred for the herein revised species-level entities are used in diversification analyses to infer the age of the genus and constituent species. They are further used in historical biogeographic reconstructions to understand the geographic influence of the

79 Intermountain Region during speciation. The biogeographic hypotheses generated from these investigations are discussed in relation to other regional treatments. It is hoped that these insights 80 81 will spur additional studies within the region and provide a framework to understand sand dune 82 relationships. 83 **Materials & Methods** 84 85 Morphological methods A total of 3,734 specimens were studied. Remarkably, over half (1,957) came from non-86 87 institutionalized collections, which is a testament to the importance of individual collections and collectors for documenting North American darkling beetle diversity. The following collections 88 89 were used for this study: 90 **ADSC** - Aaron D. Smith Collection, Flagstaff, AZ 91 - American Museum of Natural History, New York, NY 92 **AMNH** 93 ASUHIC - Hasbrouck Insect Collection, Arizona State University, Tempe, AZ **CASC** - California Academy of Sciences, San Francisco, CA 94 - California State Collection of Arthropods, Sacramento, CA 95 **CSCA** - Orma J. Smith Museum of Natural History, College of Idaho, Caldwell, ID 96 CIDA 97 **EMEC** - Essig Museum of Entomology, University of California, Berkeley, CA - Florida State Collection of Arthropods, Gainesville, FL 98 **FSCA** - Frederick W. Skillman Collection, Pearce, AZ 99 **FWSC** - Kojun Kanda Insect Collection, Flagstaff, AZ 100 KKIC - Natural History Museum of Los Angeles County, Los Angeles, CA 101 LACM 102 **MAJC** - M. Andrew Johnston Collection, Tempe, AZ - Triplehorn Insect Collection, The Ohio State University, Columbus, OH 103 **OSUC** - Rolf L. Aalbu Collection, Sacramento, CA 104 **RLAC** 105 SWC - Samuel Wells Collection, Cedar City, UT 106 UCDC - Bohart Museum of Entomology, University of California, Davis, Davis, CA - National Museum of Natural History, Washington, DC 107 **USNM** - William B. Warner Collection, Chandler, AZ 108 **WBWC** 109 110 Specimens were examined using a Leica MZ16 stereomicroscope fitted with an ocular graticule for measurements. Internal anatomy was studied via 16 whole-body disarticulations where 111 specimens were cleared in warm 10% KOH, neutralized in acetic acid, and then separated into 112 113 constituent sclerotized sections in glycerin. Beetle terminalia were further studied from many 114 more specimens by dry dissection. This technique involved prying abdominal ventrites 4-5 and 115 associated internal structures from the pinned specimens, soaking them in distilled water, and separating out the sclerotized reproductive structures. These structures (ovipositor or aedeagus) 116 117 were then pointed along with the dismembered ventrites and surviving tergites underneath the original pinned specimen. 118

PeerJ

158

119	
120	Morphological terminology generally follows Doyen (1966). Female terminalia morphology
121	follows Iwan and Kaminski (2016), whereas male terminalia morphology follows Iwan (2001)
122	except for the usage of the term clavae (following Blaisdell 1909) over laciniae for the ventral
123	articulated structures of the fused parameres that flank the penis. A detailed internal and external
124	description is provided for the genus and each species is then accompanied by a smaller
125	differential description for the limited variable characters between species.
126	
127	The evolutionary species concept of Wiley and Mayden (2000) is employed in this study. Unique
128	combinations of morphological characters, diagnosable monophyletic clades, and coherent
129	geographic distributions were evaluated together to diagnose putative lineages with a shared
130	evolutionary past and unique evolutionary trajectory.
131	
132	Molecular and biogeographic methods
133	A total of 36 specimens of <i>Trogloderus</i> and an additional eight outgroup species from
134	Amphidorini are included in the final matrix. For <i>Trogloderus</i> , all type localities were visited,
135	and specimens representing each described species and subspecies were collected. Specimens
136	were collected from as many known localities as possible, with sampling covering all broadly
137	recognized geographic subregions. The collecting locality of each voucher is shown in Fig. 1,
138	and the voucher numbers are included in all presented phylogenetic trees. An additional eight
139	outgroups were included which span the known generic and subgeneric diversity of Amphidorini
140	(Bousquet et al. 2018).
141	E 1 1 2000 DMA 4 1
142	Fresh specimens were collected and preserved in 95% ethanol at -20°C. DNA extractions were
143	made from either the head capsule or a leg and associated thoracic musculature using the
144 145	DNEasy Blood & Tissue Kit (QIAGEN, www.qiagen.com). Six loci amplified via PCR for this study are given in Table 1, generally following Kanda (2017). Forward and reverse sequences
146	were obtained for each PCR product using an Applied Biosystems 3730 DNA Analyzer. The
147	resultant chromatograms were edited for final base calls using Geneious version 7 and aligned
148	using MAFFT version 7 (Katoh and Standley 2013) as implemented through Mesquite
149	(Maddison and Maddison 2018). The final aligned dataset contained 3707 base pairs.
150	(Maddison and Maddison 2010). The final anglied dataset contained 3707 base pans.
151	All loci were separated into codon position, except for the ribosomal 12s and 28s, and analyzed
152	by PartitionFinder 2 (Lanfear et al. 2016) using unlinked branch lengths and the greedy search
153	algorithm (Lanfear et al. 2012). The resultant two-partition scheme was used in downstream
154	phylogenetic and diversification analyses. Phylogenetic reconstruction was performed both by
155	RAxML version 8 (Stamatakis 2014) with support values calculated by rapid bootstrap analysis
156	with 500 replicates, and by MrBayes version 3.2 (Ronquist and Huelsenbeck 2003) which was
157	run using four chains for 10 million generations sampled every 1000 with the first 25% being

discarded as burnin. Trees were rooted by using the clade containing the three *Eleodes* subgenera

159 Eleodes, Metablapylis Blaisdell, 1909, and Steneleodes Blaisdell 1909 based on previous phylogenetic analyses for the whole tribe (Smith, Johnston, Kanda unpublished data). 160 161 Diversification analyses were performed using two methods. First, RelTime (Tamura et al. 2012) 162 163 as implemented in MEGA7 (Kumar et al. 2016) was used to infer a timetree given the maximum-likelihood (ML) tree from RAxML and the aligned nucleotide data. Second, the 164 BEAST2 package (Bouckaert et al. 2014) was used to infer a dated phylogeny under both a Yule 165 and Birth-Death model. The latter two analyses had unlinked exponential relaxed clocks for each 166 partition and were run for 500 million generations and sampled every 20000 with parameter 167 convergence being assessed via Tracer 1.7 (Rambaut et al. 2018) and a maximum clade 168 credibility tree being computed by TreeAnnotator from the BEAST2 package with the first 25% 169 of trees being discarded as burnin. 170 171 172 Two geological calibration points were used for all diversification analyses, due to the lack of any fossils for the tribe (Bousquet et al. 2018). The first calibration is the uplift of the Invo and 173 White Mountains, which form the eastern bounds of the Owens Valley and separate it from the 174 Great Basin and Mojave Desert. The uplift of these mountains started between 2.8 and 2.3 mya 175 176 (Bachman 1978, Lee et al. 2009), and the calibration prior for the common ancestor of the three Trogloderus species distributed across these mountains was set as a normal distribution with a 177 mean of 2.5 mya and standard deviation of 1 my. The second calibration is the deeply incised 178 eastern margin of the Grand Canyon in northern Arizona. Two populations of a new species were 179 sampled, one from sand dunes north of the Colorado river just below the Vermillion Cliffs, and 180 181 one south of the Colorado river near Moenkopi. These two populations are separated by the gorge just downstream from Marble Canyon, which was been dated as 0.83 my old (Polyak et al. 182 2008). The calibration prior for the common ancestor of these two populations was set as a 183 normal distribution with a mean of 0.83 mya and a standard deviation of 0.35 my. 184 185 186 Historical biogeographic reconstructions were performed in the BioGeoBEARS package (Matzke 2013) in R (R Core Team 2018) using the calibrated tree from the RelTime analysis. Six 187 geographic areas of endemism were defined (Fig. 1) based primarily on previous biogeographic 188 189 work of the intermountain (Reveal 1979) and southwestern desert (Van Dam and Matzke 2016, Wilson and Pitts 2010) regions. The six areas are as follows: (1) Great Basin – centered around 190 northern Nevada, northwestern Utah and southern Idaho in the regions shaped by the prehistoric 191 lakes Lahontan and Bonneville and including the Snake River plain (Reveal 1979, Britten and 192 Rust 1996, Wilson and Pitts 2010); (2) Mojave Desert – the southwestern-most region of 193

194 Trogloderus distribution which includes much of southeastern California, southern Nevada as
 195 well as far western Arizona and southwestern Utah (Shreve 1942, Reveal 1979, Wilson and Pitts

196 2010, Van Dam and Matzke 2016); (3) Lahontan Trough – a transverse transition zone between

197 the Mojave and Great Basin deserts which shares floristic components with both regions and was

never part of the prehistoric Lake Lahontan (Reveal 1979, Pavlik 1989, Britten and Rust 1996,

199 Hafner et al. 2006); (4) Colorado Plateau – the desert areas surrounding the four-corners region west of the Rocky Mountains and generally east of the Wasatch mountains of Utah (Reveal 200 1979, Wilson and Pitts 2010); (5) Owens Valley – a narrow region bounded by the eastern Sierra 201 Nevada mountains to the west and the Inyo and White mountains to the east, this transition 202 203 region also has strong floral and faunal similarities with both the Mojave and Great Basin deserts (Reveal 1979, Andrews et al. 1979, Macey 1986, Pavlik 1989, Van Dam and Matzke 2016); and 204 (6) Widespread – this was used for outgroup taxa whose ranges extend into other areas of 205 206 western North America.

207208

Deta management and availability

209 And pecimens examined were digitized and are available online through the Symbiota

210 Collections of Arthropods Network (SCAN; Gries et al. 2014, http://scan-bugs.org). Collecting

events lacking GPS data on the label were georeferenced using Google Earth Pro version 7.3 and

212 GEOLocate (www.geo-locate.org) as implemented in SCAN. Specimens from external

213 institutions, which constituted the majority of those examined, were digitized using the SCAN

214 Collection of Externally Processed Specimens (ARTSYS, see Johnston et al. 2018). All

215 molecular and disarticulation vouchers are deposited in the MAJC and have images available

with the pertinent specimen records on SCAN. Due to the fully digitized and available specimen

217 data, verbatim label data are not included in the main text except for holotypes.

218219

220221

222

223

Full locality, institutional ownership, determination, and georeferencing data for all specimens studied are available as a csv file in Supplemental Data S1. A Darwin-Core Archive of all digitized specimen data is available in Supplemental Data S2. Full sequence alignments and configuration files for divergence analyses are available in Supplemental Data S3. Individual sequences are also deposited on GenBank with accession numbers: NOTE: Will submit to GenBank upon manuscript acceptance.

224225226

227

228229

230

231

232

233234

235

238

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone his published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:678EBFE3-6308-4FB8-8E93-184CEC9A15E7. The online version of this work is archived and available from the following

236237

Systematics

digital repositories: PeerJ, PubMed Central and CLOCKSS.

239	
240	Amphidorini LeConte, 1862
241 242	The complex nomenclatural and taxonomic history of Amphidorini has been summarized by Doyen and Lawrence (1979) and Johnston et al. (2015), and is only briefly described here. The
243	tribe has frequently and historically been treated within the subfamily Tenebrioninae Latreille,
244	1802 (Bouchard et al. 2005, 2011; Bousquet et al. 2018), but recent phylogenetic studies place
245	the Amphidorini in a clade with several other tribes in what has been referred to as the subfamily
246 247	Opatrinae Brullé, 1832 (Aalbu et al. 2002, Kanda 2017, Kaminski et al. 2018).
248	The North American genera of this tribe can be separated from other members of Tenebrionidae
249	by the following combination of characters: abdominal ventrites III-IV with visible membrane
250	along hind margin; antennae lacking compound stellate sensoria; tarsal claws simple, not
251 252	pectinate; penultimate tarsomeres not lobed beneath; elytra fused medially, hind wings reduced to small folds; paired defensive glands present between abdominal sternites VII and VIII, glands
253	separate lacking a common volume, glands smooth, not annulated; mentum trilobed with mesal
254	face more or less produced anterad, often concealing insertion of ligula; female paraproct and
255	coxite short, coxite 1-segmented, with short subapical gonostyle; female with single, bursa-
256	derived spermatheca.
257	
258	The tribe is currently comprised of seven genera, six of which are known only from North
259	America. Published keys to genera (Aalbu et al. 2002, Johnston et al. 2015) are sufficient to
260	separate Trogloderus from other Amphidorini, though a generic revision of the tribe is in
261	progress (Johnston and Smith in prep).
262	Tuesdadawa LaConto 1970
263	Trogloderus LeConte, 1879
264 265	Type species <i>Trogloderus costatus</i> LeConte, 1879, by monotypy
266	Diagnosis. Trogloderus (Fig. 2) can be distinguished from other members of Amphidorini by the
267	following characters: body roughly sculptured, pronotum either tuberculate or roughly
268	punctured. Elytron with four sharply carinate longitudinal costae, elytral suture costate or not.
269	Tarsi lined beneath with yellow to castaneus spicules, never with tomentose pads, probasitarsus
270	thickened ventrally near distal margin.
271	
272	Male : Body elongate, roughly sculptured, ferruginous to black. Length 9–16 mm. Width 4–6
273	mm.
274 275	Head. As broad as long. Antenna 11-segmented, extending to posterior 2/3 of pronotum; antennomere III 1.5× as long as IV, IV–VII obconical, roughly as long as wide, VIII–XI wider
276	than long, VIII with sensory patch of yellow setae along outer margin of apical face, IX–XI with
277	sensory patch forming continuous ring around apical face. Labrum free, partially exposed,
278	broader than long; anterior margin rounded laterally, deeply sinuate mesally; each lobe bearing

279 tuft of short vellowish setae: dorsal surface punctate, each puncture bearing a long vellow seta. punctures becoming denser anteriorly: hypopharynx originating just posteriorly of anterior 280 ventral margin, anterior hypopharyngeal sclerite ovoid, transverse, 1.5× wide as long. Mandibles 281 (Fig. 3A–B) roughly symmetrical, bidentate, the left slightly larger than and overlapping the 282 283 right at rest; dorsal face striate, more strongly so anterolaterally; lateral face with longitudinally elongate punctures, each bearing a single seta; ventral surface concave, smooth; mola present, 284 strongly sclerotized, finely granulate; prostheca large, membranous, extends laterally around 285 mola to form a large submola. Maxillae (Fig. 3C-D) ferruginous, symmetrical; cardo 286 subtriangular, narrowing proximaly, lightly punctate; basistipes bearing thickened setae, 287 288 subtriangular, narrowing distally, articulated with cardo basally and basigaleaanterolaterally, mediostipes anteromesolly, and palpifer anterolaterally; mediostipes subtransverse, glabrous, 289 articulated with lacinia distally; lacinia well developed, mesal surface bearing a terminal digitus 290 291 followed proximally by robust lacinial teeth which become setae in basal 1/3; basigalea thin, 292 articulated with distigalea apically, bearing fine, long setae; distigalea 1.5× longer than wide, anterior and mesal surface densely clothed with thick yellowish setae, dorsal surface bearing 293 moderately separated, long vellowish setae; palpifer digitate ventrally, bearing stout setae; palpi 294 with 4 palpomeres, palpomere I small, subtriangular, II elongate, obconical, III slightly shorter 295 than II, clavate, IV securiform, apical surface bearing vellowish membranous sensorium. 296 Mentum (Fig. 3E) trilobed, with mesal region of dorsal face produced anteriorly into arcuate 297 lobe, covering insertion of ligula: ligula transverse, bearing two apical tufts of stout setae along 298 dorsal face; labial palp with 3 palpomeres, palpomere I obconical, as long as wide, II clavate, 299 1.5× long as wide, III fusiform and evenly setose; hypopharyx moderately sclerotized along 300 301 anterior margin, hypopharyngeal brush forming thickened longitudinal band from anterior margin of hypopharynx to posterior margin of mentum. Clypeus fused to frons, roughly 302 sculptured, broadly sinute at middle, frontoclypeal suture indistinct to faintly traceable in teneral 303 individuals. From usually slightly sunken, less roughly sculptured than clypeus, with slightly 304 305 elevated bilobed tubercle centrally; epistomal lobes produced, distinctly offset from clypeus. Eyes entire, reniform, dorsal lobe 5-6 facets wide, ventral lobe 3 facets wide. Vertex at same 306 level and contiguous with central tubercle of frons; becoming strongly granulate towards occiput. 307 Submentum short, arcuate posteriorly, faintly evident; gular sutures diverging posteriorly, well 308 309 rounded, gula less coarsely sculptured than surrounding head capsule.

