

Miniaturization effects in the anatomy of the minute springtail *Mesaphorura sylvatica* (Hexapoda: Collembola: Tullbergiidae) (#37277)

1

First submission

Guidance from your Editor

Please submit by **17 Jul 2019** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the [materials page](#).

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

7 Figure file(s)

1 Table file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Miniaturization effects in the anatomy of the minute springtail *Mesaphorura sylvatica* (Hexapoda: Collembola: Tullbergiidae)

Irina V. Panina^{Corresp. 1}, Mikhail B. Potapov², Alexey A. Polilov^{Corresp. 1}

¹ Department of Entomology, Biological faculty, Moscow State University, Moscow, Russia

² Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow State Pedagogical University, Moscow, Russia

Corresponding Authors: Irina V. Panina, Alexey A. Polilov
Email address: i.vl.panina@gmail.com, polilov@mail.bio.msu.ru

Animals display unique characteristics related to small body size, and in recent years miniaturization has been intensely studied in insects. However, the effects of miniaturization have been poorly studied in other arthropods. Collembola, or springtails, are abundant soil microarthropods and part of a basal hexapod group. Many of them are notably smaller than one millimeter long, which makes them a good model for studying miniaturization effects in arthropods. In this study we analyze the anatomy of the minute springtail *Mesaphorura sylvatica* (body length 400 μ m) for the first time. It is described using light and scanning electron microscopy and 3D computer reconstruction. Possible effects of miniaturization are revealed based on a comparative analysis of data from this study and from studies on the anatomy of larger collembolans. Despite the extremely small size, some systems of organs, e.g., muscular and digestive, remain complex. On the other hand, considerable changes in the nervous system have been observed. The brain has two pairs of apertures with three pairs of muscles running through them, and all ganglia shifted in their position posteriad by one segment. The relative volumes of the skeleton, brain, and musculature are smaller than the ones of most microinsects, while the relative volumes of other systems are greater than or same as in most microinsects. Comparison of the effects of miniaturization in collembolans with those found in insects has shown that most of the miniaturization-related features of *M. sylvatica* have also been found in other microinsects (shift of the brain into the prothorax, reduced heart, absence of midgut musculature, etc.), but also has revealed unique features (brain with two apertures and three pair of muscles going through them), which have not been described before.

1 Miniaturization effects in the anatomy of the minute springtail *Mesaphorura sylvatica*
2 (Hexapoda: Collembola: Tullbergiidae)

3

4 Irina V. Panina¹, Mikhail B. Potapov², Alexey A. Polilov¹

5 ¹Department of Entomology, Biological Faculty, Moscow State University, Moscow, Russia

6 ²Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow State

7 Pedagogical University, Moscow, Russia

8

9

10

11 Corresponding Authors:

12 Irina V. Panina

13 Email address: i.vl.panina@gmail.com

14 Alexey A. Polilov

15 Email address: polilov@gmail.com

The knowledge gap is well defined (lack of studies of miniaturization in other arthropods than insects).

16 **ABSTRACT** The list of previous studies on collembolan anatomy seems thorough.
17 Animals display unique characteristics related to small body size, and in recent years
18 miniaturization has been intensely studied in insects. However, the effects of miniaturization have
19 been poorly studied in other arthropods. Collembola, or springtails, are abundant soil
20 microarthropods and part of a basal hexapod group. Many of them are notably smaller than one
21 millimeter long, which makes them a good model for studying miniaturization effects in
22 arthropods. In this study we analyze the anatomy of the minute springtail *Mesaphorura sylvatica*
23 (body length 400 µm) for the first time. It is described using light and scanning electron
24 microscopy and 3D computer reconstruction. Possible effects of miniaturization are revealed
25 based on a comparative analysis of data from this study and from studies on the anatomy of larger
26 collembolans.

27 Despite the extremely small size, some systems of organs, e.g., muscular and digestive, remain
28 complex. On the other hand, considerable changes in the nervous system have been observed.
29 The brain has two pairs of apertures with three pairs of muscles running through them, and all
30 ganglia shifted in their position posteriad by one segment. The relative volumes of the skeleton,
31 brain, and musculature are smaller than the ones of most microinsects, while the relative volumes
32 of other systems are greater than or same as in most microinsects.

33 Comparison of the effects of miniaturization in collembolans with those found in insects has
34 shown that most of the miniaturization-related features of *M. sylvatica* have also been found in
35 other microinsects (shift of the brain into the prothorax, reduced heart, absence of midgut
36 musculature, etc.), but also has revealed unique features (brain with two apertures and three pair
37 of muscles going through them), which have not been described before.

38

39 **Keywords:** miniaturization, morphology, anatomy, Collembola, body size

40

41 **INTRODUCTION**

42 Miniaturization plays an important role in morphological changes in animals and has become a
43 popular area of research (Hanken & Wake, 1993; Polilov, 2016a; etc.). Many arthropods are
44 comparable in size with unicellular organisms and are of great interest for studying miniaturization
45 in animals.

46 Morphological traits (rev.: Polilov, 2015a; Polilov, 2016a; Minelli & Fusco, 2019), scaling of
47 organs (Polilov & Makarova, 2017), and even cognitive abilities (van der Woude et al., 2018;
48 Polilov et al., 2019) associated with miniaturization have been studied in insects. Studies on other
49 minute Panarthropoda are scarce (Dunlop, 2019; Gross et al., 2019).

50 Studies on the miniaturization of insects and the anatomy of the smallest insects show significant
51 changes in the anatomy of microinsects due to their size. Some of these changes have been found
52 among several taxa, e.g., the reduction of circulatory and tracheal systems, absence of midgut
53 musculature; compactization, oligomerization, and asymmetry of central nervous system; and
54 many more (Polilov, 2016a). However, some of the changes are unique to particular microinsects,
55 such as complete shift of the brain into the thorax at the adult stage (Polilov & Beutel, 2010) in
56 *Mikado* sp., or the lysis of cell bodies and nuclei of neurons in *Megaphragma* sp. (Polilov, 2012,
57 2017).

58 Many collembolan genera tend to evolve towards smaller body size, and they might become an
59 interesting model for research of miniaturization in arthropods. However, such studies on the
60 effects of miniaturization in collembolans have not been performed yet, and data on the anatomy
61 of minute collembolans are extremely scarce. Previous studies on collembolan anatomy were
62 based mostly on larger species. Moreover, the majority of them were concentrated on specific
63 systems only. Lubbock (1873) described the anatomy of several species, but studied only the
64 largest muscles of the body, and the head musculature was not mentioned. Fernald (1890)
65 described the anatomy of *Anurida maritima*, but of muscular system he studied only the muscles
66 associated with the digestive system, and the excretory system was not mentioned. Willem (1900)
67 briefly described the anatomy of 12 species, but the muscular and excretory systems were not
68 mentioned. Prowazek (1900) described the embryology and anatomy of both larvae and adults of
69 *Isotoma grisea* and *Achorutes viaticus*, but the head musculature was not mentioned. Denis
70 (1928) described the anatomy of *Anurida maritima*, *Onychiurus fimetarius*, and *Tomocerus*
71 *catalanus*, but the reproductive system and musculature of the body (except the head
72 musculature) were not mentioned. Mukerji (1932) described the digestive, nervous, and excretory
73 systems, and partly the head musculature of *Protanura carpenteri*. In addition, there were several
74 studies on the muscular system of *Orchesella cincta* (Folsom, 1899; Bretfeld, 1963), *Neanura*
75 *muscorum* (Bretfeld, 1963), *Tomocerus longicornis* (Lubbock, 1873), *Tomocerus* spp. (Eisenbeis
76 & Wichard, 1975), *Orchesella villosa*, *Isotomurus palustris*, *Podura aquatica*, and *Sminthurus*
77 *viridis* (Imms, 1939), digestive system of *Tomocerus flavescens* (Humbert, 1979), digestive and
78 excretory systems of *Orchesella cincta* (Verhoef et al., 1979), *Tomocerus flavescens*, *Anurida*
79 *maritima*, *Neanura muscorum*, *Friesea mirabilis*, *Brachystomella parvula*, *Odontella armata*
80 (Wolter, 1963), and *Sminthurus fuscus* (Willem & Sabbe, 1897), excretory system of *Onychiurus*
81 *quadriocellatus* (AlPster, 1968), *Tomocerus minor*, *Lepidocyrtus curvicollis* (Humbert, 1975),
82 and *Orchesella rufescens* (Philipschenko, 1907), respiratory system of *Sminthurus viridis*
83 (Davies, 1927), nervous system of *Folsomia candida*, *Protaphorura armata*, and
84 *Tetradontophora bielanensis* (Kollmann et al., 2011), reproductive system of *Allacma fusca*
85 (Dallai et al., 2000), *Orchesella villosa* (Dallai et al., 2008), *Anurida maritima* (Lécaillon,
86 1902a), *Anurophorus laricis* (Lécaillon, 1902b). There were also several reviews (Schaller, 1970;
87 Hopkin, 1997).