310311

312

313314

315

316317

318

Thorax. Pronotum roughly sculptured; lateral margins strongly curved, crenulate along entire length, sinuate at posterior angle, anterior angles acute, projected, with longitudinal depression along midline, often separated into anterior and posterior foveae (Fig. 2A, *pf*); prosternal length from anterior margin to procoxae subequal to procoxal diameter; procoxae separated by approximately ½ procoxal diameter; prosternal process (Fig. 2B, *pp*) projected posteriorly; procoxal cavities closed posteriorly by postcoxal bridge of pronotum which meets the prosternal process mesally; pleural apophysis (Fig. 4A) directed anterodorsally, becoming laminar and longitudinally expanded near ventral surface of pronotum, with short dorsal coxal articulation

319 extended mesally around basal 1/3; prosternal apophysis straight, extending dorsolaterally, 320 terminating near dorsal margin of coxa. Mesonotum strongly transverse, triangular, densely papillose; scutellar shield wide and short, lacks papillae, strongly microsculptured; 321 mesanepisternum subtriangular, narrowing posteroventrally, anterior 1/3 with integument 322 323 thickened, papillose, offset from posterior 2/3 by posteriorly concave ridge demarking a section of thinner integument, punctate in posterior 1/3; mesepimeron short, fairly evenly punctate; 324 mesoventrite with anterior 1/2 covered by prothorax at rest, posterior 1/2 projected ventrally 325 between coxae, with longitudinal groove to receive prosternal process; mesocoxal cavities closed 326 externally by mesoventrite, mesepimeron, and metaventrite; mesosternal apophyses extend 327 328 anteriorly from apex of mesocoxal cavity, recurved dorsally and then posteriorly around anterior 1/4 of mesoventrite. Metanotum greatly reduced, prescutum forming narrow arch, strongly 329 connected to the mesonotum, remainder of metanotum forming short, somewhat heavily 330 331 sclerotized membrane, without discernable subregions; metepimeron forming narrow rod-like 332 longitudinal sclerite along length of metathorax, concealed beneath elytron, posteriorly with short ventrally projected metepimeral process which is fused with metepisternum above 333 metacoxal cavity; metepisternum elongate, subrectangular; metaventrite short, length less than 334 mesocoxal diameter, antecoxal ridge deeply impressed above anterior coxal margin, discrimen 335 not apparent; metacoxal cavities closed externally by metaventrite, metepisternum, metepimeral 336 process, and first abdominal ventrite; metendosternite (Fig. 4A) stout, stalk broad, ventral 337 longitudinal flange very well sclerotized, furcae as wide as stalk, relatively immovable, furcal 338 apicies reflexed posterolaterally, forming horizontal pad for furca-trochanteralis muscle 339 attachment, anterior tendons inserted at apical 1/4 of furcae. Elytra fused, suture elevated or not; 340 341 elytron disc (Fig. 2A, dc) with 4 longitudinal carinate costae; epipleuron narrow throughout length, not or slightly widened anteriorly, attaining elytral apex posteriorly. Hind wings greatly 342 reduced, forming veinless tubular sac, approximately the size of first abdominal spiracle. 343 344 345 Legs. Fore leg slightly enlarged, weakly fossorial; femur clavate, heavily punctate, dorsal anterior margin carinate from base to apical 1/5, ending in short recurved spine (Fig. 2A, fs); 346 tibia with inner face excavated in basal 1/5, outer face carinate from base to near tarsal insertion, 347 apex bearing row of ferruginous spicules dorsally, tibial spurs subequal, extending to apex of 348 349 tarsomere II; tarsus bearing furriginous spicules, tarsomere I ventrally thickened at apex, maximum height equal to length, II–IV subequal, relatively short, about as tall as long, V slightly 350 clavate, as long as II–IV combined; empodium minute, hidden within tarsal apex, bearing 2 351 yellowish setae; tarsal claws simple, evenly arcuate, 2/3 length of tarsomere V. Middle and hind 352 legs similar to fore leg, tibia subcylindrical, not expanded; all tarsomeres simple, not thickened 353 354 beneath. 355 Abdomen, 5 visible ventrites, ventrite I intercoxal process truncate, rectangular, twice as broad 356

as long, I–III connate, fused to elytra laterally, III–IV with visible membrane posteriorly, I–II

bearing variously developed longitudinal ridges demarking flattened abdominal depression (Fig.

Peer| reviewing PDF | (2019:06:38531:0:1:NEW 20 Jun 2019)

2B, ad) in line with thoracic intercoxal region; tergites membranous, weakly sclerotized; paired defensive glands (Fig. 4B) present posterior to ventrite V (between sternites VII–VIII), glands lacking a common volume, each gland elongate, subfusiforme, extending anterior of ventrite II, membrane finely strigose, lacking annular pleats, gland openings centered around lateral 1/5.

Terminalia. Tergite VIII weakly sclerotized, posterior margin evenly arcuate, bearing row of fine golden setae; sternite VIII weakly sclerotized, bilobed, deeply emarginate posteriorly, each lobe subtriangular, clothed ventrally and posteriorly with long yellowish setae, anterior deeply margin bisinuate, thickened into apodemes. Spicules V-shaped, fused anteriorly, 1.5× length of tergite VIII, spicule plates moderately small, 4x width of spicules, twice as long as wide. Adeagus (Fig. 5C) elongate, cylindrical; basal piece 4x as long as wide, lateral margins (alae) reflexed inwardly, leaving ventral face open, apicodorsal margin concave; parameres fused, ½ length of basal piece, widest basally, 1.5x long as wide, apical half curved ventrally; clavae (Fig. 5C) narrow, about as long as parameres, 1/6 maximum width of parameres; penis narrow, lightly sclerotized, fully hidden dorsally by parameres at rest.

Female. As male but generally more t, fore femoral spines variable, typically less developed than males, base of tibia generally not constricted, central abdominal groove less developed.

Terminalia. Tergite VIII moderately sclerotized, posterior margin evenly arcuate, bearing golden setae; sternite VIII moderately sclerotized, evenly arcuate podsteriorly, bearing golden setae, fused medially to spiculum ventrale along anterior margin, spiculum ventrale 1.5× medial length of tergite VIII. Proctiger (Fig. 5A) slightly longer than wide, posterior margin weakly emarginate, bearing single row of short yellow setae. Paraproct subrectangular dorsally (Fig. 5A), subtriangular ventrally (Fig. 5B), bacculus obliquely pointed psoteromesally, thickened mesally. Coxite 1-segmented, subrectangular in dorsal view, narrowing posteriorly, subtriangular in ventral view, bacculus obliquely pointed anteromesally. Gonostyle short, inserted ventrally, at most weakly visible from above. Bursa copulatrix (Fig. 5B) about 2× length of coxite, bearing single spermatheca (Fig. 5A) off of duct from anterior margin with single long spermathecal gland.

Variation and natural history

Sexual dimorphism is primarily observed in the fore tibiae and abdominal ventrites. The fore tibiae of males are generally more explanate along the outer edge and are more strongly constricted proximally. The femoral spines are often slightly stronger in the males as well, where they pair with the constricted tibiae to form a grasping mechanism – presumably used to hold the females legs or antennae during copulation. The abdominal depression also tends to be stronger in males, with the marginal ridge more produced and the central region more depressed. This is also assumed to help the male in positioning during copulation.

Relatively little is known of *Trogloderus* biology. Adults have not been successfully cultured in 399 the lab and larvae and pupae remain unknown and undescribed from the wild. Adult beetles are 400 able to burrow into loose sand, where the immature stages presumably live. More commonly, 401 adults are observed emerging from mammal burrows after dark where they seem to take shelter 402 403 underground during the day. Like other Amphidorini, adults can also be found, though not particularly abundantly, under rocks or loose boards. Trogloderus are very active at night, and 404 seem to travel good distances across open ground likely in search of food, mates, or new sites to 405 shelter during the day. 406

407 408

409

410

Collection records and field observations indicate that this genus is restricted to habitats with loose sand. While the largest populations seem to be from deep aeolian sand formations, they can also be found in areas of fine loose sand along rivers and across desert flats, e.g. in small sand hummocks around the base of desert shrubs.

411 412 413

Key to the species of *Trogloderus*

- 414 Diagnostic utility of characters
- 415 The extreme sculpturing of *Trogloderus* makes the genus readily recognizable among
- 416 Amphidorini, but also seems to magnify in the context of species identification the relatively
- broad individual and geographic intraspecific variation found throughout the tribe (e.g.
- 418 Triplehorn and Thomas 2012; Johnston 2015, 2016). The female ovipositor has been heavily
- relied upon to classify species into genera and subgenera (Blaisdell 1909; Triplehorn and
- 420 Thomas 2012; Johnston 2015, 2016), yet it is fairly constant throughout *Trogloderus* and was
- 421 found unreliable for species identification. Male terminalia can be diagnostic for some species,
- but not for all (Somerby 1972, Aalbu et al. 2012). Within *Trogloderus*, the basic shape of the
- 423 parameres can sometimes aid in distinguishing some species from each other by examining the
- parameter can contenting and in alternigationing contenting the
- 424 curvature of the lateral margins, but do not alone reliably distinguish one species from all others.

425 426

427

428 429

430

General facies, elytral sculpturing, and body size were found to be largely unreliable for species recognition as they can vary within populations and especially between populations. It is not uncommon to find locally homogenous populations to have strong differences between them. Whether this is due to some environmental variable such as food or water availability or simply stochastic due to limited gene flow is unclear. The sculpturing of the pronotum and head seems to be more stable within species and are heavily relied upon in the following identification key.

- Though coloration was previously used as a secondary diagnostic character (La Rivers 1946, Papp 1961), it is here found to be unusable for species determinations. Rather, it seems that the cuticle of adult *Trogloderus* takes a fairly long time to fully harden and that more teneral specimens exhibit a red coloration, which then matures to a darker black in the longest-lived individuals. This is based on the observation that in almost every large series known there is a
- 438 spectrum of red to castaneus to black individuals. Specimens with a brighter red coloration seem

139 140	sclero	e thinner cuticle (personal observation while pinning specimens) and even less strongly tized terminalia. This is perhaps a strategy for these desert-dwelling beetles to limit the
141 142	duration of the potentially more susceptible immature stages in preference of a longer hardening period as an adult. It is not clear whether the teneral adults are reproductively viable as no eggs	
143	-	been observed in such individuals when dissected, and this could be an example of
144		ngsfraß, the need for a maturation feeding period (see McNee et al. 2000).
145		
146 147	Dicho	tomous key to the species of adult <i>Trogloderus</i>
148	1	Pronotal surface distinctly tuberculate
149 150	1'	Pronotal surface not tuberculate, heavily punctate to cribrate
1 51	2(1)	Each elytron with large subapical tubercle at outer carinal terminus; pronotal foveae
152		delimited laterally by raised longitudinal ridges (Mojave Desert)
153		
154	2'	Elytra without posterior tubercles; pronotum lacking elevated ridges, foveae lined by
455 456		tubercles originating from same surface as those of the disc (widespread)3
157 158	3 (2')	Posterior pronotal angles more or less inflated; lateral margins of pronotal disc slightly depressed, lacking tubercles (western Colorado Plateau)
159		
160	3'	Posterior pronotal angles not at all inflated; lateral regions of pronotal disc not depressed,
161 162		tubercles relatively evenly dispersed from foveae to lateral margins4
163 164	4 (3')	Male parameres triangular, evenly tapering from base to apex; elytral carinae often granulately tuberculate on sides (west of Kaibab Plateau)
165		
166	4'	Male parameres distinctly constricted near base, then evenly tapering to apex; elytral
167		carinae usually lacking tubercles on sides (east of Kaibab Plateau)
168 169		
170	5 (1')	Pronotal dorsum bilobed in anterior view; pronotum strongly explanate laterally; pronotal
171		foveae joined into single longitudinal groove (Mojave Desert)
172		
173	5'	Pronotum evenly convex in anterior view; pronotum weakly to moderately explanate
174 175		laterally; pronotal foveae variable, often distinctly separated (widespread)6
176 177	6 (5')	Pronotum cribrately punctured, margins of punctures strongly elevated; intervals between elytral carinae bearing short, transverse secondary ridges
178		
		· · · · · · · · · · · · · · · · · · ·

479 480 481	6'	Pronotum heavily punctate, margins of punctures not strongly elevated; intervals between elytral carinae usually smooth, lacking well-defined secondary ridges
482 483 484	7 (6')	Propleurae lacking tubercles on dorsal half, never with tubercles anteriorly just underneath pronotal margin; pronotal foveae joined into single well-demarked longitudinal groove
485 486 487	7'	Propleurae wth tubercles in dorsal half, at least anteriorly underneath pronotal margin; pronotal foveae variable, usually not forming single longitudinal groove
488 489 490 491	8 (7')	Epistoma roughly punctured, individual punctures evident above antennal insertion; pronotal punctures fairly evenly circular, discrete; elytral costae moderately to strongly produced; male parameres broadly triangular in dorsal view, sides straight and evenly tapered (southern Owens Valley)
492 493 494 495 496 497	8'	Epistoma finely to roughly tuberculate, individual punctures not evident above antennal insertions; pronotal punctures often longitudinally oval, sometimes coalescent anteriorly; elytral costae weakly to moderately produced; male parameres narrowly triangular in dorsal view, sides gently to moderately arcuately concave (widespread)9
498 499 500 501	9 (8')	Frontoclypeal suture forming a complete transverse ridge, frons apex below the plane of clypeus base; male parameres broadly triangular, evenly converging; prosternal process horizontal, on the same plane as the prosternum between the procoxae; punctures larger (northern Great Basin)
502 503 504 505 506 507 508 509	9'	Trogloderus nevadus La Rivers (Fig. 6G) Frontoclypeal suture usually not forming complete transverse ridge, mesal region of frons apex on the same plane as clypeus; male parameres usually noticeably constricted near base, with sides slightly convexly arcuate; prosternal process often narrowed at posterior procoxal margin, sometimes dorsally offset from plane of prosternum; pronotal punctures usually smaller (Lahontan Trough including Mono Lake region of Owens Valley)
510511512513	urn:lsi	derus arcanus Johnston, New Species d:zoobank.org:act:0BCDA9E8-F615-41B9-9376-62778B0958EE s 6E, 7A, 8
514 515 516 517 518	the cor	osis . <i>Trogloderus arcanus</i> can be distinguished from all congeners, except <i>T. nevadus</i> , by inbination of tuberculate propleurae, frons, and clypeus. To separate it from the latter, the ters given in the key will usually separate the two species, but see the variation and its below.

 Description. As genus with the following: Length 7.0–10.5 mm, width 3.5–4.5 mm. Head. Epistoma and frons tuberculate, lacking distinct punctures; mesal region of frons elevated, usually on same plane as clypeus, rendering transverse ridge along frontoclypeal suture incomplete, lateral regions of frons usually evenly tuberculate. Thorax. Pronotum evenly convex dorsally; heavily punctate, punctures longitudinally elongate, tending to coalesce anteriorly; lateral margins moderately arcuate, sinuate along basal fifth; posterior pronotal angles obliquely acute, relatively small; anterior fovea usually obsolete to moderately impressed, posterior fovea always distinct, round, deeper than anterior. Propleurae usually tuberculate throughout, tubercles always present anteriorly underneath pronotal margin. Prosternal process usually narrowed along posterior procoxal margin, often narrowed and on slightly dorsal plane than prosternum between procoxae. Elytral costae weakly to moderately developed, intervals usually smooth, occasionally with slight transverse ridges; elytral suture elevated along poster half, nearly as prominent as discal costae. Abdomen. Abdominal depression relatively weak, usually not discernable on ventrite II. Male terminalia. Parameres (Fig. 7A) usually appearing narrow, arcuately constricted near base, sides usually slightly concave, occasionally appearing roughly evenly triangular.

Variation. The diagnostic characters of this species are quite variable both within and between populations. Specimens from Crescent Dunes south to Sarcobatus Flats tend to have a distinctly narrowed prosternal process, while specimens from Teel's Marsh and Silver Peak west to Mono Lake tend to have a horizontal, evenly narrowing prosternal process. Specimens from lower elevation regions (typically Nevada) are fairly weakly sculptured, having rather small pronotal punctures, sometimes becoming separated by as much as half of their diameter, and fairly weakly developed elytral costae. Specimens from higher elevation (*e.g.* Mono County, CA) tend to be more roughly sculptured on the pronotum and elytra. The latter populations tend to also have the frontoclypeal ridge more or less complete throughout. The northern and eastern populations (*e.g.* Crescent Dunes and Coal Valley) have more distinctly narrowed parameres, while the southern populations (*e.g.* Silver Peak) tend to have slightly broader and more evenly tapered parameres.

Distribution. Fig. 8. This species is distributed throughout the region known as the Lahontan Trough (Reveal 1979), a region which was never part of the prehistoric Lake Lahontan to the north.

Type material. Holotype. "USA: NEV: Nye Co., 12 mi / NW Tonopah, Crescent / Dunes; 38°13'47"N, 117° / 20'06"W; JUN 30-JUL 9 / 2011; barrier pitfalls w. / fish bait; W.B. Warner", "ARTSYS0007057" bearing red holotype label. Deposited in ASUHIC, catalog number ASUHIC0101562. Paratypes. 765 specimens from throughout the range bearing blue paratype labels (see Supplemental Data S1, Supplemental Data S2 or SCAN for full specimen data).

Etymology. The specific epithet, meaning secret, or mysterious (Brown 1956), is given for this cryptic species that was very difficult to separate from *T. nevadus* and was first revealed as a distinct species through the property logeny presented below.

Remarks. The geographically linked morphological variation in this species warrants further study, which will rely on increased collecting efforts in an under-collected region and likely more molecular data. The slightly heterotypic species as circumscribed here may represent a cryptic species complex. Strong differences between populations may be the result of reproductive isolation and diverging evolutionary lineages, or could be linked to environmental conditions. The roughly sculptured populations from California are from cooler and more mesic habitats, whereas the central Nevada populations face much drier and warmer conditions. There also may be some competitive exclusion or prezygotic isolation pressures, which shape the Nevada populations that border along the range of *T. nevadus*.

Trogloderus costatus LeConte, 1879

573 Figures 6F, 7B, 8

Diagnosis. *Trogloderus costatus* can be easily separated from all congeners by the cribrately punctate pronotum, where the margins of the punctures are strongly elevated. The presence of transverse ridges in the intervals of the elytral costae can also separate this species from any others with punctate pronota.

Redescription. Length 10.5–12mm, width 4–4.75mm. Head. Epistoma and frons roughly punctured to tuberculate; frontal tubercle usually roughly punctured, punctures usually becoming discrete tubercles towards clypeus; frontoclypeal suture forming gentle, complete transverse ridge. Thorax. Pronotum relatively evenly convex dorsally; cribrately punctured, punctured region elevated above less punctate lateral margins; anterior and posterior foveae very distinct, deep, impunctate; lateral margins evenly arcuate, recurved just before posterior angles; posterior angles obliquely acute, small. Propleurae distinctly and evenly tuberculate throughout. Prosternal process horizontal, forming short, evenly tapered triangle behind posterior procoxal margin. Elytral costae strongly developed, intervals always with distinct transverse ridges; elytral suture strongly elevated, nearly as prominent as discal coxae along posterior 5/6. Abdominal depression weak, not evident in females, occasionally evident on anterior 1/2 of ventrite I in males. Male terminalia. Parameres (Fig. 7B) narrow, arcuately constricted near base, sides concave, weakly arcuately converging to apex.

Variation. As with most other species, the intensity of the body sculpturing is variable both between and within populations. Specimens from near Winnemucca tend to have the weakest sculpturing, though the strongly elevated punctate regions of the pronotum are still diagnostic. *Trogloderus costatus* has the most variable cephalic sculpturing within the genus, with

598	specimens ranging from having the entire dorsal aspect of the head distinctly punctate (Truckee
599	river near Reno) to specimens that possess nearly entirely tuberculate heads (Winnemucca).
600	Specimens from other regions have a mixture of both, generally with the frontal tubercle
601 602	punctate and the punctures becoming distinct tubercles towards the clypeus.
603	Types. Holotype male from Rock Creek Owyhee County, Idaho at the Museum of Comparative
604 605	Zoology, type number 4624, pictures available on-line from MCZ type specimen database. LeConte (1879: 3) specifically references "one specimen kindly given me by Mr. Reinecke;
606	others are in the collections of Dr. Horn and Mr. Bolter." This statement is here interpreted to
607	comply with the International Code of Zoological Nomenclature (1999) Article 73.1.1 and the
608	above single specimen is considered the holotype upon which the nominal species was founded,
609	with the secondarily mentioned specimens considered as paratypes.
610	y and the state of
611	Material examined. 63 specimens (see Supplemental Data S1, Supplemental Data S2 or SCAN
612	for full specimen data).
613	
614	Distribution. Fig. 8. This species is known from the Northern Great Basin, from regions once
615	dominated by the prehistoric Lake Lahontan through the Snake River Plain.
616	
617	Remarks. This is the second least abundant species found in natural history collections, yet was
618	the first species described in the genus. While true <i>T. costatus</i> , as recircumscribed here, is
619	uncommon in collections, most existing specimens are determined to this species likely
620	following the treatment of La Rivers (1946). Trogloderus costatus overlaps most of the range of
621	T. nevadus, though the latter is much more frequently collected. Specimens of T. costatus seem
622	to retain the most substrate on their cuticle among all of its congeners, and perhaps this cryptic
623	lifestyle makes it less commonly collected, or perhaps this morphological sculpturing is adapted
624	to more specific substrates. With relatively few specimens known, and many of them lacking
625	very precise locality data, increased collecting efforts may help elucidate drivers of this species'
626	distribution and intense morphological sculpturing.
627	
628	
629	Trogloderus kandai Johnston, New Species
630	urn:lsid:zoobank.org:act:09FCBD7E-3DE8-40E4-8C13-5EC6DFA734EA
631	Figures 6I, 7C, 8
632	
633	Diagnosis. Trogloderus kandai can be separated from its congeners by having the pronotum
634	punctate, propleurae tuberculate, and the epistoma distinctly punctured, at least above the
635	antennal insertions. Most similar to <i>T. arcanus</i> , particularly specimens from the Mono Lake
636	region, T. kandai can be further separated from the latter by the pronotal punctures being nearly

evenly round and not tending to coalesce (longitudinally oval and tending to coalesce anteriorly in *T. arcanus*).

Description. Length 9–11mm, width 3.5–4.5mm. Head. Epistoma aspirately punctate, distinctly so above antennal insertions, often becoming somewhat tuberculate mesally; frontoclypeal suture forming complete transverse ridge; from irregularly tuberculate, frontal tubercle fairly distinctly punctate, lobes connected by anterior transverse ridge. Thorax. Evenly convex dorsally; heavily and evenly punctate throughout, punctures round, not becoming coalescent, occasionally slightly elongate near anterior margin; lateral margins evenly arcuate, recurved just before posterior angles; posterior angles obliquely acute, small; anterior fovea usually forming moderately and evenly impressed longitudinal channel connected to posterior fovea, posterior fovea round, deeper than anterior fovea. Propleurae tuberculate, tubercles often obscure posteriorly, always with tubercles anteriorly underneath pronotal margin. Prosternal process horizontal, forming evenly tapered triangle behind posterior procoxal margin. Elytral costae moderately produced, intervals punctate but lacking well developed transverse ridges; elytral suture usually not elevated basally, somewhat elevated in posterior 1/2 but less produced than discal costae. Abdomen. Abdominal depression moderately developed in both sexes, distinctly present on ventrites I-II, smoother than lateral region of ventrite in males, entire ventrite fairly similarly sculptured in females. Male Terminalia. Parameres (Fig. 7C) somewhat broad, evenly tapering from base to apex.

Variation. This species exhibits relatively constant morphology, perhaps due to the extremely limited known distribution. The sculpturing of the epistoma can be fairly variable within the population, but individual punctures can be observed along the outer edge above the antennal insertion. The elytral suture is also somewhat variable, usually being elevated in the posterior half, it is occasionally elevated along most of its length.

Distribution. Fig. 8. This is the most geographically restricted species of *Trogloderus* and is known only from the southern Owens Valley in California, in the region around Owens Lake between independence and Olancha.

Type material. Holotype. "USA:CA:Inyo Co. / Olancha Dunes OHV area / N36°17.665' W117°59.191' / 3600 ft. KK07_028 / K. Kanda, 22.vii.2007", "ARTSYS0007058" bearing red holotype label. Deposited in the ASUHIC, catalog number ASUHIC0101561 Paratypes. 82 specimens bearing blue paratype labels (see Supplemental Data S1, Supplemental Data S2 or SCAN for full specimen data)

Etymology. I am pleased to name this species after the tenebrionid specialist Kojun Kanda, who both collected the holotype and provided direction on the molecular analyses.

Remarks. The restricted distribution of this species is very interesting, being bounded by the Coso Range to the south and a series of old lava flows to the north which are part of the southern boundary for the Tinemaha Reservoir. South of the Coso Range is traditional Mojave Desert habitat and is dominated by creosote bush (Larrea entata (DC.) Coville) which is only sporadically present to the north, largely replaced by the Great basin indicative big sagebrush (Artemisia tridentate Nutt.). Thus, T. kandai is only known from a transition region between the Mojave and Great Basin deserts.

684 685

- Trogloderus major Johnston, New Species
- 686 urn:lsid:zoobank.org:act:1B61B89E-5839-47CA-AA20-F4795FF931D7
- 687 Figures 6H, 7D, 9

688 689

690

691

692

693

694

Diagnosis. This species can be recognized by having a punctate and evenly convex pronotum, and the propleurae lacking tubercles on the dorsal half (if propleural tubercles present, they are located on the bulging region covering the procoxae). This species can be further separated from most other species with punctate pronota by the smooth elytral suture, located in a depressed interval between the inner elytral costae. This form of the elytral suture and propleurae lacking tubercles is shared with the sympatric species *T. vandykei*, which has a bilobed dorsum of the pronotum in anterior view.

695 696 697

698 699

700

701

702

703

704

705

706 707

708

709

710

711712

713

Description. As genus with the following: Length 9.5–13.5mm, width 4–5.5mm. Head. Epistoma usually distinctly punctured, sometimes becoming irregularly tuberculate mesally; frontoclypeal suture forming complete transverse ridge; frontal tubercle punctate, lateral regions of frons smooth. Thorax. Pronotum evenly convex dorsally; heavily and evenly punctate throughout; lateral margins fairly evenly arcuate, recurved just before posterior angles; posterior angles obliquely acute, very small; anterior fovea forming weakly to moderately impressed longitudinal channel, connecting to posterior fovea; posterior fovea round, moderately impressed, slightly deeper than anterior fovea. Propleurae lacking punctures on dorsal half, always lacking punctures anteriorly underneath pronotal margin, usually with indistinct tubercles on inflated region covering procoxal cavity. Prosternal process robust, horizontal, forming evenly tapered triangle behind procoxal posterior margin. Elytral costae weakly to moderately elevated, intervals relatively smooth, bearing faint traces of transverse ridges; elytral usually suture not elevated, or if elevated posteriorly then significantly shorter than the discal costae. Abdomen. Ventrites relatively smooth laterally; abdominal depression strong, distinct in both sexes, stronger in males, margins of depression roughly punctured, depression distinctly margined throughout ventrites I–II; ventrite III flattened anteriorly in males, lacking a distinct margin. Male Terminalia. Parameres (Fig. 7D) subparallel in basal 1/5, then concave and arcuately tapering to apex.

- 716 **Variation.** This species is fairly constant in its robust form. The main variation observed was in
- 717 the elytral suture, which is usually entirely not elevated, but is occasionally produced in the
- 718 posterior half, though is still very much shorter than the discal costae.

- **Distribution.** Fig. 9. Mojave Desert, from Edwards and Ridgecrest California, east through
- 721 Mercury and Alamo, Nevada. This species is particularly abundant from sand dunes in the
- eastern Mojave and Death Valley (e.g. Kelso, Eureka, and Big Dune).

723

- 724 Type material. Holotype. "USA:CA: San Brndno / Co., Kelso Dunes; 34° / 53'23"N,
- 725 115°43'04"W / April 16-17. 2011; at / night gleaning & UV / lights; W.B. Warner",
- "ARTSYS0007056", bearing red holotype label. Deposited in the ASUHIC, catalog number
- 727 ASUHIC0101564. Paratypes. 724 specimens from across its range, bearing blue paratype labels.
- 728 (see Supplemental Data S1, Supplemental Data S2 or SCAN for full specimen data).

729

730 **Etymology.** This species is named for its robust stature (Brown 1956) among *Trogloderus*.

731

- 732 **Remarks.** This species can often be recognized by gestalt, owing to its generally robust outline
- vith a fusiform abdomen. One of the most abundant species in natural history collections,
- specimens were often previously been determined as *T. nevadus. Trogloderus major* is sympatric
- 735 with *T. tuberculatus* and *T. vandykei*, where they are often taken in mixed series. This is the
- 736 species from the Nevada Test Site referred to as *T. costatus nevadus* in Tanner and Packham
- 737 (1965), who reported this species active from March through October, with a distinct peak in
- 738 abundance in August.

739

- 740 Trogloderus nevadus La Rivers, 1943
- 741 Figures 6G, 7E, 9

742 743

744

- **Diagnosis.** The combination of a punctate, evenly convex pronotum, tuberculate propleurae and epistoma, and the frontoclypeal suture forming a complete transverse ridge will separate this species from all congeners but some specimens of T. granus. See the key characters and
- species from all congeners but some specimens of T. arcanus. See the key characters and
- 746 diagnosis of the latter species to further separate the two.