88 The genus *Mesaphorura* of Collembola includes some of the smaller species, some of
89 them only 0.4 long (Zimdars and Dunger, 1994). The external morphology of the genus
90 *Mesaphorura* has been completely and thoroughly investigated as a key to the identification and
91 comparison of this genus to other taxa (Zimdars & Dunger, 1994; D'Haese, 2003), but its internal
92 morphology has never been described. The aim of this work is to study the anatomy of
93 *Mesaphorura sylvatica* for the first time and analyze the effects of miniaturization.

94 *replace with 'describe'; the study is*
95 **MATERIALS AND METHODS** *descriptive rather than analytical*

96 Materials

97 Specimens of *Mesaphorura sylvatica* Rusek, 1971 were collected in September 2015 at a sand
98 beach, Pirogovskoye Reservoir, Moscow Oblast, Russia, using the flotation method. The material
99 was fixed in alcoholic Bouin's solution and stored in 70% ethanol.

100

101 **Scanning electron microscopy (SEM)**102 External morphology was studied using a Jeol JSM-6380 scanning electron microscope following
103 critical point drying (Hitachi HCP-2) and sputter coating of samples with gold (Giko IB-3).

104

105 **Histology**106 The fixed material was dehydrated and embedded in Araldite M. The blocks were cut into series
107 of cross sections 1 μm thick and longitudinal sections 0.5 μm thick using a Leica RM2255
108 microtome. These sections were stained with toluidine blue and pyronine.

109

110 **Three dimensional computer reconstruction (3D)**111 The sections were photographed using a Motic BA410 microscope with a ToupTek camera. The
112 resulting stack was then aligned and calibrated. 3D reconstructions were created in the program
113 Bitplane Imaris using the function of manual segmentation. In addition, we processed the
114 reconstructions with the functions of surface smoothing and rendering in the Autodesk Maya
115 program. Volumes of organs and the body were calculated using the statistical module of Bitplane
116 Imaris (Polilov & Makarova, 2017).

117

118 **Nomenclature**119 The names of morphological elements are based on Folsom (1899), Snodgrass (1935), Bretfeld
120 (1963), Bitsch (2012). The description of the musculature and abbreviations of muscles are based
121 on Folsom (1899) for the head, Bretfeld (1963) for the thorax and abdomen, and Eisenbeis and
122 Wichael (1975) for the ventral tube with some additions. Muscles are named according to the
123 nomenclatures used for insects. The following abbreviations are used in descriptions of muscles:
124 O, origin; I, insertion.

125

126 **RESULTS**

Please give these measurements with mean and n-number,
as you do with in cuticle thickness below. Add a table with all
these measurements.

127 **General morphology**
128 The body is around 400 μm in length, uniformly pigmented, white in color (Fig. 1). Most of the
129 head is occupied by the brain, the suboesophageal ganglion, the mouthparts and the complex
130 pseudotentorium; the prothorax is occupied by part of the suboesophageal ganglion, while the
131 meso- and metathorax are occupied by the wide midgut and fat body; the abdomen is mainly
132 occupied by the reproductive system, with the digestive system above it (Fig. 2, Fig. S1). All
133 tagmata have well-developed musculature.

134

The body volume of *M. sylvatica* is about 0.8 nl.

135

136 **Skeleton**137 The cuticle thickness is 0.31–1.24 μm ($M = 0.57$, $n = 80$). Tergites are well-developed, sclerites
138 and pleurites are hardly distinguishable.139 The inner skeletal structures are highly developed. A complex pseudotentorium (Fig. 3) is
140 situated in the head. Its body consists of a mandibular tendon in the middle, which continues into
141 a thinner longitudinal endoskeletal connective posteriorly. There is a pair of dorsal suspensory

142 arms, connecting the structure with the head capsule anteriorly on the frons. The glossa is
143 prolonged behind into a pair of chitinous stalks, called posterior tentorial apodemes by Koch
144 (2000), or fulcra (Denis, 1928). They lie externally to the middle line. The enlarged base of the
145 stalk is called the foot, and the foot underlies the cardo of the maxilla. They seem to connect with
146 the head capsule posteriorly possibly with some endoskeletal connectives. A pair of connecting
147 arms (bras d'union, Denis, 1928) extend from the pseudotentorial plate downwards and are fused
148 with the posterior tentorial apodemes. A pair of lateral arms (bras latéraux, Denis, 1928) extend
149 from the anterior part of the pseudotentorial plate, go upward and outward and are inserted into
150 the head.

151 According to Folsom (1899), there is also a chitinous rod, which is attached to the base of the
152 lobe of the lacinia. The chitinous rod has a chitinous expansion, which is an attachment site for
153 several maxillary muscles. It is shown in our model as a part of maxilla.

154 Antecostae are submarginal ridges near the anterior edges of the inner surface of the tergum with
155 several body muscles attached to them.

156 Three ventral furca-like structures are branched and found in the thorax between the first and the
157 second thoracic segments, between the second and the third thoracic segments, and between the
158 third thoracic segment and the first abdominal segment. Additionally, there is a simple
159 rectangular endosternite in the first abdominal segment.

160 The volume of the skeleton is about 0.05 nl (5.8% of the body volume).

Please clarify if this
refers to the midgut
or metathorax?

162 **Digestive and excretory systems**

163 The alimentary canal (Fig. 4) is shaped as a straight tube without loops or diverticula,
164 extending from the anterior and ventral area of the head into the terminal abdominal segment. It
165 is divided into the fore-, mid-, and hindgut.

166 The slender foregut is round in cross section and extends posteriorly from the oral cavity.
167 It is divided into the pharynx and oesophagus. The slender pharynx is about 4.2 μm . The
168 oesophagus passes through the suboesophageal ganglion and leads into the thicker midgut at the
169 level of the metathorax (around the fourth abdominal segment), which consists of one layer of
170 cells (6–8 cells in cross section). The oesophagus has one pair of muscles 1(Oe). The first half of
171 the midgut is round in cross section, about 27.8 μm in diameter. The second half is oval in cross
172 section. The border between the midgut and the hindgut is indistinguishable. At around the sixth
173 abdominal segment, it extends into the wider rectum with four pairs of muscles. The latter
174 continues backwards and terminates ventrally at the anus with three anal lobes in the last
175 abdominal segment.