- **Redescription.** As genus with the following: Length 8.5–10mm, width 3.5–4mm. Head.
- 749 Epistoma and from tuberculate throughout, lacking distinct punctures; frontoclypeal suture
- 750 forming complete transverse ridge. Thorax. Pronotum evenly convex dorsally; heavily punctate
- 751 throughout, punctures longitudinally oval, tending to coalesce anteriorly; lateral margins
- 752 moderately arcuate, sinuate in basal 1/5; posterior angles obliquely acute, small; anterior fovea
- 753 weakly impressed, connected to posterior fovea; posterior fovea similarly weakly impressed.
- 754 sometimes slightly deeper. Propleurae granulately tuberculate throughout, always with tubercles
- 755 present anteriorly underneath pronotal margin. Prosternal process horizontal, usually distinctly

756 757	margined along entire outline, forming evenly tapering triangle behind posterior procoxal margin. Elytral costae moderately produced, intervals punctate, lacking transverse ridges; elytral
758	suture weakly elevated in posterior ½. Abdomen. Abdominal depression indistinct to weak in
759	females, discernable only on ventrite I, relatively weak in males, discernable on ventrites I–II,
760	but lateral margin forming ridge only on ventrite I. Male terminalia. Parameres (Fig. 7E)
761	triangular, evenly tapering from base to apex.
762	
763	Variation. This species is fairly constant throughout its range. The pronotal foveae are
764	sometimes moderately pronounced, generally in larger and more roughly sculptured individuals,
765 766	whereas the typical form has the foveae very weakly depressed.
767	Distribution. Fig. 9. This species is distributed throughout the northern Great Basin, throughout
768	the Lake Lahontan drainage and into the Snake River Plains.
769 770	Type material. Holotype male from Pyramid Lake Dunes, Washoe County, Nevada, not seen.
771	Deposited in Ira La Rivers' collection (La Rivers 1943: 439), which was later deposited at the
772	state collection of Nevada in Reno, the type was not located there (K. Tonkel, personal
773	communication), nor found at the CASC where a sizable amount of La Rivers material is
774	located. The description, examined paratypes, and abundant subsequent collecting from the type
775	locality leave no doubt as to this species identity.
776	recurrence for deduct de to time operates ractions.
777	Material examined. 332 specimens including 4 paratypes (see Supplemental Data S1,
778	Supplemental Data S2 or SCAN for full specimen data).
779	11 /
780	Remarks. This species is broadly sympatric with <i>T. costatus</i> , but seemingly has a slightly
781	broader range, extending south to the dunes around Walker Lake and north to Pyramid Lake. It is
782	surprising that no specimens were found from southeastern Oregon, which seems to have
783	appropriate habitat without any significant barriers to dispersal. Increased collecting efforts may
784	produce specimens from the periphery of the currently known range. Many specimens referred to
785	the present species in natural history collections belong to the herein described species with
786	punctate pronota.
787	
788	Trogloderus skillmani Johnston, New Species
789	urn:lsid:zoobank.org:act:63C947D5-73A7-4188-A430-247B04AFD633
790	Figures 6D, 7F, 9
791	
792	Diagnosis. This species can be recognized by the relatively evenly tuberculate pronotum, lack of
793	subapical elytral tubercles, and relatively evenly tapering male parameres. This species is most
794	similar to T. verpus, which can be separated by the male terminalia (parameres strongly
795	constricted near base in <i>T. verpus</i> , parameres not strongly constricted, evenly tapering to apex in

T. skillmani). The present species is also fairly similar to *T. warneri*, which can be separated by the pronotal characters given under the diagnosis for that species.

Description. As genus with the following: Length 9.5–12.5mm, width 3.5–4mm. Head. Epistoma and frons tuberculate throughout; mesal region of frons on same plane as clypeus; frontoclypeal suture not or weakly forming transverse ridge. Thorax. Pronotum relatively evenly convex dorsally; evenly tuberculate throughout, lateral regions of pronotum more or less depressed, but similarly tuberculate as remainder of disc; lateral margins fairly evenly arcuate, recurved just before posterior angles; posterior angles small, acute; posterior margin straight, mesal region forming continuous line laterally to terminus of posterior angle. Propleurae evenly and densely tuberculate throughout. Prosternal process short, usually offset dorsad from plane of prosternum between procoxae. Elytral costae moderately to strongly produced; intervals usually tuberculate, tubercles originating from center of interval as well as lateral faces of costae; elytral suture elevated in poster ³/₄, nearly as produced as discal costae. Abdomen. Abdominal depression lacking in both sexes. Male parameres (Fig. 7F) narrowly triangular, evenly to

Variation. This species as circumscribed here is the most widespread of any *Trogloderus* and has some significant variation accordingly. Specimens near the type locality, from northern Arizona and southern Utah, tend to have extremely tuberculate elytra intervals, strongly produced elytral costae, and small prosternal processes. Specimens from more typical great basin regions of Utah and Nevada (*e.g.* Little Sahara dunes, Crescent Dunes) tend to be less strongly sculptured on the elytra and have slightly enlarged prosternal processes. Specimens from the far western end of the distribution near Mono Lake have stronger elytral sculpturing and large, nearly horizontal prosternal processes. The posterior pronotal angles are always acute and usually form a continuous posterior margin to the pronotum, but occasionally the angles are obliquely oriented. This seems to be individual variation and not tied to geography.

Distribution. Fig. 9. This species has the widest distribution of any *Trogloderus*, extending from the Coral Pink sand dunes and surrounding regions north to the Little Sahara Dunes and west to Mono Lake.

 Type material. Holotype. "USA: AZ: Mohave Co. / 6m E Colorado City / Rosy Canyon Road / 1.5m S UT state line / 12-VII-2016 / F.W. & S.A. Skillman", "ARTSYS0007053", bearing red holotype label. Deposited in the ASUHIC, catalog number ASUHIC0101565. Paratypes. 920 specimens from the western regions of the Colorado Plateau around the Coral Pink Sand Dunes, Hurricane, and Toquerville Utah, bearing blue paratype labels (see Supplemental Data S1, Supplemental Data S2 or SCAN for full specimen data).

Other material. 182 specimens from the Northern and Western reaches of this species range.

slightly arcuately converging to apex.

Etymology. This species is named after Frederick W. Skillman, who both collected the holotype and has been a constant help throughout this study. His generous sharing of specimens, knowledge of natural history, and long drives to remote sand dunes are greatly appreciated.

840 841

842

843

Remarks. A broader molecular sampling and increased collections from Nevada localities may eventually find this taxon to be a cryptic species complex. Apparently able to cross boundaries that limit other species of *Trogloderus*, *T. skillmani* may be more adept at dispersing than its congeners.

844 845 846

847

Trogloderus tuberculatus Blaisdell, 1909

- =Trogloderus costatus pappi Kulzer, 1960
- 848 Figures 6A, 7G, 10

849 850

851

852

Diagnosis. This species can be readily identified by the presence of tubercles on the pronotum and the large, subapical tubercle at the terminus of the outer costa on each elytron. The present species can be further separated from the others with tuberculate pronota by the thick, raised ridges demarking the lateral margins and boundary between the pronotal foveae.

853 854 855

856

857

858

859

860

861 862

863

864

865 866

867

868

869 870

871 872 **Redescription.** As genus with the following: Length 10.5–12mm, width 4–4.5mm. Head. Epistoma and from tuberculate throughout, lacking distinct punctures above antennal insertion; frontoclypeal suture forming complete, though gentle, transverse ridge; frontal tubercle covered with smaller tubercles. Thorax. Pronotum with dorsal silhouette appearing somewhat bilobed in anterior view; distinctly tuberculate throughout; lateral margins strongly arcuate, recurved just before posterior angles; posterior angles obliquely acute, small; foveae well demarked laterally by continuous strongly elevated longitudinal ridges; anterior fovea distinct, smooth, separated from posterior fovea by strongly elevated ridge; posterior fovea circular, usually smooth mesally. Propleurae fairly smooth, with dorsal longitudinal row of irregular tubercles running just beneath pronotal margin; often tuberculate on bulge covering procoxae. Prosternal process small, subtriangular, not margined laterally, slightly offset dorsad of prosternum between procoxae. Elytral costae strongly produced, crenulate; intervals with deep punctures, lacking transverse ridges; each elytron with subapical tubercle, formed by terminus of outer elytral carina, often formed by confluence of outer 1–3 costae; elytral suture very weakly produced, much shorter than discal carinae. Abdomen. Ventrites tuberculate throughout; abdominal depression weak, present on ventrites I–II in both sexes, without marginal ridge, usually somewhat smooth in males. Male terminalia. Parameres (Fig. 7G) narrowly triangle, more or less evenly tapering to apex.

873874

875

Variation. The subapical elytral tubercles, unique to this species of *Trogloderus*, are somewhat variable. It is always made up of the thickened terminus of the outer elytral costa and is variably

876	formed by the confluence of any combination of the outer three costae. This seems to be
877	individual variation and not correlated with geography. Specimens from Kelso Dunes (the only
878	confirmed locality where T. tuberculatus is sympatric with another species, T. major) are
879	distinctly smaller than all other examined localities and possess less developed subterminal
880	elytral tubercles.

Distribution. Fig. 10. This species is found in the Mojave Desert, and is generally found around the periphery from the western high desert reaches and in the northern Death Valley region.

Types. The holotype of *T. tuberculatus* Blaisdell, collected from "L.A. County, California," was examined at the USNM. The holotype of *T. costatus pappi* Kulzer, from Lancaster, Mojave Desert, Southern California, was not examined (see remarks below).

Material examined. 41 specimens (see Supplemental Data S1, Supplemental Data S2 or SCAN for full specimen data).

 Remarks. Similar to *T. costatus*, it is remarkable that this species, the least common in natural history collections, was the second species described in the genus. Papp and Pierce (1960) reported this species feeding on stored chicken feed in Lancaster, California. Specimens from this collecting event (the largest known for this species, at least ten individuals) were sent to the Frey museum in Germany (Papp 1961: 35), which became the type series for *Trogloderus costatus pappi* Kulzer (Kulzer 1960: 331). Though the type itself was not examined, seven specimens from Papp's (1961) original series were studied and are all certainly conspecific with *T. tuberculatus* as herein circumscribed. This species was very difficult to recollect, particularly due to lack of suitable habitat. The western Mojave Desert has been largely developed, and after multiple targeted trips to the region only a single, ca. 0.25 acre, dune near California City was found to support a population of this species. Most specimens in natural history collections determined to this species (or subspecies as *T. costatus tuberculatus*) actually belong to other tuberculate species described herein.

- Trogloderus vandykei La Rivers, 1946
- 907 = Trogloderus costatus mayhewi Papp, 1961
- 908 Figures 1, 7H, 10

 Diagnosis. This species can be readily separated from all other *Trogloderus* by the pronotal dorsum being bilobed when viewed from the front. Its pronotum is also punctate and more broadly explanate than any of its congeners. Most similar to and sympatric with *T. major*, the two can be readily separated by the given characters.

Description. As genus with the following: Length 9–11.5mm, width 3.5–4.5mm, Head. 915 Epistoma punctato-tuberculate; frons smooth, mesal region on same plane as clypeus; 916 frontoclypeal suture not forming complete ridge, obsolete at least mesally: frontal tubercle 917 punctate, not very prominent. Thorax. Pronotal dorsum bilobed in anterior view; pronotum 918 919 strongly explanate, punctate, punctured becoming irregular tubercles laterally; lateral margins strongly and evenly arcuate, recurved just before posterior angles; posterior angles obliquely 920 acute, small; foveae bounded by raised lobed on either side, anterior fovea moderately 921 impressed, forming continuous channel with posterior fovea, posterior fovea usually slightly 922 deeper. Propleurae smooth, lacking tubercles throughout, occasionally with granulate tubercles 923 924 ventrally around procoxae. Prosternal process horizontal, prominent, strongly margined, especially in males, forming evenly tapering triangle behind posterior procoxal margin. Elytral 925 costae moderately produced, intervals relatively smooth, bering two rows of punctures, lacking 926 any transverse ridges; elytral suture not at all elevated, situated in concavity formed by inner 927 928 discal costae. Abdomen. Abdominal depression very strong in both sexes, exceedingly so in males, visible on ventrites I–III, demarked by strongly punctate lateral ridges which curve mesad 929 and form distinct posterior margin on ventrite III. Male terminalia. Parameres (Fig. 7H) more or 930 931 less arcuately converging from base to apex, apical 1/2 subparallel.

932 933

934

935

Variation. This species exhibits consistent morphology throughout its range. Occasionally smaller specimens are observed in which the pronotum appears less explanate, but this form seems sporadic, not tied to geography, and is likely a result of water or nutrient availability for the larva.

936 937

938 **Distribution.** Fig. 10. Eastern and central Mojave Desert, especially abundant in dunes along the Colorado River.

940

Types. The holotype of *T. costatus vandykei* La Rivers, from Baker, San Bernardino County,
 California, was examined at the CASC. The holotype of *T. costatus mayhewi* Papp, from Dale
 Dry Lake, San Bernardino County, California, was examined at the LACM.

944 945

Material examined. 327 specimens (see Supplemental Data S1, Supplemental Data S2 or SCAN for full specimen data).

946 947

948 **Remarks.** This species ranges the furthest south of any *Trogloderus* members, having been collected just north of Yuma, Arizona. *Trogloderus vandykei* has never been collected from the Algodones or other sand dunes in the Colorado Desert (Johnston et al. 2018). This is perhaps simply because they have not yet dispersed to these dunes. While there may be some other competitive or environmental factors at play, both *T. vandykei* and other congeners persist very well in regions of seemingly similar intense annual heat and dry conditions (*e.g.* Death Valley, Wiley's Well, Bouse Dunes, etc.).

Peerl reviewing PDF | (2019:06:38531:0:1:NEW 20 Jun 2019)

956	Irogloderus verpus Johnston, New Species
957	urn:lsid:zoobank.org:act:E413CFD5-4634-4321-8D85-03F9C8D85FEE
958	Figures 6B, 7I, 10
959	
960	Diagnosis. This species can be recognized by the evenly tuberculate pronotum, lack of subapical
961	elytral tubercles, and the male parameres being strongly constricted basally. It is most similar to
962	T. skillmani, which can be separated by the male terminalia (parameres not constricted in T.
963	skillmani).
964	
965	Description. As genus with the following: Length 9.5–11.5mm, width 3.5–4.5mm. Head.
966	Epistoma and frons evenly tuberculate, tubercles often irregularly shaped; frontoclypeal suture
967	not forming complete transverse ridge, mesal region of frons more or less on same plane as
968	clypeus. Thorax. Pronotum evenly convex dorsally, occasionally with lateral regions slightly
969	flattened posteriorly; lateral marginsfairly evenly arcuate, recurved just before posterior angles;
970	posterior angles small, acute; posterior margin usually straight, mesal region forming continuous
971	line to terminus of posterior angle. Propleurae densely and evenly tuberculate throughout.
972	Prosternal process acute, usually small, offset dorsad from plane of prosternum between
973	procoxae. Elytral costae moderately to strongly developed, intervals variable from smooth to
974	moderately tuberculate; elytral suture moderately to strongly elevated in posterior ½, usually
975	distinctly shorter than discal costae. Abdomen. Abdominal depression absent in both sexes. Male
976	Terminalia. Parameres (Fig. 7I) strongly constricted near basal 1/6, then narrowly and evenly
977	tapered to apex.
978	
979	Variation. This species is fairly consistent across its range, but presents some variation in the
980	elytral sculpturing. In some specimens the intervals between discal costae are noticeably
981	tuberculate, while most are smooth. The elytral suture is usually less strongly elevated than the
982	discal costae, but in some New Mexico populations (e.g. near Farmington), it is nearly the same
983	height as the discal costae. Specimens from the sand dunes near Moenkopi, where they are
984	sympatric with <i>T. warneri</i> , are distinctly smaller and less roughly sculptured than anywhere else
985	in its range.
986	
987	Distribution. Fig. 10. This species is broadly distributed throughout the Colorado Plateau, from
988	Moenkopi, Arizona east to central New Mexico and north to the Killpecker Dunes in Wyoming.
989	
990	Type material. Holotype. "USA: UT: Grand Co. / 22m NW Moab, Dubinky / Well Rd. @
991	Dubinky Well / 25-VI-2016 / Skillman & Johnston", "ARTSYS0007055", bearing red holotype
992	label. Deposited in the ASUHIC, catalog number ASUHIC0101566. Paratypes. 185 specimens
993	from throughout the species range see Supplemental Data S1, Supplemental Data S2 or SCAN
994	for full specimen data).

995	
996	Etymology. This species name is given for the strongly constricted male parameres, which look
997	as though a portion has been cut away from the fairly regularly triangular shape found in the rest

Remarks. The remarkably small specimens from near Moenkopi may be an example of competition forcing allometry. Indeed, the specimens of *T. warneri* from Moenkopi are a very similar size to specimens of T. verpus from the rest of its range.

Trogloderus warneri Johnston, New Species

of the genus (Brown 1956).

- 1005 urn:lsid:zoobank.org:act:9D1E0BF2-F309-4A98-A64C-5708CFE864D0
- 1006 Figures 6C, 7J, 10

Diagnosis. This species can be recognized by the combination of a tuberculate pronotum and large, inflated posterior pronotal angles. The species can be further recognized by the depressed lateral regions of the pronotum lacking tubercles, the lack of an abdominal impression, and the lack of subapical elytral tubercles.

Description. As genus with the following: Length 9–11mm, width 3.5–5mm. Head. Epistoma and frons tuberculate throughout, frontoclypeal suture not developed as transverse ridge, mesal region of frons on same plane as clypeus. Thorax. Pronotum relatively evenly conxex dorsally; heavily tuberculate; disc laterally depressed, usually lacking tubercles, especially posteriorly; lateral margins arcuate, more strongly narrowed posteriorly, recurved just before posterior angles; posterior angles large, obliquely angles, usually well inflated, sometimes broadly acute. Propleurae evenly tuberculate, tubercles fairly large and rounded. Prosternal process short, triangular, offset dorsad from plane of prosternum between procoxae. Elytral costae well developed, intervals with deep punctures, sometimes giving appearance of short transverse ridges; elytral suture weakly to moderately produced in posterior half, always shorter than discal costae. Abdomen. Ventrites tuberculate; without abdominal depression, ventrite I sometimes smooth mesally in males. Male terminalia. Parameres (Fig. 7J) subparallel in basal 1/5, then arcuately converging to apex.

Variation. The pronotum, while diagnostic for this species, is somewhat variable in the specimens examined. The typical form has very strongly inflated posterior angles and the disc distinctly depressed and lacking tubercles laterally. In some specimens the posterior angles are less inflated and the depressed lateral region is much smaller, tending to be restricted to the posterior third. However, these reduced characters were distinctly discernable in all specimens studied, reliably separating them from other Trogloderus species.

1046

1051 1052

1053 1054

1068

- Distribution. Fig. 10. Distributed in the western Colorado Plateau, the species seems bounded
 on the west by the Kaibab Plateau, and are distributed as far east as Moenkopi, Arizona.
- 1037 **Type material.** Holotype. "USA:AZ:Coconino Co. / Hwy. 264 2.2mi SE jct / US160;
- 1038 36°05'57"N, / 111°12'03"W; dunes at / night; April 20, 2012; W.B. Warner, J.P. Gruber".
- "ARTSYS0007054", bearing red holotype label. Deposited in the ASUHIC, catalog number
- 1040 ASUHIC0101563. Paratypes. 237 specimens from across the species range (see Supplemental
- 1041 Data S1, Supplemental Data S2 or SCAN for full specimen data).

Etymology. I am honored and thankful to name this species for William B. Warner, an ardent collector, coleopterist, and natural historian. His assistance and encouragement throughout this project in both the field and the lab are greatly appreciated.

1047 **Remarks.** This species has a relatively small geographic range, yet extends across the eastern reaches of the Grand Canyon. This is perhaps the reason for the observed moderate genetic diversity within the species. Most specimens in natural history collections have been determined as *T. tuberculatus*.

Results

Phylogenetic reconstruction

1055 Both maximum likelihood and Bayesian analyses converged on a single topology with 1056 moderately strong support throughout (Fig. 11). Within the outgroups, the genus *Eleodes* Eschscholtz was notably recovered as paraphyletic with respect to the genera *Neobaphion* 1057 1058 Blaisdell, *Embaphion* Say, *Lariversius* Blaisdell, and *Trogloderus*. This raises broader questions regarding the naturalness of the current classification of the tribal concept as a whole (Bousquet 1059 1060 et al. 2018); however, the sampling for this study is not sufficient to justify more substantive 1061 classificatory changes. Trogloderus was recovered as monophyletic, and is further subdivided into two strongly supported clades – i.e., (1) the "tuberculate-pronotum clade" containing all 1062 species that bear distinct tubercles on the pronotal disc, and (2) the "reticulate-pronotum clade" 1063 1064 containing all species whose pronotal discs have deep punctures that make the intervals appear to 1065 be elevated into reticulate sculpturing. All *Trogloderus* species as circumscribed above were 1066 similarly found to be monophyletic with posterior probabilities of 1 and bootstrap support of 95 1067 or higher.

The *Trogloderus* tuberculate-pronotum clade contains four species and is well resolved (Fig. 11), with internal nodes between species all having posterior probabilities greater than 0.95 and bootstrap values above 85. The relationships between these species imply an east-to-west diversification pattern. The easternmost species, *T. verpus* (Fig. 10) known from the Colorado Plateau, is recovered as sister to a clade containing the remaining three species. The latter clade

shows the same trend with its easternmost species, *T. warneri* (Fig. 10) distributed east of the Kaibab Plateau, sister to the species *T. skillmani* (Fig. 9) and T. *tuberculatus* (Fig. 10), which are distributed west of the Kaibab Plateau.

1077 1078

1079

1080

1081 1082

1083

1084

1085 1086

1087

1088 1089

1090 1091 The *Trogloderus* reticulate-pronotum clade contains six species (Fig. 11) with notably western distributions, ranging from the Mojave Desert to the Great Basin. The relationships between these species are less well resolved than for those of the tuberculate-pronotum clade, though each species is supported as monophyletic with posterior probabilities of 1 and bootstrap support values of 95 or higher. While analyses converged on a single topology, the underlying data do not give unequivocal support to the relationships of the early-diverging species. *Trogloderus arcanus*, *T. vandykei*, and *T. nevadus* are inferred to have diverged before a clade containing the other three reticulate-pronotum species. However, these branches all have posterior probabilities lower than .95 and bootstrap support values below 75. The clade consisting of *T. kandai*, *T. costatus*, and *T. major* is strongly supported with a posterior probability of 1 and a bootstrap support value of 83. The reticulate-pronotum clade seems to indicate a latitudinal pattern to diversification. Neither of the two sympatric pairs of species in this clade, the southern *T. vandykei* with *T. major* and the northern *T. costatus* with T. *nevadus*, form monophyletic groups. This supports the notion that multiple vicariant or dispersal events between these regions were involved in the diversification of this lineage.

109210931094

1095

1096

1097

Trogloderus arcanus and *T. nevadus* exhibit longer branch lengths between sampled populations within the species than any others sampled for this study (Fig. 11). This may simply be due to limited sampling, but further molecular and morphological investigations from the undersampled regions of Nevada may provide evidence for the two herein circumscribed species to represent more complex taxonomic groups.

1098 1099 1100

Diversification analyses

- 1101 Trogloderus is here inferred to be relatively young, with the most recent common ancestor

 (MPCA) for the gapus occurring during the late Miceone or earliest Pice 12)
- 1102 (MRCA) for the genus occurring during the late Miocene or earliest Pioce Fig. 12).
- 1103 Furthermore, most speciation events are inferred to have taken place during the Pleistocene.
- Based on these inferences, it seems evident that La River's (1946) hypothesis of an ancient
- lineage approaching extinction can be refuted for *Trogloderus*. Instead, *Trogloderus* seems to
- 1106 postdate the Neogene Uplift, having originated and diversified in conjunction with the recent
- desert formations of western North America (Wilson and Pitts 2010).

- Diversification analyses for *Trogloderus* using BEAST (Fig. 12A–B) inferred comparatively older dates than RelTime (Fig. 12C–D) but are not particularly reliable, having failed to
- 1111 converge after 500 million generations. The MRCA of *Trogloderus* was dated to 10.27 mya, and
- ages for both calibrated nodes were older than expected, namely 4.03 mya for the Inyo-White
- 1113 mountains calibration, with the prior mean set at 2.5mya, and 1 mya for the Grand Canyon

1114 calibration, with a prior mean set at .83mya. The estimated sample sizes for mutation rates did 1115 not exceed 10 and those for calibration times and tree height were well under 100. Additional 1116 analyses under different locus partition and model schemes and modified taxon inclusion 1117 similarly failed to converge. This may be due either to limitations with the underlying molecular 1118 dataset, or because the coalescent-based priors may be inappropriate for this class of data. The 1119 results using the Yule model are shown in Fig. 12A–B, displaying the median node age and 95% 1120 highest posterior density respectively. Due to this lack of convergence, the timetree from 1121 RelTime was used for subsequent historical biogeographic inference.

1122

RelTime analyses infer *Trogloderus* to have begun diversifying in the earliest Pliocene with most current species arising during the mid-Pleistocene. Divergence estimates from RelTime were consistently later than those inferred from BEAST, with the MRCA of *Trogloderus* dated to 5.2 mya, and the dates of 2.5 mya and 0.56 mya for the calibration clades split by the Inyo-White mountains and the Grand Canyon respectively. Median node ages and 95% confidence intervals inferred from RelTime are shown in Fig. 12C-D respectively.

1129

1130 The Sierra Nevada mountains offer one line of geological evidence for the age of *Trogloderus* to be closer to 5 my as the RelTime analysis infers. The timing of the uplift of the Sierra Nevada 1131 1132 Mountains remains contested in the geological literature (Wilson and Pitts 2010), but significant 1133 evidence suggests that the majority of the uplift occurred between 5-8 mya and was a primary force in creating the Great Basin and Mojave deserts (Jones et al. 2004, Wilson and Pitts 2010). 1134 1135 Were Trogloderus older than this uplift event, we might expect them to be present outside of the 1136 intermountain region. Indeed, members of the genus are able to endure cold winters from central 1137 Wyoming as well as the extreme heat from Death Valley and surrounding environs. Beyond 1138 living in sandy substrates, there are no other clear environmental limits to their distribution.

1139

1140 The MRCA of all included Amphidorini taxa with was dated to 7.97mya with a 95% confidence 1141 interval of 1.5–14.5 mya using RelTime. This date range, though the first inferred for this fossil-1142 lacking tribe, is younger than expected based on phylogenetic work at the family level. The new-1143 world Amphidorini appear to be sister the old-world tribe Blaptini Leach, 1815 (Kanda 2017). 1144 The latter was estimated by Kergoat et al. (2014) to have an origin closer to 55mya, but no members of Amphidorini were included in that study. The young age inferred here for the tribe 1145 may again be a symptom of low species-level taxon sampling. Hypotheses about the origin and 1146 1147 diversification of Amphidorini will have to wait for future studies with a broader scope.

1148 1149

Historical biogeographic estimation

The MRCA of *Trogloderus* was inferred to inhabit the Colorado Plateau (Fig. 13), where the majority of the tuberculate-pronotum clade still resides. The ancestors of the reticulate-pronotum clade are inferred to have dispersed into the Lahonton Trough, and from there radiated into the Mojave Desert, Great Basin, and Owens Valley. Three separate radiations into the Mojave

1154	Desert are inferred for the three species sympatric there. The insights given by this
1155	biogeographic estimation for specific subregions are discussed in detail below.

Historical biogeographic estimation in BioGeoBEARS supports the use of a model incorporating founder-event jump dispersal (Matzke 2014). This process is not only important for taxa distributed across islands (Matzke 2014, Zhang et al. 2017), but also for taxa living on sand dunes or other isolated habitats which can functionally act the same as islands (Van Dam and Matzke 2016). The DEC model resulted in a most likely estimation with a log likelihood score of -46.5. The DEC+J model, which employs a single extra parameter for jump dispersal, produced an estimation with a log likelihood of -35.77. By performing a likelihood ratio test (Huelsenbeck and Crandall 1997), the DEC+J model provides a significantly better fit to the data than the DEC model at a P-value of 1e-5.

Discussion of the biogeography of the Intermountain Region

The historical biogeography of *Trogloderus* supports the distinction of the Lahontan Trough as a unique element of the Intermountain Region, and is the first to provide molecular and historical biogeographic support for the area to play a part in the migration of clades throughout the intermountain region. The appraisal of the biogeography of the Intermountain Region by Reveal (1979) was a landmark study based largely on floristic distributions and extensive field observations. A comprehensive biogeographic review of the region has not been published since. One major hypothesis put forth in this work is that the Lahontan Trough acts as a migration route into and out of the region. Following the establishment of the Lahontan Trough as a biogeographic entity by Reveal (1979), multiple studies have found populations from this area to be distinct from populations of the same species from the Mojave and Great Basin deserts (Britten and Rust 1996, Hafner et al. 2006), and at least one psammophilic plant is unique to the area (Pavlik 1989). Together, these studies suggest that the Lahontan Trough is likely to play an important role in the evolutionary history of any sand-dune restricted or dispersal-limited taxa in the region.

The newly described *Trogloderus kandai* is the first sand-dune species known to be restricted to the southern Owens Valley. The region has been relatively well studied for changes in plant communities (Koehler and Anderson 1995, Elmore et al. 2003) and fish conservation (Galicia et al. 2015). However, the sand dunes, which are comprised of particles originating from the surrounding Sierra Nevada and Coso mountains (Lancaster et al. 2015), have not had any beetle species reported only from them (Andrews et al. 1979). Whether *T. kandai* is truly the only species restricted to this habitat or if there are others waiting to be described, additional faunal

surveys of the sand dunes around the dry Owens Lake should be completed to understand what further importance this area may have for Intermountain biodiversity.

The three sympatric species of *Trogloderus* with independent dispersal events into the Mojave Desert are consistent with the inference of an eastern origin for the genus with a continual movement westward. The relatively recent timing for incursions into the Mojave Desert is also consistent with the fact that *Trogloderus* does not range south into the dunes of the Colorado and Sonoran deserts (Aalbu and Smith 2014, Johnston et al. 2018). The relationships of the dune systems within the Mojave Desert were subdivided and well-tested by Van Dam and Matzke (2016), but are here treated as a single unit. The barriers between these sand systems within this area seem to not be a major limiting factor for *Trogloderus* as *T. tuberculatus* and *T. major* are fairly evenly spread throughout.

The predicted footprint of the prehistoric lakes making up the Bouse Embayement is almost identical to the distribution of *T. vandykei*. This region, spanning along the lower Colorado River between Arizona and California (Wilson and Pitts 2010), was covered by three large prehistoric lakes that ran from just north of present-day Bullhead City, Arizona south past Blythe, Arizona. The drainage was bounded along the south by the Chocolate Mountains and extended west into the Bristol basin (Spencer et al. 2013). These lakes likely appeared around 4.9 mya and drained relatively shortly thereafter when the Colorado River eventually connected to the Gulf of California (Spencer et al. 2013). It is very likely that the sand derived from these lakes and the geological boundaries that formed their drainage basins have shaped the diversification and distribution of *T. vandykei*. The lakes are also implicated in genetically structuring the populations of a desert scorpion (Graham et al. 2017). The Bouse Embayment is further supported as a separate biogeographic entity based on the distribution of other psammophilic Tenebrionidae. Though the Algodones dunes are in extremely close proximity to the southern edge of the Bouse Formation, not only does *Trogloderus* not cross over the Chocolate Mountains and occur there, but multiple species restricted to the Algodones and Gran Desierto de Altar similarly do not extend north into the Bouse Embayment (Johnston et al. 2018).