176 Labial nephridia, or tubular glands, the main excretory organs of collembolans, are found
177 in the posterior half of the head (Fig. 4). It is composed of a sac, a labyrinth, and a duct. The sac
178 is situated posteriorly and continues forward into the labyrinth. The labyrinth follows a hardly
179 distinguishable winding course and forms a loop. The labyrinth continues as the duct, which
180 opens in the buccal cavity. Other head glands (anterior and posterior salivary glands, globular, or
181 acinous glands, and antennal nephridia) were not found in *M. sylvatica*.

182 The volume of the digestive and excretory systems is about 0.07 nL (8.6% of the body
183 volume).

Needs
reference to
the correct
figure

184

185 **Nervous system**

186 The nervous system (Fig. 4) consists of a supraoesophageal ganglion (brain), suboesophageal
187 ganglion, and three thoracic ganglia. The brain extends from the bases of the antennae to the
188 anterior part of the first thoracic segment. It fills the dorsal portion of the head, but narrows in the
189 posterior portion of the head (beyond the beginning of the suboesophageal ganglion) and extends
190 at the boundary between of the head and the first thoracic segment, it terminates in the anterior
191 half of the latter. The brain has a unique structure, with two pairs of apertures with one pair of
192 oesophageal 1(Oe) and two pairs of pseudotentorial suspensory muscles 1(Pst), 2(Pst) running
193 through them. The suboesophageal ganglion lies in the ventral portion of the head, starting at its
194 middle, and continues to the distal margin of the first thoracic segment. Three large ventral
195 thoracic ganglia, one in each segment, shift their position by one segment: the first ganglion lies
196 in the mesothorax, the second one is in the metathorax, and the third one is in the first abdominal
197 segment. They are interconnected by longitudinal cords in intersegments (one in each). As in all
198 collembolans, the abdominal ganglia are fused with the third thoracic ganglion.

199 The volume of the central nervous system is about 0.05 nL (6.3% of body volume). The
200 volume of the brain is about 0.02 nL (2.2% of the body volume).

201

202 **Muscular system**

203 **Musculature of head** (Fig. 3, Table S1). 1(Pst) (M. craniotentorialis lateralis): O, medial surface
204 of frons, laterad of 2(Pst); I, dorsal surface of pseudotentorial plate, laterad of 2(Pst). 2(Pst) (M.
205 craniotentorialis medialis): O, medial surface of frons, mediad of 1(Pst); I, dorsal surface of
206 pseudotentorial plate, mediad of 1(Pst). 1(An) (M. antennotentoralis): O, lateral face of first
207 antennal segment; I, pseudotentorium. 3(Mn) (M. craniomandibularis posterior): O, posterior
208 surface of gena I, dorsolateral surface of basal ridge of mandible, posterad of 4(Mn). 4(Mn) (M.
209 craniomandibularis anterior): O, frons, mediad of 3(Mn); I, dorsolateral surface of basal ridge of
210 mandible, anterad of 3(Mn), posterad of 5(Mn). 5(Mn) (M. tentoriomandibularis): O, anterior arm
211 of pseudotentorium; I, dorsolateral surface of mandible, anterad of 4(Mn). 7(Mn) (M.
212 craniomandibularis): O, frons, along with 1(Mx), mediad of 10(Mn); I, ventroposterior area, outer
213 angle of large triangular opening of mandible along with 8(Mn), 10(Mn). 8(Mn) (M.
214 craniomandibularis): O, posterior surface of frons, crossing median plane, posterad of 7(Mn); I,
215 ventroposterior area, outer angle of large triangular opening of mandible along with 7(Mn),
216 10(Mn). 9(Mn) (M. tentoriomandibularis): O, base of pseudotentorium; I, large triangular
217 opening (median surface) of mandible. 10(Mn) (M. craniomandibularis): O, frons, laterad of
218 7(Mn); I, ventroposterior area, outer angle of large triangular opening of mandible along with
219 7(Mn), 8(Mn). 11(Mn) (M. craniomandibularis): O, anterior surface of area antennalis, near
220 antennal base, ventrad of 12(Mn); I, lateral surface of mandible, laterad of 12(Mn). 12(Mn) (M.
221 craniomandibularis): O, anterior surface of area antennalis, dorsad of 11(Mn); I, lateral surface of
222 mandible, mediad of 11(Mn). 1(Mx) (M. craniocardinalis): O, dorsomedial area of occiput; I,
223 lateral edge of cardo, dorsad of 5(Mx). 2(Mx) (M. craniostipitalis medialis): O, posterior surface
224 of gena, ventrad of 3(Mx); I, lateral edge of chitinous expansion, mediad of 3(Mx). 3(Mx) (M.
225 craniostipitalis lateralis): O, posterior surface of gena, dorsad of 2(Mx); I, median edge of

Refer to
the
correct
figures

226 chitinous expansion, laterad of 2(Mx). 4(Mx) (M. maxillaris internus 1): O, anterior surface of
227 cardo; I, dorsoventral surface of chitinous expansion. 5(Mx) (M. tentoriocardinalis): O, base of
228 pseudotentorium; I, concavity of cardo, ventrad of 1(Mx). 7(Mx) (M. maxillaris internus 2): O,
229 median surface of stipes; I, dorsolateral surface of chitinous expansion. 1–3(Hy) (M.
230 cranohypopharyngealis): O, anteroventral area of the head capsule; I, hypopharynx. Three very
231 small obscure muscles. 1(Oe) (M. cranoesophagialis): O, anteriomedial surface of area
232 antennalis; I, dorsal surface of oesophagus. dlm1 (M. occiputo-cranialis medialis): O, occiput,
233 mediad of dlm2; I, medial surface of frons, mediad of dlm2. dlm2 (M. occiputo-cranialis
234 lareralis): O, occiput, laterad of dlm1; I, medial surface of frons, laterad of dlm1.

235 **Musculature of thorax** (Fig. 5, Table S1). **Prothorax.** I dlm1 (M. antecosta-occipitalis medialis):
236 O, antecosta I, mediad of I dlm2; I, occiput, mediad of I dlm2. I dlm2 (M. antecosta-occipitalis
237 lateralis): O, antecosta I, laterad of I dlm1; I, occiput, laterad of I dlm1. I ism1 (M. antecosta-
238 pseudotentoralis): O, antecosta I; I, posterior area of fulcrum. I ism2 (M. profurca-occipitalis): O,
239 dorsal area of profurca-like structure; I, dorsolateral area of occiput. I dvm1 (M. cervico-coxalis):
240 O, dorsolateral cervical membrane; I, anterior procoxal rim. I dvm3 (M. pronoto-coxalis lateralis;
241 two bands): O, anterior region of pronotum; I, lateral procoxal rim and anterior procoxal rim
242 along with instertion of I dvm2. I ldvm1 (M. pronoto-coxalis medialis): O, anterolateral part of
243 pronotum; I, anterior procoxal rim. Lb dvm1 (M. occiputo-pseudotentoralis; two bands): O,
244 dorsal area of occipitale; I, posterior area of fulcrum. Lb dvm2 (M. occiputo-cervicalis): O, dorsal
245 area of occipitale; I, ventral cervical membrane. I vlm (M. profurca-pseudotentoralis): O, anterior
246 part of profurca-like structure; I, union arm of pseudotentorium. I scm1 (M. profurca-coxalis 1):
247 O, anterior face of profurca-like structure; I, posterior procoxal rim, laterad of I scm2. I scm2 (M.
248 profurca-coxalis 2): O, ventral face of profurca-like structure; I, posterior procoxal rim, mediad
249 of I scm1. I scm3 (M. profurca-coxalis 3): O, ventral face of profurca-like structure along with I
250 scm4; I, lateral procoxal rim. I scm4 (M. profurca-coxalis 4): O, ventral face of profurca-like
251 structure along with I scm3; I, posteriolateral procoxal rim.