Within the Colorado Plateau, three subregions are suggested by *Trogloderus* distributions. The distribution of the eastern *T. verpus* is somewhat surprising in that no previous biogeographic hypotheses were found to explain why it does not range as far west as the Vermillion Cliffs. One explanation is competitive exclusion within the genus, and this is somewhat supported by the populations near Moenkopi, Arizona. Both *T. verpus* and *T. warneri* occur on these dunes, and all studied specimens of *T. verpus* were significantly smaller than those of *T. warneri*. However, throughout the rest of its range, *T. verpus* has roughly the same body size as *T. warneri*. Another possible explanation is that the Kaiparowitz Formation around Grand Staircase-Escalante National Monument acts as a barrier between sand systems from the Kaibito and Moenkopi plateaus of north-central Arizona and those from the northern reaches of the greater Colorado

1233	Plateau. The Kaiparowitz Formation, along with the Wasatch Mountains, formed the western
1234	boundary of the western interior seaway during the Cretaceous (Hettinger et al. 1996, Roberts
1235	2007) and is implicated in the speciation of large dinosaurs at the time (Sampson et al. 2010). No
1236	studies of modern taxa that study this boundary were found. Even though the Colorado River and
1237	its tributaries have carved large canyons through this formation, it may still be a significant
1238	barrier between sand-dune restricted taxa. The third subregion is separated from the others by the
1239	Kaibab Plateau. This tall formation separates <i>T. warneri</i> from its eastern <i>T. skillmani</i> and <i>T.</i>
1240	tuberculatus. The effect of the Kaibab Plateau on dune-dwelling taxa is apparently similarly
1241	unstudied.
1242	
1243	The revision and historical biogeography of <i>Trogloderus</i> help to bring the biogeographic trends
1244	of the Intermountain Region into focus. The cohesive distributional patterns of <i>Trogloderus</i>
1245	species build upon the foundational work of Reveal (1979) and highlight regions that should be
1246	critically evaluated during future phylogenetic, taxonomic, and biogeographic studies. It is hoped
1247	that continued research on the under-studied biodiversity of the Intermountain Region will
1248 1249	continue to bring clarity to the relationships between sand-dune systems of western North America.
1249	Afficiaca.
	A also avela discono ante
1251	Acknowledgements
1252	The author thanks Aaron Smith and Kojun Kanda for their sharing of tenebrionid
1253	knowledge and assistance with molecular analyses. Nico Franz supported this
1254	study from conception to completion and offered valuable feedback on the
1255	manuscript. William Warner and Frederick Skillman are gratefully acknowledged
1256	for their support during field work and along with many curators and managers of
1257	natural history collections provided the necessary specimens for this study.
1258	
1259	References
1260	
1261	Aalbu RL, Triplehorn CA, Campbell JM, Brown KW, Somerby RE, Thomas DB (2002) 106.
1262	Tenebrionidae Latreille 1802. In: Arnett RH, Thomas MC, Skelley PE, Frank JH (Eds)
1263 1264	American beetles. Volume 2. Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, Boca Raton, 463–509
1265	1 1633, Doca Natori, 403–303
1266	Aalbu RL, Smith AD (2014) The Tenebrionidae of California: A time sensitive snapshot
1267	assessment. ZooKeys 415: 9–22. https://doi.org/10.3897/zookeys.415.6523
1268	
1269	Aalbu RL, Smith AD, Triplehorn CA (2012) A revision of the <i>Eleodes</i> (subgenus <i>Caverneleodes</i>)
1270 1271	with new species and notes on cave breeding <i>Eleodes</i> (Tenebrionidae: Amphidorini). Annales Zoologici (Warszawa) 62: 199–216. https://doi.org/10.3161/000345412X652729
1271	Annaics 200109101 (Waiszawa) 02. 133-210. https://doi.org/10.3101/000343412/032/29
-· -	

1273 1274 1275	dunes. California Department of Food and Agriculture, Sacramento, California.
1276 1277 1277 1278 1279	Bachman SB (1979) Pliocene-Pleistocene break-up of the Sierra Nevada-White-Inyo Mountains block and formation of Owens Valley. Geology 6: 461–463. https://doi.org/10.1130/0091-7613(1978)6<461:PBOTSN>2.0.CO;2
1280 1281 1282 1283	Blaisdell FE (1909) A monographic revision of the Coleoptera belonging to the tenebrionide tribe Eleodiini inhabiting the United States, Lower California, and adjacent islands. Bulletin of the United States Museum No.63. vi + 524 pp. (+ 13 pls). https://doi.org/10.5962/bhl.title.48543
1284 1285 1286 1287	Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CA, Schmitt M, Slipinski SA, Smith AB (2011) Family-group names in Coleoptera (Insecta). ZooKeys 88: 1–972. https://doi.org/10.3897/zookeys.88.807
1288 1289 1290 1291	Bouchard P, Lawrence JF, Davies A, Newton AF (2005) Synoptic classification of the world Tenebrionidae (Insecta: Coleoptera) with a review of family-group names. Annales Zoologici (Warszawa) 55: 499–530.
1292 1293 1294 1295 1296	Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
1297 1298 1299 1300	Bousquet Y, Thomas DB, Bouchard P, Smith AD, Aalbu RL, Johnston MA, Steiner Jr. WE (2018) Catalogue of Tenebrionidae (Coleoptera) of North America. ZooKeys 728: 1–455. https://doi.org/10.3897/zookeys.728.20602
1301 1302 1303 1304	Britten HB, Rust RW (1996) Population structure of a sand dune-obligate beetle, <i>Eusattus muricatus</i> , and its implications for dune management. Conservsation Biology 10(2): 647–652. https://doi.org/10.1046/j.1523-1739.1996.10020647.x
1305 1306 1307	Brown RW (1956) Composition of scientific words. Smithsonian Books, Washington, D.C. 882pp. ISBN 1-56098-848-7.
1308 1309 1310 1311	Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46(5): 419–437.
1312 1313 1314	Doyen JT (1966) The skeletal anatomy of <i>Tenebrio molitor</i> (Coleoptera: Tenebrionidae). Miscellaneous Publications of the Entomological Society of America 5(3):103–150.

1315 1316 1317	Doyen JT, Lawrence JF (1979) Relationships and higher classification of some Tenebrionidae and Zopheridae (Coleoptera). Systematic Entomology 4: 333–377. https://doi.org/10.1111/j.1365-3113.1979.tb00619.x
1318 1319 1320 1321	Eimer T (1898) On orthogenesis: and the impotence of natural selection in species formation. [Translated by Thomas McCormack] 56 pages. The Open Court Publishing Company, Chicago, USA.
1322 1323	Elmore AJ, Mustard JF, Manning SJ (2003) Regional patterns of plant community response to
1324 1325 1326	changes in water: Owens Valley, California. Ecological Applications 13(2): 443–460. https://doi.org/10.1890/1051-0761(2003)013[0443:RPOPCR]2.0.CO;2
1327 1328 1329 1330 1331	Galicia D, Leunda PM, Miranda R, Madoz J, Parmenter S (2015) Morphometric contributions to the detection of introgressive hybridization in the endangered owens Tui Chub in California. Transactions of the American Fisheries Society 144(2): 431–442. https://doi.org/10.1080/00028487.2014.996669
1332 1333 1334 1335 1336	Graham MR, Wood DA, Henault JA, Valois ZJ, Cushing PE (2017) Ancient lakes, Pleistocene climates and river avulsions structure the phylogeography of a large but little-known rock scorpion from the Mojave and Sonoran deserts. Biological Journal of the Linnean Society 122(1): 133–146. https://doi.org/10.1093/biolinnean/blx058
1337 1338 1339	Grehan JR, Ainsworth R (1985) Orthogenesis and evolution. Systematic Zoology 34(2): 174–192.
1340 1341 1342 1343	Gries C, Gilbert EE, Franz NM (2014) Symbiota – A virtual platform for creating voucher-based biodiversity information communities. Biodiversity Data Journal 2: e1114. https://doi.org/10.3897/bdj.2.e1114
1344 1345 1346 1347	Hafner JC, Reddington E, Craig MT (2006) Kangaroo mice (<i>Microdipodops megacephalus</i>) of the Mono Basin: Phylogeography of a peripheral isolate. Journal of Mammalogy 87(6): 1204–1217. https://doi.org/10.1644/06-MAMM-A-067R1.1
1348 1349 1350 1351	Hettinger RD, Roberts LNR, Biewick LRH, Kirschbaum MA (1996) Preliminary investigations of the distribution and resources of coal in the Kaiparowits Plateau, southern Utah. US Geological Survey Open-File Report, 96–539.
1352 1353 1354 1355	Huelsenbeck JP, Crandall KA (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics 28: 437–466. https://doi.org/10.1146/annurev.ecolsys.28.1.437
1356 1357 1358	ICZN (1999) International Code of Zoological Nomenclature, Fourth Edition. International Trust for Zoological Nomenclature, c/o The Natural History Museum, London.

1369 1360 1361	(Coleoptera: Tenebrionidae), with notes on the tribal classification. Part 1. Annales Zoologici 51(3): 351–390.
1362	D (C : ' : M (2040) T
1363 1364	Iwan D, Kamiński MJ (2016) Toward a natural classification of opatrine darkling beetles: comparative study of female terminalia. Zoomorphology 135(4): 453–485.
1365	https://doi.org/10.1007/s00435-016-0328-5
1366	Titips://doi.org/10.1007/300400-010-0020-0
1367	Johnston MA (2015) A checklist and new species of <i>Eleodes</i> Eschscholtz (Coleoptera:
1368	Tenebrionidae) pertaining to the Subgenus <i>Promus</i> Leconte, with a key to United States
1369	species. The Coleopterists Bulletin 69: 11–19. https://doi.org/10.1649/0010-065X-69.1.11
1370	
1371	Johnston MA (2016) Redefinition of the <i>Eleodes</i> Eschscholtz subgenera <i>Tricheleodes</i> Blaisdell
1372	and Pseudeleodes Blaisdell, with the description of a new species (Coleoptera:
1373	Tenebrionidae). Annales Zoologici (Warszawa) 66(4): 665–679.
1374	https://doi.org/10.3161/00034541ANZ2016.66.4.018
1375	
1376	Johnston M, Aalbu R, Franz N (2018) An updated checklist of the Tenebrionidae sec. Bousquet
1377	et al. 2018 of the Algodones Dunes of California, with comments on checklist data
1378	practices. Biodiversity Data Journal 6: e24927. https://doi.org/10.3897/BDJ.6.e24927
1379	
1380	Johnston MA, Fleming D, Franz N, Smith A (2015) Amphidorini Leconte (Coleoptera:
1381	Tenebrionidae) of Arizona: Keys and species accounts. The Coleopterists Bulletin 69: 27–
1382 1383	54. https://doi.org/10.1649/0010-065x-69.mo4.27
1384	Jones CH, Farmer GL, Unruh J (2004) Tectonics of Pliocene removal of lithosphere of the
1385	Sierra Nevada, California. Geological Society of America Bulletin 116(11-12): 1408–1422.
1386	https://doi.org/10.1130/B25397.1
1387	
1388	Kamiński MJ, Kanda K, Lumen R, Smith AD, Iwan D (2018) Molecular phylogeny of Pedinini
1389	(Coleoptera: Tenebrionidae) and its implications for higher-level classification. Zoological
1390	Journal of the Linnean Society zly033. https://doi.org/10.1093/zoolinnean/zly033
1391	
1392	Kanda K (2017) Phylogenetic studies in Tenebrionidae (Coleoptera) and related families. Ph. D
1393	thesis, Oregon State University, 265 pp.
1394	https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qj72pd34k
1395	
1396	Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7:
1397	Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–
1398	780. http://doi.org/10.1093/molbev/mst010
1399	Korgoot C.I. Doughard D. Clamana Al. Abbata II. Jawadan II. Jabbata Zabab D. Carrera C.
1400 1401	Kergoat GJ, Bouchard P, Clamens AL, Abbate JL, Jourdan H, Jabbour-Zahab R, Genson G, Soldati L, Condamine FL (2014) Cretaceous environmental changes let to high extinction
1401	Soluati L, Condamine FL (2014) Cretaceous environmental changes let to high extinction

1402 1403 1404	rates in a hyperdiverse beetle family. BMC Evolutionary Biology 14(1): 220. https://doi.org/10.1186/s12862-014-0220-1
1405 1406 1407 1408	Koehler PA, Anderson RS (1995) Thirty thousand years of vegetation changes in the Alabama Hills, Owens Valley, California. Quaternary Research 43(2): 238–248. https://doi.org/10.1006/qres.1995.1024
1409 1410 1411	Kulzer H (1960) Einige neue Tenebrioniden (Col.) (20. Beitrag zur Kenntnis der Tenebrioniden) Entomologische Arbeiten aus dem Museum G. Frey 11: 304–317.
1412 1413 1414 1415	Kumar S, Stecher G, Tamura K (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874. https://doi.org/10.1093/molbev/msw054
1416 1417 1418 1419	Lancaster N, Baker S, Bacon S, McCarley-Holder G (2015) Owens Lake dune fields: Composition, sources of sand, and transport pathways. CATENA 134:41–49. https://doi.org/10.1016/j.catena.2015.01.003
1420 1421 1422 1423	Lanfear R, Calcott B, Ho SY, Guindon S (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020
1424 1425 1426 1427 1428	Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(1): 772–773. https://doi.org/10.1093/molbev/msw260
1429 1430 1431 1432	La Rivers I (1943) A new <i>Trogloderus</i> from Nevada, with a key to the known species (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America 35 [1942]: 435–440. https://doi.org/10.1093/aesa/35.4.435
1433 1434 1435	La Rivers I (1946) On the genus <i>Trogloderus</i> LeConte (Coleoptera: Tenebrionidae). Entomological News 57: 35–44.
1436 1437	LeConte JL (1879) New Coleoptera. The North American Entomologist 1[1879–80]: 1–5.
1438 1439 1440 1441 1442	Lee J, Stockli DF, Owen LA, Finkel RC, Kislitsyn R (2009) Exhumation of the Inyo Mountains, California: Implications for the timing of extension along the western boundary of the Basin and Range Province and distribution of dextral fault slip rates across the eastern California shear zone. Tectonics 28 TC1001 https://doi.org/10.1029/2008TC002295
1443 1444 1445	Macey JR (1986) The biogeography of a herpetofaunal transition between the Great Basin and Mojave deserts. In Hall CA, Young DJ (eds.), Natural history of the White-Inyo Range, eastern California and western Nevada, and high altitude physiology, pg. 119–128.

1446 1447	University of California White Mountain Research Station Symposium, August 23-25, 1985, Bishop, Calif. Vol. 1.
1448 1449 1450 1451	Maddison DR (2008) Systematics of the North American beetle subgenus Pseudoperyphus (Coleoptera: Carabidae: Bembidion) based upon morphological, chromosomal, and molecular data. Annals of Carnegie Museum 77: 147–193. https://doi.org/10.2992/0097-
1452 1453	4463-77.1.147
1454 1455 1456	Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3.51 http://www.mesquiteproject.org.
1457 1458 1459 1460	Matzke, N.J. (2013) Probabilistic historical biogeography:new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5: 242–248. https://doi.org/10.21425/F5FBG19694
1461 1462 1463 1464	Matzke NJ (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63(6): 951–970. https://doi.org/10.1093/sysbio/syu056
1465 1466 1467	Mayr E (1982) The growth of biological thought: Diversity, evolution, and inheritance. The Belknap Press of Harvard University Press, Cambridge, Massachusetts.
1468 1469 1470 1471	McNee WR, Wood DL, Storer AJ (2000) Pre-emergence feeding in bark beetles (Coleoptera: Scolytidae). Environmental Entomology 29(3): 495–501. https://doi.org/10.1603/0046-225X-29.3.495
1472 1473 1474 1475	Papp CS (1961) A new <i>Trogloderus</i> from the Aeolian saline dunes of southern California (Notes on North American Coleoptera, No. 15). Bulletin of the Southern California Academy of Sciences 60: 32–36.
1476 1477 1478 1479	Papp CD, Pierce HD (1960) Ecological remarks on some tenebrionids connected with stored animal food in the Mojave Desert, California. Journal of the Kansas Entomological Society 33: 154–156.
1480 1481 1482	Pavlik BM (1989) Phytogeography of sand dunes in the Great Basin and Mojave deserts. Journal of Biogeography 16(3): 227–238. https://doi.org/10.2307/2845259
1483 1484 1485 1486	Polyak V, Hill C, Asmerom Y (2008) Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science 319: 1377–1380. https://doi.org/10.1126/science.1151248
1487 1488 1489	R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

1490 1491 1492 1493	Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/syy032
1494 1495 1496	Reveal JL (1979) Biogeography of the Intermountain Region: A speculative appraisal. Mentzelia 4: 1–92.
1497 1498 1499 1500	Roberts EM (2007) Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sedimentary Geology 197(3-4): 207–233. https://doi.org/10.1016/j.sedgeo.2006.10.001
1501 1502 1503	Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
1504 1505 1506 1507	Sampson SD, Loewen MA, Farke AA, Roberts EM, Forster CA, Smith JA, Titus AL (2010). New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS One, 5(9), e12292. https://doi.org/10.1371/journal.pone.0012292
1508 1509 1510	Shreve F (1942) The desert vegetation of North America. Botanical Review 8 (4): 195–246. https://doi.org/10.1007/BF02882228
1511 1512 1513 1514 1515	Simon C, Frati F, Beckenback A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87(6): 651–701. https://doi.org/10.1093/aesa/87.6.651
1516 1517 1518 1519	Somerby RE (1972) Systematics of <i>Eleodes</i> (<i>Blapylis</i>) with a revision of the caseyi group using taximetric methods (Coleoptera: Tenebrionidae). Ph.D. Thesis, University of California, Riverside. xxv + 441 pp.
1520 1521 1522 1523 1524	Spencer JE, Patchett PJ, Pearthree PA, House PK, Sarna-Wojcicki AM, Wan E, Roskowski JA, Faulds JE (2013) Review and analysis of the age and origin of the Pliocene Bouse Formation, lower Colorado River Valley, southwestern USA. Geosphere 9(3):444–459. https://doi.org/10.1130/GES00896.1
1525 1526 1527 1528	Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033
1529 1530 1531 1532	Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012). Estimating Divergence Times in Large Molecular Phylogenies. Proceedings of the National Academy of Sciences 109:19333–19338. https://doi.org/10.1073/pnas.1213199109