252 **Mesothorax.** II dlm1 (M. antecosta-antecostalis medialis): O, antecosta II, mediad of II dlm2; I,
253 antecosta III, mediad of II dlm2. II dlm2 (M. antecosta-antecostalis lateralis): O, antecosta II,
254 laterad of II dlm1; I, antecosta III, laterad of II dlm1. II ism1 (M. profurca-antecostalis medialis):
255 O, lateral part of profurca-like structure, mediad of II ism2; I, antecosta III, mediad of II ism2. II
256 ism2 (M. profurca-antecostalis lateralis): O, lateral part of profurca-like structure, laterad of II
257 ism1; I, antecosta III, laterad of II ism1. II dvm1 (M. mesonoto-profurcalis anterior): O,
258 dorsolateral part of profurca-like structure, anterad of II dvm2; I, mesonotum (middle of
259 segment), anterad of II dvm2. II dvm2 (M. mesonoto-profurcalis posterior): O, dorsolateral part
260 of profurca-like structure, posterad of II dvm1; I, mesonotum (middle of segment), posterad of II
261 dvm1. II dvm3 (M. mesonoto-coxalis; two bands): O, lateral part of mesonotum (middle of
262 segment); I, anterior face of mesocoxa. II dvm4 (M. mesonoto-subcoxalis anterior; two bands):
263 O, anterolateral part of mesonotum; I, anterior border of mesosubcoxa. II dvm5 (M. metanoto-
264 subcoxalis posterior): O, posterolateral part of mesonotum; I, ventral border of mesosubcoxa. II
265 ldvm1 (M. mesonoto-coxalis anterior): O, posterolateral part of mesonotum; I, anterior
266 mesocoxal rim. II ldvm2 (M. metanoto-subcoxalis; two bands): O, posterolateral part of
267 mesonotum; I, posteroventral border of mesosubcoxa and posterior border of mesocoxal rim. II

268 ldvm3 (M. metanoto-coxalis posterior): O, posterolateral part of mesonotum; I, anterior face of
269 mesocoxa. II vlm (M. profurca-mesofurcalis): O, lateral part of profurca-like structure; I, lateral
270 part of mesofurca-like structure. II scm1 (M. mesofurca-coxalis 1): O, anterior face of mesofurca-
271 like structure; I, posterior mesocoxal rim, laterad of II scm2. II scm2 (M. mesofurca-coxalis 2):
272 O, ventrolateral face of mesofurca-like structure along with II scm4; I, posterior mesocoxal rim,
273 mediad of II scm1. II scm3 (M. mesofurca-coxalis 3): O, anterior face of mesofurca-like
274 structure; I, lateral mesocoxal rim, laterad of II scm4. II scm4 (M. mesofurca-coxalis 4): O,
275 ventrolateral face of mesofurca-like structure along with II scm2; I, lateral mesocoxal rim,
276 mediad of II scm3. II scm5 (M. profurca-coxalis lateralis): O, posterior face of profurca-like
277 structure; I, anteriolateral metacoxal rim, laterad of II scm6. II scm6 (M. profurca-coxalis
278 medialis): O, posterior face of profurca-like structure; I, anteriolateral metacoxal rim, mediad of
279 II scm5.

280 **Metathorax.** All muscles that are present in mesothorax, are found in metathorax, except: III
281 scm4.

282 **Musculature of abdomen** (Fig. 6, Table S1). AI dlm1 (M. antecosta-antecostalis medialis): O,
283 antecosta III, mediad of AI dlm2; I, antecosta IV, mediad of AI dlm2. AI dlm2 (M. antecosta-
284 antecostalis lateralis): O, antecosta III, laterad of AI dlm1; I, antecosta IV, laterad of AI dlm1. AI
285 vlm (M. metafurca-endosternalis): O, lateral face of metafurca-like structure; I, endosternite I. AI
286 ism1 (M. antecosta-metafurcalis anterior): O, antecosta IV, anterad of AI ism2; I, lateral face of
287 metafurca-like structure, anterad of AI ism2. AI ism2 (M. antecosta-metafurcalis posterior): O,
288 antecosta IV, posterad of AI ism1; I, lateral face of metafurca-like structure, posterad of AI ism1.
289 AI dvm1 (M. tergo-metafurcalis anterior): O, middle region region of tergum, anterad of AI
290 dvm2; I, lateral face of metafurca-like structure, anterad of AI dvm2. AI dvm2 (M. tergo-
291 metafurcalis posterior): O, middle region region of tergum, posterad of AI dvm1; I, lateral face of
292 metafurca-like structure, posterad of AI dvm1. AI ldvm1 (M. pleuro-metafurcalis): O, lateral wall
293 of segment; I, lateral face of metafurca-like structure. AI dvm VT (M. tergo-pleuralis): O, anterior
294 region of tergum; I, tendon system. AI lm (M. sterno-pleuralis): O, base of ventral tube; I, valva
295 of ventral tube. AI pm1 (M. sterno-pleuralis): O, base of ventral tube; I, metafurca-like structure.
296 AI pm2 (M. sterno-pleuralis): O, base of ventral tube; I, tendon system. AI pm3 (M. sterno-
297 pleuralis): O, base of ventral tube; I, tendon system. AI pm4 (M. sterno-pleuralis): O, base of
298 ventral tube; I, tendon system. AI dvm3 (M. pleuro-pleuralis): O, lateral wall of segment; I,
299 tendon system. AI dvm4 (M. tergo-pleuralis): O, posterior region of tergum; I, tendon system. AI
300 dm1 (M. sterno-pleuralis): O, anterior face of ventral tube, laterad of dm3; I, metafurca-like
301 structure. AI dm2 (M. sterno-pleuralis): O, vesicles of ventral tube; I, endosternite I. AI dm3 (M.
302 sterno-pleuralis): O, anterior face of ventral tube, mediad of dm1; I, metafurca-like structure. AI
303 dm4 (M. sterno-pleuralis): O, vesicles of ventral tube; I, endosternite I. AI dm5 dm4 (M. sterno-
304 pleuralis): O, posterior face of ventral tube; I, tendon system. All dlm1 (M. antecosta-antecostalis
305 medialis): O, antecosta IV, mediad of AII dlm2; I, antecosta V, mediad of AII dlm2. All dlm2 (M.
306 antecosta-antecostalis lateralis): O, antecosta IV, laterad of AII dlm1; I, antecosta V, laterad of AII
307 dlm1. All vlm (M. endosterno-antecostalis): O, endosternum I; I, antecosta V. All ism1 (M.
308 antecosta-endosternalis anterior): O, antecosta V, anterad of AII ism2; I, endosternum I, anterad
309 of AII ism2. All ism2 (M. antecosta-endosternalis posterior): O, antecosta V, posterad of AII