1533 1534	Tanner VM, Packham WA (1965) Tenebrionidae beetles of the Nevada test site. Brigham Young University Science Bulletin (Biological Series) 6(1): 1–44.
1535 1536 1537 1538 1539 1540	Triplehorn CA, Thomas DB (2012) Studies in the genus <i>Eleodes</i> Eschscholtz with a revision of the subgenus <i>Melaneleodes</i> Blaisdell and <i>Omegeleodes</i> , new subgenus (Coleoptera: Tenebrionidae: Eleodini). Transactions of the American Entomological Society 137 [2011]: 251–281. URL: https://www.jstor.org/stable/41550034
1541 1542 1543 1544	Van Dam MH, Matzke NJ (2016) Evaluating the influence of connectivity and distance on biogeographical patterns in the south-western deserts of North America. Journal of Biogeography 43(8): 1514–1532. https://doi.org/10.1111/jbi.12727
1545 1546 1547 1548	Van der Auwera G, Chapelle S, De Wachter R (1994) Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Letters 338: 133–136. https://doi.org/10.1016/0014-5793(94)80350-1
1549 1550 1551 1552	Whiting MF (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siophonaptera. Zoologica Scripta 31: 93–104. https://doi.org/10.1046/j.0300-3256.2001.00095.x
1553 1554 1555 1556	Wild AL, Maddison DR (2008) Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Molecular Phylogenetics and Evolution 48: 877–891. https://doi.org/10.1016/j.ympev.2008.05.023
1557 1558 1559 1560	Wiley EO, Mayden RL (2000) The evolutionary species concept. In Wheeler QD, Meier R Eds. Species Concepts and Phylogenetic Theory. Columbia University Press, New York. Pp 70-92.
1561 1562 1563 1564	Will K, Madan R, Hsu HH (2017) Additions to the knowledge of Nevada carabid beetles (Coleoptera: Carabidae) and a preliminary list of carabids from the Great Basin National Park. Biodiversity Data Journal 5: e12250. https://doi.org/10.3897/BDJ.5.e12250
1565 1566 1567 1568 1569	Wilson JS, Pitts JP (2010) Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography: Earth and Environment 34(4): 419–441. https://doi.org/10.1177%2F0309133310363991
1570 1571 1572 1573 1574	Zhang G, Basharat U, Matzke N, Franz NM (2017) Model selection in statistical historical biogeography of Neotropical insects – The Exophthalmus genus complex (Curculionidae: Entiminae). Molecular Phylogenetics and Evolution 109: 226–239. https://doi.org/10.1016/j.ympev.2016.12.039
1575 1576	Figure 1. Collection localities of <i>Trogloderus</i> molecular vouchers and biogeographic regions.

- 1578 Figure 2. *Trogloderus* external morphology. A. Dorsal habitus, *Trogloderus vandykei* La Rivers.
- 1579 B. Ventral habitus, *Trogloderus vandykei* La Rivers. ad abdominal depression, dc elytral
- $1580 \quad discal\ costa,\ fs-femoral\ spine,\ pf-pronotal\ foveae,\ pg-prosternal\ groove,\ pp-prosternal$
- 1581 process, sc elytral sutural costa.

1582

1577

- 1583 Figure 3. *Trogloderus* mouthparts. Dissected from MAJC0004230, *T. major* Johnston n.sp. A.
- Right mandible, ventral view. B. Left mandible, dorsal view. C. Right maxilla, ventral view. D.
- 1585 Left maxilla, dorsal view. E. Labium, ventral view.

1586

- 1587 Figure 4. *Trogloderus* internal morphology. A. Pterothorax venter, dorsal internal view;
- 1588 Metendosternite and right mesosternal apophysis highlighted; Dissected from MAJC0004244, T.
- 1589 *warneri* Johnston n.sp. B. Defensive glands and abdominal ventrite V, dorsal internal view;
- 1590 Dissected from MAJC0004231, *T. arcanus* Johnston n.sp.

1591

- 1592 Figure 5. Trogloderus terminalia. A. Female terminalia, dorsal view, showing bursa-derived
- 1593 spermatheca; *T. vandykei* La Rivers. B. Female terminalia, ventral view, showing bursa
- 1594 copulatrix and oviduct; Dissected from MAJC0004243, *T. major* Johnston n.sp. C. Male
- 1595 adeagus, ventral view; clavae and penis highlighted; *T. vandykei* La Rivers.

1596

- 1597 Figure 6. Trogloderus species, dorsal habitus. A. T. tuberculatus Blaisdell (non-type). B. T.
- 1598 *verpus* Johnston n.sp. (holotype). C. *T. warneri* Johnston n.sp. (holotype). D. *T. skillmani*
- Johnston n.sp. (holotype). E. T. arcanus Johnston n.sp. (holotype). F. T. costatus LeConte (non-
- 1600 type). G. T. nevadus La Rivers (non-type). H. T. major Johnston n.sp. (holotype). I. T. kandai
- 1601 Johnston n.sp. (holotype).

1602

- 1603 Figure 7. Trogloderus species, adeagus dorsal view. A. T. arcanus Johnston n.sp. B. T. costatus
- 1604 LeConte. C. T. kandai Johnston n.sp. D. T. major Johnston n.sp. E. T. nevadus La Rivers. F. T.
- 1605 skillmani Johnston n.sp. G. T. tuberculatus Blaisdell. H. T. vandykei La Rivers. I. T. verpus
- 1606 Johnston n.sp. J. T. warneri Johnston n.sp.

1607

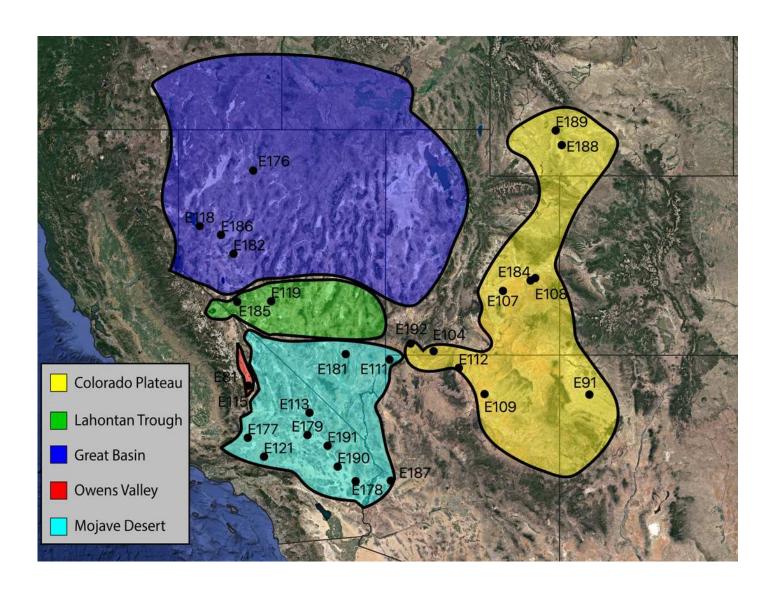
- 1608 Figure 8. Distribution map, *Trogloderus arcanus* Johnston n.sp., *T. costatus* LeConte, *T. kandai*
- 1609 Johnston n.sp.

1610

- 1611 Figure 9. Distribution map, *Trogloderus major* Johnston n.sp., *T. nevadus* La Rivers, *T. skillmani*
- 1612 Johnston n.sp.

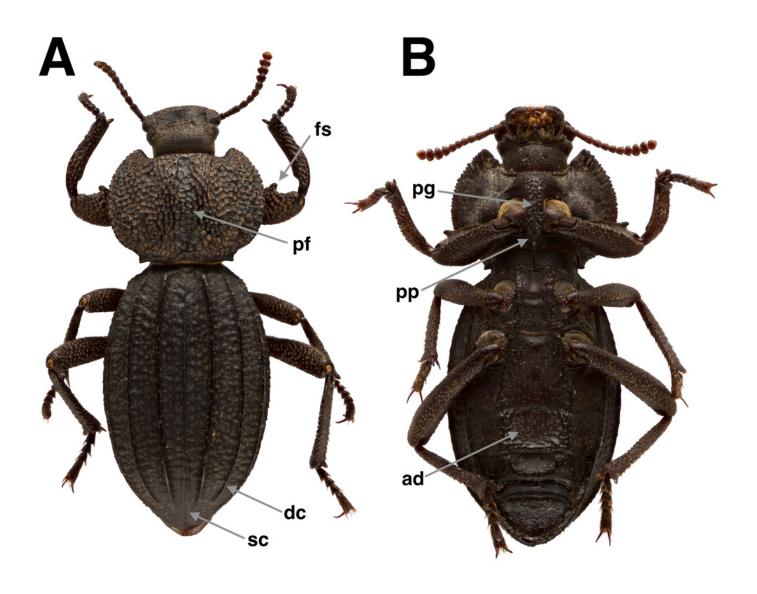
1613

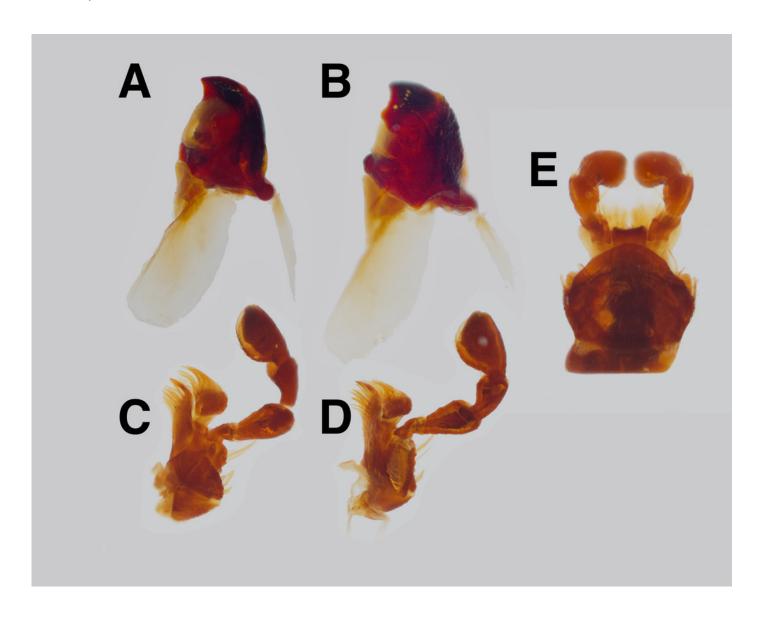
- 1614 Figure 10. Distribution map, *Trogloderus tuberculatus* Blaisdell, *T. vandykei* La Rivers, *T.*
- 1615 *verpus* Johnston n.sp., *T. warneri* Johnston n.sp.


1616

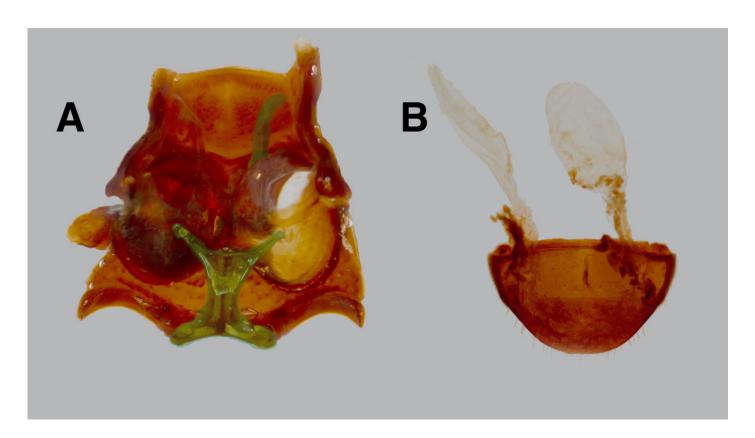
PeerJ

1617	Figure 11. Phylogenetic reconstruction of <i>Trogloderus</i> . Tree shown is from the MrBayes
1618	analysis, numbers above branches are posterior probabilities, numbers below the branches arethe
1619	corresponding RAxML bootstrap support values. Outgroup specimens belonging to the genus
1620	Eleodes are highlighted. The monophyletic Trogloderus is indicated by a box, and the
1621	reciprocally monophyletic Reticulate-pronotum and Tuberculate-pronotum clades are indicated
1622	by vertical bars.
1623	
1624	Figure 12. Diversification estimates for <i>Trogloderus</i> . A. Timetree generated from BEAST
1625	showing inferred median node ages. B. Same showing 95% highest posterior density for node
1626	ages. C. Timetree generated from RelTime showing inferred median node ages. D. Same
1627	showing 95% confidence intervals for node ages.
1628	
1629	Figure 13. Historical biogeographic estimation of <i>Trogloderus</i> . Generated from BioGeoBEARS
1630	using the DEC+J model. Nodes colored by inferred most likely biogeographic region.


Collection localities of *Trogloderus* molecular vouchers and biogeographic regions.


Trogloderus external morphology.

(A) Dorsal habitus, *Trogloderus vandykei* La Rivers. (B) Ventral habitus, *Trogloderus vandykei* La Rivers. ad – abdominal depression, dc – elytral discal costa, fs – femoral spine, pf – pronotal foveae, pg – prosternal groove, pp – prosternal process, sc – elytral sutural costa.

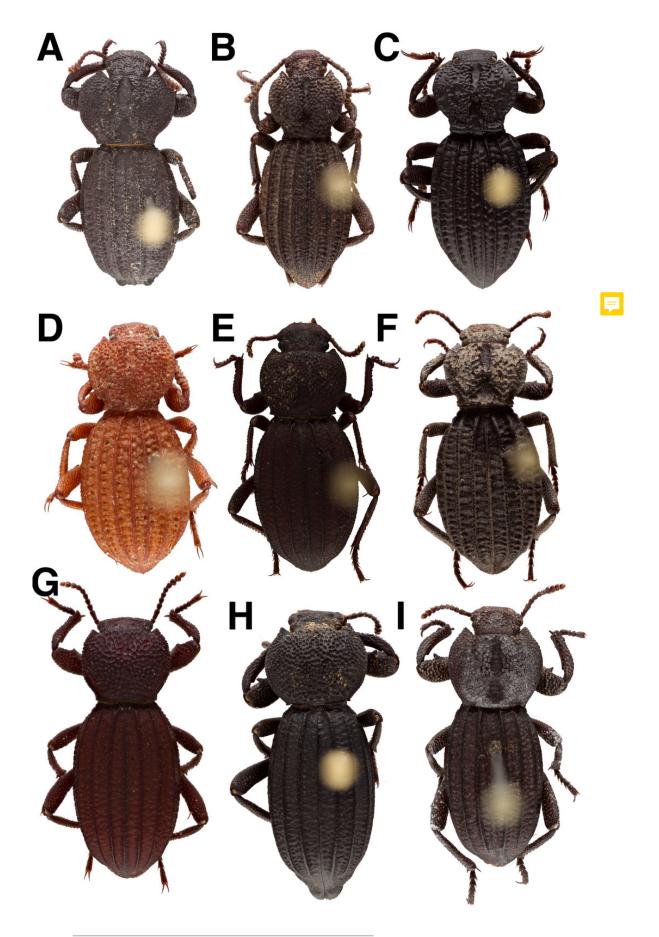

Trogloderus mouthparts.

Dissected from MAJC0004230, *T. major* Johnston n.sp. **(A)** Right mandible, ventral view. **(B)** Left mandible, dorsal view. **(C)** Right maxilla, ventral view. **(D)** Left maxilla, dorsal view. **(E)** Labium, ventral view.