310 ism1; I, endosternum I, posterad of AII ism1. All dvm1 (M. tergo-endosternalis anterior): O,
311 middle region of tergum, anterad of AII dvm2; I, endosternum I, anterad of AII dvm2. All dvm2
312 (M. tergo-endosternalis posterior): O, middle region of tergum, posterad of AII dvm1; I,
313 endosternum I, posterad of AII dvm1. All ldvm1 (M. pleuro-sternalis): O, lateral wall of segment;
314 I, sternum. All dvm3 (M. tergo-sternalis anterior): O, anterior border of tergum; I, lateral border
315 of sternum. All dvm4 (M. tergo-sternalis posterior): O, lateral area of tergum; I, lateral border of
316 sternum. All trm1 (M. endosterno-endosternalis): O, inner surface of endosternum I; I, inner
317 surface of endosternum I (opposite side). Alll dlm1 (M. antecosta-antecostalis medialis): O,
318 antecosta V, mediad of AIII dlm2; I, antecosta VI, mediad of AIII dlm2. Alll dlm2 (M. antecosta-
319 antecostalis lateralis): O, antecosta V, laterad of AIII dlm1; I, antecosta VI, laterad of AIII dlm1.
320 Alll ism1 (M. antecosta-antecostalis medialis): O, antecosta VI, mediad of AIII ism2; I, ventral
321 area of antecosta V, mediad of AIII ism2. Alll ism2 (M. antecosta-antecostalis lateralis): O,
322 antecosta VI, laterad of AIII ism1; I, ventral area of antecosta V, laterad of AIII ism1. Alll dvm1
323 (M. tergo-antecostalis anterior); O, middle region of tergum, anterad of AIII dvm2; I, ventral area
324 of antecosta V, anterad of AIII dvm2. Alll dvm2 (M. tergo-antecostalis posterior): O, middle
325 region of tergum, laterad of AIII dvm1; I, ventral area of antecosta V, laterad of AIII dvm1. Alll
326 dvm3 (M. tergo-sternalis anterior): O, anterior border of tergum; I, lateral border of sternum. Alll
327 dvm4 (M. tergo-sternalis posterior): O, lateral area of tergum; I, lateral border of sternum. Alll
328 ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; I, sternum. AIV dlm1 (M. antecosta-
329 antecostalis medialis): O, antecosta VI, mediad of AIV dlm2; I, antecosta VII, mediad of AIV
330 dlm2. AIV dlm2 (M. antecosta-antecostalis lateralis): O, antecosta VI, laterad of AIV dlm1; I,
331 antecosta VII, laterad of AIV dlm1. AIV vlm (M. antecosta-antecostalis): O, antecosta V; I,
332 antecosta VII. AIV ism1 (M. antecosta-antecostalis): O, dorsal part of antecosta VI; I, ventral part
333 of antecosta VII. AIV dvm1 (M. tergo-sternalis posterior): O, anterior border of tergum; I,
334 posterior border of sternum. AIV dvm2 (M. pleuro-sternalis): O, lateral wall of segment; I,
335 sternum, along with AIV ldvm5. AIV dvm3 (M. tergo-sternalis anterior): O, anterior border of
336 tergum; I, posterior border of sternum. AIV ldvm3 (M. tergo-antecostalis): O, posterior region of
337 tergum; I, ventral part of antecosta VII. AIV ldvm4 (M. tergo-sternalis): O, posterior region of
338 tergum; I, lateral board of sternum. AIV ldvm5 (M. tergo-sternalis): O, posterior region of
339 tergum; I, sternum, along with AIV dvm2. AIV ldvm7 (M. pleuro-sternalis): O, lateral wall of
340 segment; I, lateral board of sternum. AV dlm1 (M. antecosta-antecostalis medialis): O, antecosta
341 VII, mediad of AV dlm2; I, antecosta VIII, mediad of AV dlm2. AV dlm2 (M. antecosta-
342 antecostalis lateralis): O, antecosta VII, laterad of AV dlm1; I, antecosta VIII, AV dlm1. AV ism1
343 (M. tergo-intersegmentalis): O, anterior region of tergum; intersegmental area between 5th and
344 6th segments. AV ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; I, sternum. AVI sm1
345 (M. sterno-rectalis): O, sternum; I, rectum. AVI sm2 (M. sterno-rectalis): O, lateral board of
346 sternum; I, rectum. AVI dvm1 (M. tergo-rectalis): O, anterior region of tergum; I, rectum. AVI
347 dvm2 (M. tergo-sternalis): O, central region of tergum; I, rectum. AVI dvm3 (M. tergo-sternalis):
348 O, posterior region of tergum; I, dorsal anal lobe. AVI dvm4 (M. pleuro-sternalis): O, lateral wall
349 of segment; I, lateral anal lobe.

350 The volume of the muscular system is about 0.04 nL (5.2% of the body volume).

351

352 **Reproductive system**

353 The female reproductive system has been studied in detail (Fig. 4). The ovary is unpaired
354 with three lobes. The largest lobe probably contains eggs, while two other, smaller lobes contain
355 no eggs and lie dorsad of the largest one. The anterior portion of the ovary lies between the
356 abdominal segments 2 and 3, while its posterior portion ends between abdominal segments 4 and
357 5. The oviduct is small, short and unpaired, leading to the vagina, the margins of which are
358 indistinct. The vagina opens ventrally on the fifth abdominal segment with a transverse
359 reproductive orifice (gonopore).

360 The volume of the reproductive system is about 0.15 nL (18.9% of the body volume).

361

362 **Circulatory system and fat body**

363 Organs of the circulatory system are absent. The fat body occupies all cavities between organs
364 in the head, thorax, and abdomen. It consists of cells of various shape.

365 The volume of the circulatory system and fat body is about 0.44 nL (55.2% of the body
366 volume).

367

368 **Respiratory system**

369 Organs of the respiratory system (trachea) are absent.

370

371 **DISCUSSION**

372 We studied the anatomy of *M. sylvatica* to extend the knowledge on the anatomy of
373 Collembola as well as to reveal possible miniaturization traits and compare them to the
374 miniaturization effects discovered in microinsects and other minute arthropods. Moreover, we
375 analyzed the relative volume of organs in *Mesaphorura sylvatica* in comparison with
376 microinsects.

377

378 **Skeleton**

379 The endoskeletal structures of *M. sylvatica* are well-developed as in larger species (Manton,
380 1964), the complex pseudotentorium has multiple arms, and the furca-like structures are
381 branched. However, reductions seem to have affected the abdomen, in which we observed only
382 one endosternite, compared to *Neanura muscorum*, in which five endosternites were found
383 (Bretfeld, 1963). In microinsects, elements of the endoskeleton tend to fuse (Polilov, 2015a;
384 Polilov, 2015b). Of all adult microinsects, only booklice have a complex tentorium (Polilov,
385 2016b), and all furcae are developed in thrips, beetles of the family Corylophidae, and wasps of
386 the family Mymaridae (Polilov and Beutel, 2010, Polilov and Shmakov, 2016, Polilov, 2016c).

387 The relative volume of the skeleton of *M. sylvatica* is similar to the one of adult Paraneoptera
388 of the same size, but notably smaller than the ones of other microinsects (both larvae and adults)
389 of the same size (Polilov & Makarova, 2017). The smaller relative volume of the skeleton of *M.*
390 *sylvatica*, compared to most microinsects, could be related to the differences in cuticle thickness
391 (due to the fragmented epicuticle of all collembolans) and to the flightlessness of collembolans.

392

393 **Nervous system**

394 Unlike those of larger species of Collembola (Hopkin, 1997; Kolmann et al., 2011), the brain
395 and suboesophageal ganglion of *M. sylvatica* extend into the prothorax. The three thoracic
396 ganglia of *M. sylvatica* shift their position by one segment posteriorly, reported by Lubbock
397 (1873) in larger species. The brain and suboesophageal ganglion are situated close to each other;
398 they are connected in the neck region. The central nervous system is symmetrical and displays
399 moderate concentration and oligomerization of ganglia. Similar degrees of concentration and
400 oligomerization of the central nervous system are found in adult booklice of the family
401 Liposcelididae (Polilov, 2016b) and in adult thrips (Polilov & Shmakov, 2016).

402 The shift of different parts of the brain into the prothorax has been described in thrips larvae
403 (Polilov & Shmakov, 2016), adults and larvae of beetles of the family Ptiliidae (Polilov & Beutel,
404 2009), adults and larvae of beetles of the family Corylophidae (Polilov & Beutel, 2010), larvae of
405 beetles of the family Strepsiptera (Beutel et. al., 2005), larvae of beetles of the family
406 Scydmaenidae (Jałoszyński et al., 2012), larvae of beetles of the family Hydroscaphidae (Beutel
407 & Haas, 1998), adults of beetles of the family Sphaeriusidae (Yavorskaya et al., 2018).

408 The nervous system of *M. sylvatica* shows unique changes in the brain with two pairs of
409 apertures and three pairs of muscles running through them. This feature has not been described in
410 studies of the nervous system of larger collembolans (Lubbock, 1873; Hopkin, 1997; Kollmann et
411 al., 2011) or microinsects (Polilov, 2015a; Polilov, 2015b).

412 The relative volume of the central nervous system of *M. sylvatica* is similar to the one of tiny
413 adult Coleoptera, smaller than the ones of minute adult Hymenoptera and Paraneoptera larvae,
414 and greater than the one of adult Paraneoptera of the same size (Polilov & Makarova, 2017). The
415 same relative volume as in tiny adult Coleoptera possibly follows the tendency of the nervous
416 system of microinsects to increase as the body size decreases (Polilov & Makarova, 2017). It is
417 also supported by the fact that representatives of adult minute Paraneoptera have greater body
418 size, but smaller relative volume of the central nervous system compared to the body size and the
419 relative volume of *M. sylvatica*. The smaller relative volume compared to the one of minute adult
420 Hymenoptera and Paraneoptera larvae could be related to better pronounced effects of
421 miniaturization in adult Hymenoptera and Paraneoptera larvae of the same size.

422 The relative volume of the brain of *M. sylvatica* is similar to the one of adult Coleoptera of
423 the same size, slightly greater than the one of minute adult Paraneoptera, and notably smaller than
424 the ones of other microinsects of the same size (Polilov & Makarova, 2017). The smaller relative
425 volume than in most microinsects of the same size could possibly be related to the simpler
426 behavior and absence of eyes (Jordana et al., 2000). The absence of eyes should be mentioned already
427 with the description of the general morphology

428 Circulatory system and fat body

429 The circulatory system of *M. sylvatica* is simplified, the heart and the vessels are absent. Most
430 of the body cavities of *M. sylvatica* are filled with fat body. In larger species, there is a heart with
431 2–6 pairs of ostia and an aorta (Fernald, 1890; Denis, 1928; Imms, 1957; Schaller, 1970). The
432 same reduction as in *M. sylvatica* was observed in adults and larvae of beetles of the family
433 Ptiliidae (Polilov, 2005; Polilov & Beutel, 2009), larvae of booklice of the family Liposcelididae
434 (Polilov, 2016b), adult hymenopterans of the family Trichogrammatidae (Polilov, 2016d; Polilov,
435 2017), tardigrades (Gross et al., 2019), and some chelicerates (Dunlop, 2019). In microinsects, it

436 is assumed that the diffusion of metabolites is sufficient enough for the transport between the
437 organs (Polilov, 2008; Polilov & Beutel, 2009), which is, apparently, the same case in *M.*
438 *sylvatica*.

439 The relative volume of the circulatory system and fat body of *M. sylvatica* is particularly
440 great, greater than the ones of other microinsects of the same size except Paraneoptera and
441 Coleoptera larvae (Polilov & Makarova, 2017). The high relative volume could be related to the
442 importance of fat body in excretion in Collembola (Schaller, 1970).

443

444 **Female reproductive system**

445 The female reproductive system of *M. sylvatica* has unpaired structures (the ovaries and
446 oviducts). In larger species, it consists of paired ovaries, oviducts and accessory glands, and
447 unpaired spermatheca. We did not observe the accessory glands and spermatheca in *Mesaphorura*
448 *sylvatica*, what may be explained by the fact that they are hardly recognizable even in larger
449 species (Schaller, 1970; Dallai, 2008). The same changes were observed in beetles of the family
450 Ptiliidae, in which both sexes have unpaired structures (Polilov & Beutel, 2009).

451 The relative volume of the reproductive system of *M. sylvatica* is also particularly great; it is
452 smaller only than the ones of some minute adult Coleoptera and minute Hymenoptera (Polilov &
453 Makarova, 2017). The greater relative volume compared to those of most microinsects of the
454 same size could be related to the relative egg size increase with decreasing body size (Polilov,
455 2016a).

456

457 **Digestive and excretory systems**

458 The digestive system of *M. sylvatica* is least modified, compared to larger species (Lubbock,
459 1873; Folsom, 1899; Wolter, 1963; Schaller, 1970). It is straight, without loops or diverticula.
460 Among microinsects, only larvae of booklice of the family Liposcelididae have no loops or
461 pronounced bends (Polilov, 2016b). No salivary glands are found in *M. sylvatica*. Salivary glands
462 in some microinsects are absent as a result of miniaturization (Polilov, 2015a; Polilov, 2015b).
463 We did not observe any muscles of the midgut, the absence which is also a common trait among
464 minute insects (Polilov, 2016a).

465 The relative volume of the digestive system of *M. sylvatica* is similar to those of most minute
466 Coleoptera, notably smaller than those of minute Paraneoptera, but greater than the ones of
467 Hymenoptera and some Coleoptera species of the same size (Polilov & Makarova, 2017).

468

469 **Excretory system**

470 The specialized organs of the excretory system are absent in *Mesaphorura sylvatica*. In larger
471 species, there might be small papillae instead of Malpighian tubes or labial nephridia in the head
472 (Schaller, 1970). Moreover, in collembolans, there are also acinous glands and antennal nephridia
473 (Wolter, 1963). In microinsects, Malpighian tubes do not disappear, but their number decreases
474 (Polilov, 2015a).

475

476 **Musculature**

477 The muscular system of *M. sylvatica* is reduced, compared to those of larger species of
478 *Collembola*, and has 24 pairs of muscles in the head, 51 in the thorax, and 60 in the abdomen
479 (and 1 unpaired muscle); 136 pairs in total. The total number of muscles of all tagmata have not
480 been studied for a single species of springtails, which makes it challenging to compare our results
481 with previous studies.