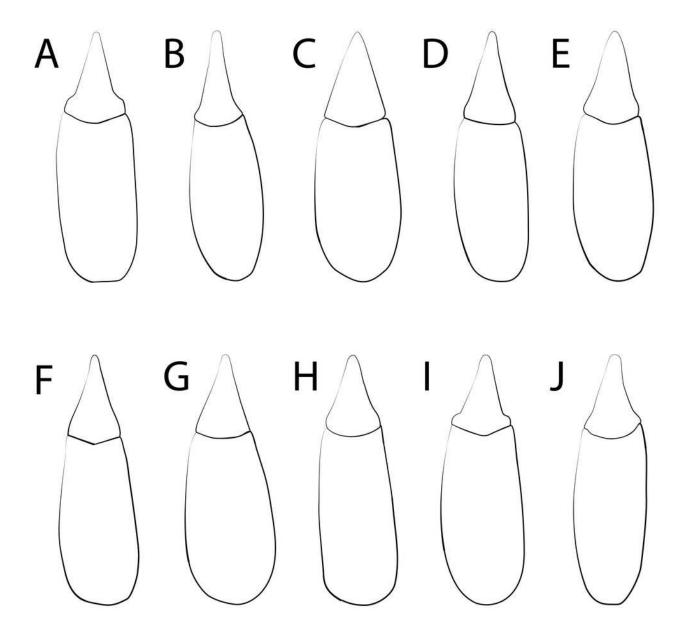
Trogloderus internal morphology.

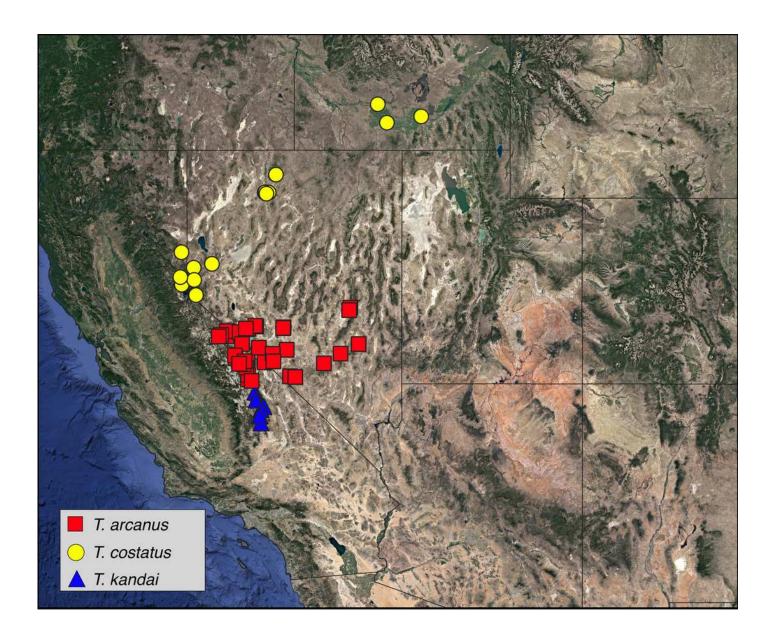
(A) Pterothorax venter, dorsal internal view; Metendosternite and right mesosternal apophysis highlighted; Dissected from MAJC0004244, *T. warneri* Johnston n.sp. (B) Defensive glands and abdominal ventrite V, dorsal internal view; Dissected from MAJC0004231, *T. arcanus* Johnston n.sp.

Trogloderus terminalia.

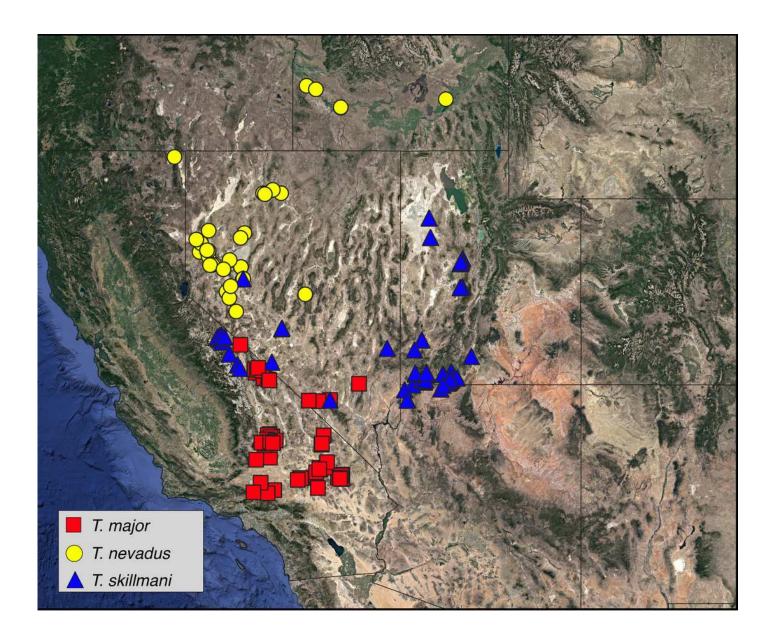

(A) Female terminalia, dorsal view, showing bursa-derived spermatheca; *T. vandykei* La Rivers. (B) Female terminalia, ventral view, showing bursa copulatrix and oviduct; Dissected from MAJC0004243, *T. major* Johnston n.sp. (C) Male adeagus, ventral view; clavae and penis highlighted; *T. vandykei* La Rivers.

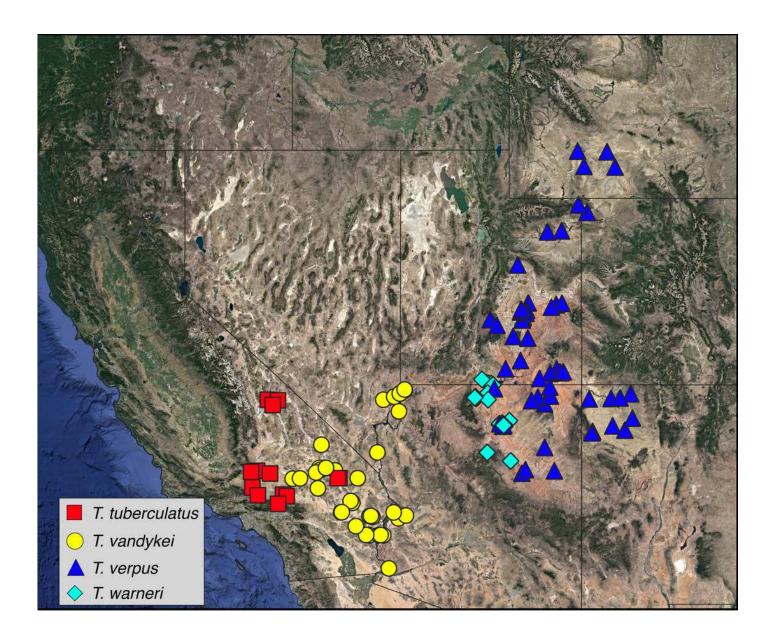
Trogloderus species, dorsal habitus.


(A) *T. tuberculatus* Blaisdell (non-type). (B) *T. verpus* Johnston n.sp. (holotype). (C) *T. warneri* Johnston n.sp. (holotype). (D) *T. skillmani* Johnston n.sp. (holotype). (E) *T. arcanus* Johnston n.sp. (holotype). (F) *T. costatus* LeConte (non-type). (G) *T. nevadus* La Rivers (non-type). (H) *T. major* Johnston n.sp. (holotype). (I) *T. kandai* Johnston n.sp. (holotype).



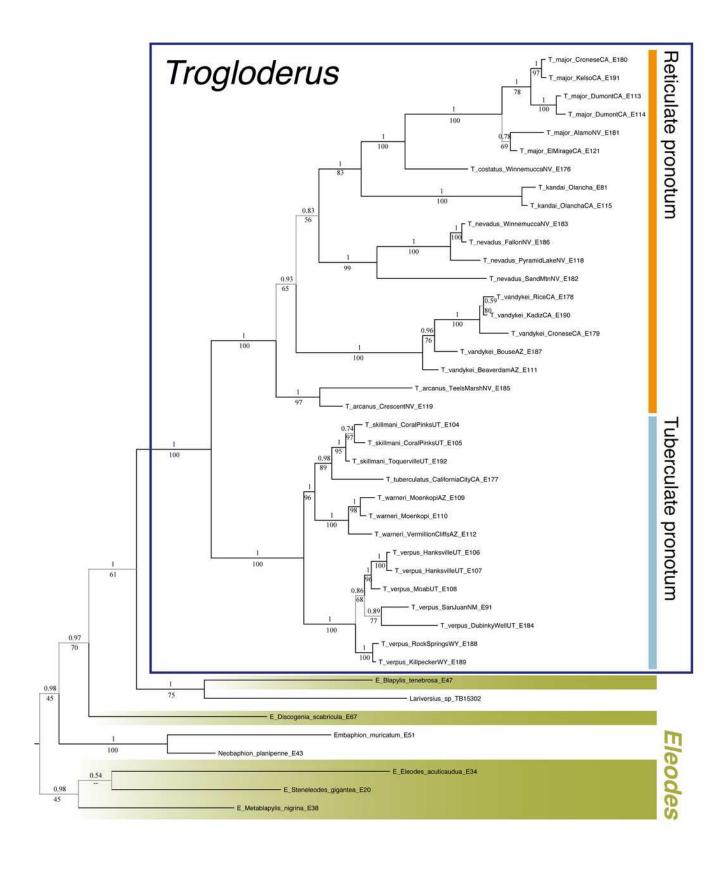
Trogloderus species, adeagus dorsal view.


(A) *T. arcanus* Johnston n.sp. (B) *T. costatus* LeConte. (C) *T. kandai* Johnston n.sp. (D) *T. major* Johnston n.sp. (E) *T. nevadus* La Rivers. (F) *T. skillmani* Johnston n.sp. (G) *T. tuberculatus* Blaisdell. (H) *T. vandykei* La Rivers. (I) *T. verpus* Johnston n.sp. (J) *T. warneri* Johnston n.sp.


Distribution map, *Trogloderus arcanus* Johnston n.sp., *T. costatus* LeConte, *T. kandai* Johnston n.sp.

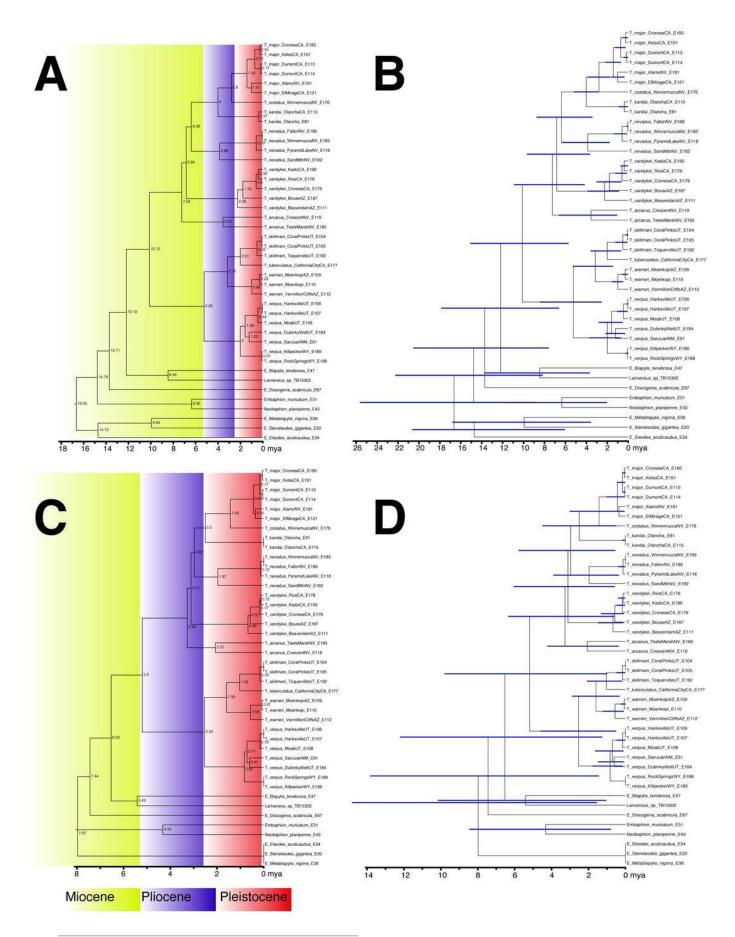
Distribution map, *Trogloderus major* Johnston n.sp., *T. nevadus* La Rivers, *T. skillmani* Johnston n.sp.

Distribution map, *Trogloderus tuberculatus* Blaisdell, *T. vandykei* La Rivers, *T. verpus* Johnston n.sp., *T. warneri* Johnston n.sp.



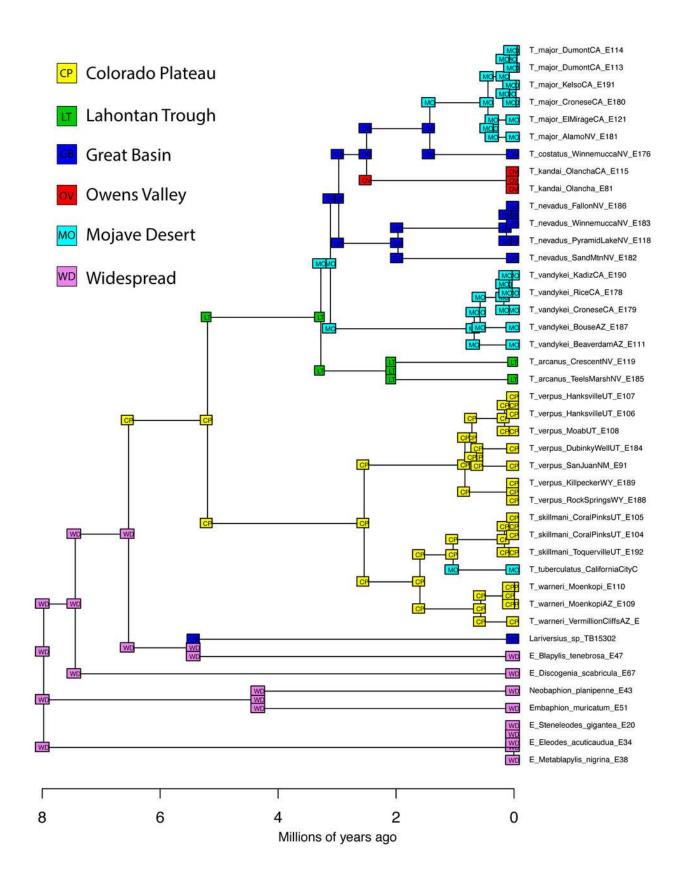
Phylogenetic reconstruction of *Trogloderus*.

Tree shown is from the MrBayes analysis, numbers above branches are posterior probabilities, numbers below the branches arethe corresponding RAxML bootstrap support values. Outgroup specimens belonging to the genus *Eleodes* are highlighted. The monophyletic *Trogloderus* is indicated by a box, and the reciprocally monophyletic Reticulate-pronotum and Tuberculate-pronotum clades are indicated by vertical bars.



Diversification estimates for *Trogloderus*.

(A) Timetree generated from BEAST showing inferred median node ages. (B) Same showing 95% highest posterior density for node ages. (C) Timetree generated from RelTime showing inferred median node ages. (D) Same showing 95% confidence intervals for node ages.



Historical biogeographic estimation of *Trogloderus*.

Generated from BioGeoBEARS using the DEC+J model. Nodes colored by inferred most likely biogeographic region.

Table 1(on next page)

Loci and associated primers used in this study.

1 Table 1.

Loci and associated primers used in this study.

3 4

2

Locus	Alignment length (bp)	Primers used	Primer source
Cytochrome c oxidase subunit 1 (COI)	792	Jerry (F)	Simon et al. 1994
		Pat (R)	
Cytochrome c oxidase subunit 2 (COII)	700	F-lue (F)	Whiting 2002
		9b (R)	
12S mitochondrial ribosomal RNA (12S)	350	SR-J-14233 (F)	Simon et al. 1994
		SR-N-14588 (R)	
28S ribosomal RNA (28S)	1030	NLF184 (F)	Van der Auwera et al. 1994
		D3ar (R)	Maddison 2008
Histone 3 (H3)	361	Haf (F)	Colgan et al. 1998
		Har (R)	-
Wingless (wnt)	474	wg550f (F)	Wild and Maddison 2008
		wfAbrZ (R)	

5