482 It is challenging to compare muscles of a head in *Collembola*. Folsom (1899) described at
483 least 47 pairs of muscles in the head of a large collembolan *Orchesella cincta* associated with the
484 digestive system and mouthparts. There are 26 pairs of muscles associated with mouthparts
485 (labrum, labium, maxilla, mandible) in details. In addition, he noted 20 pairs of muscles
486 associated with both pharynx and oesophagus (7 of them are the ventral dilators of pharynx,
487 which he later classified as tentorial muscles), but he did not designate them. He mentioned the
488 presence of tentorial muscles (dilators of pharynx, antennal, and muscles connected to the head),
489 but did not even specify the number of these muscles. Folsom (1899) also mentioned two
490 muscles of the palpi, but it is not clear whether he meant two pairs of muscles or two muscles in
491 total. Denis (1928) described at least 73 pairs of muscles in the head of a large collembolan
492 *Anurida maritima* associated with mouthparts, pseudotentorium and the digestive system. He
493 divided the muscles of the head into several groups, but he specified the number of muscles only
494 for some of them. For mouthparts (maxilla and mandible), he remarked that for some muscles he
495 drew a single bundle that included several muscles, but he did not specify the number of them.
496 There are at least 17 pairs of muscles associated with maxilla and mandible in *Anurida maritima*.
497 Moreover, he described all tentorial muscles, and there are at least 45 of them (14 of those are the
498 ventral dilators of pharynx). In addition, he mentioned superlingual muscles (the number was not
499 given), suspensors of the atrium (3 pairs), 8 pairs of antennal muscles (excluding the muscles
500 inside the antenna), and 5 muscles associated with epipharynx and pharynx. He did not specify a
501 number of muscles of labium. Moreover, he described the groups of muscles of heads of two
502 large species *Onychiurus fimetarius* and *Tomocerus catalanus*, but he compared them to *Anurida*
503 *maritima*, without any details on exact numbers. With *Tomocerus catalanus* he refers to the study
504 of Hoffmann (1908). ~~Hoffmann (1908)~~^{who} described at least 53 pairs of muscles in the head of a
505 large collembolan *Tomocerus plumbeus*. There are 35 muscles associated with mouthparts
506 (maxilla, mandible, and labium), 15 muscles of pharynx, and 3 muscles of glossa. Hoffmann
507 (1908) also mentioned presence of tentorial muscles, but did not specify the number of them.
508 There are 15 pairs of muscles in *M. sylvatica* associated with maxilla and mandible, one pair of
509 antennal muscles, one pair of *oesophageal* muscles, two pairs of suspensory pseudotentorial
510 muscles, and three pairs of muscles, possibly associated with hypopharynx. Moreover, there are
511 two pairs of dorsal longitudinal muscles, while this group of muscles was mentioned, but not
512 described in the literature. In this study, we have not described any other tentorial muscles, except
513 those mentioned above, and internal antennal muscles due to their small size. *M. sylvatica* has 15
514 pairs of muscles of maxilla and mandible, which is less than in larger collembolans *O. cincta*
515 (20), *A. maritima* (17), and *T. plumbeus* (29). *M. sylvatica* does not have muscles of labium or
516 labrum, while there are 6 pairs of them in *O. cincta* and at least 6 pairs in *T. plumbeus*. *M.*
517 *sylvatica* has only one pair of dorsal dilators of the oesophagus and no dorsal dilators of the
518 pharynx, which is less than in larger collembolans *O. cincta* (13), *T. plumbeus* (15).

519 A total of 51 pairs of muscles were described in the thorax of *Neanura muscorum* (Bretfeld, 520 1963) and a total of 37 pairs of muscles were described in the thorax of *O. cincta* (Bretfeld, 521 1963). Any muscles associated with legs have not been described in this study. We found 36 pairs 522 of muscles not associated with legs in the thorax of *M. sylvatica* and 17 pairs of muscles 523 associated with legs. There is a greater similarity between the muscles of *M. sylvatica* and *O.* 524 *cincta* (both species have greater numbers of dorsoventral muscles) than between the muscles of 525 *M. sylvatica* and *N. muscorum*. *M. sylvatica* lacks several dorsoventral and intersegmental 526 muscles, while the amount of longitudinal muscles remain the same. It is important to note that 527 Bretfeld (1963) described several muscles in the thorax as muscles possibly associated with the 528 head. Two of them, Lb dlm1 and Lb dlm2, we describe as dlm1 and dlm2 in the section on the 529 muscles of the head. A total of 52 pairs and 9 unpaired muscles were described in the abdomen of 530 *N. muscorum* (Bretfeld, 1963) and a total of 45 pairs of muscles were described in the abdomen 531 of *O. cincta* (Bretfeld, 1963). No muscles associated with the ventral tube, rectum, or anal lobes 532 were described in these collembolans, except one in one species (VTm in *O. cincta*). We found 533 43 pairs and one unpaired muscle in the abdomen of *M. sylvatica*, not connected to the ventral 534 tube, as well as 11 pairs of muscles associated with the ventral tube, four with the rectum, and 535 two with the anal lobes. As for the thorax, *M. sylvatica* lacks many dorsoventral muscles, some 536 intersegmental muscles and almost all transverse unpaired muscles.

537 Minute adult Coleoptera have 19 or 20 pairs of muscles in the head (*Sericoderus lateralis* and 538 *Mikado* sp., respectively) and 48 or 49 pairs of muscles in the thorax (*Mikado* sp. and *S. lateralis*, 539 respectively) (Polilov & Beutel, 2009; Polilov & Beutel, 2010). Compared to them, the number 540 of the head pairs of muscles (24) and thoracic pairs of muscles (51) in *M. sylvatica* is slightly 541 greater. Larvae of minute Coleoptera have 16 pairs of muscles in the head (*Mikado* sp. and *S.* 542 *lateralis*) (Polilov & Beutel, 2009; Polilov & Beutel, 2010) and 46 (*Mikado* sp., the first instar 543 larvae), 52 (*Mikado* sp., the last instar larvae) 63 (*S. lateralis*, the first instar larvae) or 64 (*S.* 544 *lateralis*, the last instar larvae) pairs of muscles in the thorax. The number of thoracic pairs of 545 muscles in minute *M. sylvatica* (51) is close to the number of thoracic muscles in the last instar 546 larvae of *Mikado* sp., but smaller than in larvae of *S. lateralis*. Minute Hymenoptera have 18 547 (*Megapragma mymaripenne*, *Trichogramma evanescens*) (Polilov, 2016d; Polilov, 2017), or 20 548 (*Anaphes flavipes*) (Polilov, 2016c) muscles in the head and 45 (*M. mymaripenne*), 50 (*A.* 549 *flavipes*), 52 (*T. evanescens*), or 53 (*Gonatocerus morrilli*) (Vilhelmsen et al., 2010) muscles in 550 the thorax. Compared to them, the number of the head muscles of *M. sylvatica* (24) is slightly 551 greater, but the number of the thoracic muscles of this species (51) is greater only compared to 552 those of *M. mymaripenne* and *A. flavipes*. Minute adult booklice *Liposcelis bostrychophila* have 553 33 pairs of muscles in the head and 57 pairs of muscles in the thorax (Polilov, 2016b). The larvae 554 of *L. bostrychophila* have 29 pairs of muscles in the head and 55 pairs of muscles in the thorax 555 (Polilov, 2016b). Compared to both larvae and adults, the number of the head pairs of muscles 556 (24) and thoracic pairs of muscles (51) of *M. sylvatica* is notably smaller. Minute adult thrips 557 *Heliothrips haemorrhoidalis* have 19 pairs of muscles in the head and 60 pairs of muscles in the 558 thorax (Polilov & Shmakov, 2016). Compared to them, the number of the head pairs of muscles 559 (24) of *M. sylvatica* is greater, but the number of the thoracic pairs of muscles (51) is notably 560 smaller. Larvae of *H. haemorrhoidalis* have 18 pairs of muscles in the head and 41 pairs of

561 muscles in the thorax (Polilov & Shmakov, 2016). Compared to them, the number of the head
562 pairs of muscles (24) and thoracic pairs of muscles (51) of *M. sylvatica* is notably greater. Minute
563 Neuroptera *Coniopteryx pygmaea* (Randolf et al., 2016) have 46 pairs of muscles in the head.
564 Compared to them, the number of the head pairs of muscles (24) of *M. sylvatica* is notably lesser.

565 In all studied microinsects, there are three groups of abdominal muscles: dorsoventral, dorsal
566 longitudinal, and ventral longitudinal (Polilov, 2016a). All three groups are present in the
567 abdomen of *M. sylvatica*.

568 In conclusion, the musculature system of *M. sylvatica* shows minor reductions in numbers of
569 muscles compared to larger species. Studies on microinsects also show that the changes in
570 musculature are minor, and this system is rather conserved (Polilov, 2015a). The number of
571 muscles in *M. sylvatica* is slightly greater than those in most microinsects.

572 The relative volume of the musculature of *M. sylvatica* is smaller than those of other
573 microinsects of the same size except Coleoptera larvae (Polilov & Makarova, 2017). The smaller
574 relative volume compared to those of other microinsects could be explained by absence of flight
575 musculature.

576

577 CONCLUSIONS Use active voice in the conclusions

578 The anatomy of the minute collembolan *M. sylvatica* has been studied for the first time. ~~It~~
579 ~~is shown~~ We show that, despite the small body size, some systems (the highly developed elements of
580 endoskeleton, or complexity of the musculature system) are not greatly changed compared to
581 larger relatives.

582 Possible miniaturization effects are revealed; most of them are found in microinsects (the
583 absence of organs of the circulatory system, unpaired ovaries and oviducts of the female
584 reproductive system, absence of midgut musculature and salivary glands, reduction of some
585 muscles).

586 We found unique features of the anatomy of *M. sylvatica*: two pairs of apertures in the
587 brain with three pairs of muscles going through it.

588 Reduction in size leads to changes in different organs and organ systems. It is crucial to
589 study miniaturization effects in other Panarthropoda including other minute collembolans to
590 broaden our knowledge on miniaturization in living organisms.

591

592 ACKNOWLEDGMENTS

593 We thank Natalia Kuznetsova (MSPU) and Pyotr Petrov (MSU) for their helpful
594 discussions.

595

596 REFERENCES

- 597 Altster H, 1968. Die Ultrastruktur der Labialnephridien von *Onychiurus quadriocellatus*
598 (Collembola). *Journal of Ultrastructure Research* 24:349–366 DOI: 10.1016/S0022-
599 5320(68)80042-5
- 600 Beutel RG, Haas A. 1998. Larval head morphology of *Hydroscapha natans* (Coleoptera,
601 Myxophaga) with reference to miniaturization and the systematic position of
602 Hydroscaphidae. *Zoomorphology* 118:103–116 DOI: 10.1007/s004350050061

larger species
of collembola? Can you speculate if the reduction is reflected in the
ability of *M. sylvatica* to move, or something else?

- 603 Beutel RG, Pohl H, Hunefeld F. 2005. Strepsipteran brain and effect of miniaturization (Insecta).
604 *Arthropod Structure and Development* 34:301–313 DOI: 10.1016/j.asd.2005.03.001
- 605 Bretfeld G. 1963. Zur Anatomie und Embryologie der Rumpfmuskulatur und der abdominalen
606 Anhänge der Collembolen. *Zoologische Jahrbücher Anatomie* 80:309–384
- 607 Bitsch J. 2012. The controversial origin of the abdominal appendage-like processes in immature
608 insects: Are they true segmental appendages or secondary outgrowths? (Arthropoda
609 Hexapoda). *Journal of morphology* 273:919–931 DOI: 10.1002/jmor.20031
- 610 D'Haese CA. 2003. Homology and morphology in Poduromorpha (Hexapoda, Collembola).
611 *European Journal of Entomology* 101:385–407 DOI: 10.14411/eje.2003.060
- 612 Dallai R, Cavallo V, Falso LF, Fanciulli PP. 2000. The fine structure of the male genital organs of
613 *Allacma fusca* (L.) (Collembola, Symphypteona). *Pedobiologia* 44 (3-4):202–209 DOI:
614 10.1078/S0031-4056(04)70040-2
- 615 Dallai R, Zizzari ZV, Fanciulli PP. 2008. Fine structure of the spermatheca and of the accessory
616 glands in *Orchesella villosa* (Collembola, Hexapoda). *Journal of Morphology* 269:464–478
617 DOI: 10.1002/jmor.10595
- 618 Davies WM. 1927. On the tracheal system of Collembola, with special reference to that of
619 *Sminthurus viridis* Lubb. *The Quarterly Journal of Microscopical Science*, N.S. 281:15–30
- 620 Denis JR. 1928. Études sur l'anatomie de la tête de quelques collemboles suivies de
621 considérations sur la morphologie de la tête des insectes. *Archives de Zoologie
622 Experimentale et Générale* 68:1-291
- 623 Dunlop J. 2019. Miniaturisation in Chelicerata. *Arthropod Structure and Development* 48:20–34
624 DOI: 10.1016/j.asd.2018.10.002
- 625 Eisenbeis G, Wichard W. 1975. Feinstruktureller und histochemischer Nachweis des
626 Transportepithels am Ventraltubus symphypleonaler Collembolen (Insecta, Collembola).
627 *Zeitschrift für Morphologie der Tiere* 81:103–110
- 628 Fernald HT. 1890. The relationships of Arthropods. *Studies from the Biological Laboratory of
629 Johns Hopkins University* 4:431–513
- 630 Folsom JW. 1899. The anatomy and physiology of the mouth-parts of the Collembola *Orchesella*
631 *cincta* L. *Bulletin of the Museum of Comparative Zoology at Harvard College* 35 (2):7–39
- 632 Gross V, Treffkorn S, Reichelt J, Epple L, Lüter C, Mayer G. 2019. Miniaturization of tardigrades
633 (water bears): Morphological and genomic perspectives. *Arthropod Structure and
634 Development* 48:12–19 DOI: 10.1016/j.asd.2018.11.006
- 635 Hanken J, Wake DB. 1993. Miniaturization of body size: organismal consequences and
636 evolutionary significance. *The Annual Review of Ecology, Evolution, and Systematics*
637 24:501–19 DOI:10.1146/annurev.es.24.110193.002441
- 638 Hoffmann RW. 1908. Über die Morphologie und die Funktion der Kauwerkzeuge und über des
639 Kopfnervensystem von *Tomocerus plumbeus* L. III Beitrag zur KennPstis der Collembolen.
640 *Zeitschrift für wissenschaftliche Zoologie* 89:598-689
- 641 Hopkin SP. 1997. Biology of the Springtails (Insecta: Collembola). Oxford University Press,
642 Oxford, UK

- 643 Humbert W. 1975. Ultrastructure des Nephrocytes céphaliques et abdominaux chez *Tomocerus*
644 *minor* (Lubbock) et *Lepidocyrtus curvicollis* Bourlet (Collemboles). *International Journal*
645 *of Insect Morphology and Embryology* 4:307–318 DOI: 10.1016/0020-7322(75)90019-7
- 646 Humbert W. 1979. The midgut of *Tomocerus minor* Lubbock (Insecta, Collembola):
647 ultrastructure, cytochemistry, ageing and renewal during a moulting cycle. *Cell and Tissue*
648 *Research* 196:39–57 DOI: 10.1007/BF00236347
- 649 Imms AD. 1939. On the antennal musculature in insects and other arthropods. *The Quarterly*
650 *Journal of Microscopical Science* 2:273–320
- 651 Imms AD. 1957. A general textbook of Entomology, 10th edn., revised by O. W. Richards and R.
652 G. Davies. London: Methuen
- 653 Jałoszyński P, Hünefeld F, Beutel RG. 2012. The evolution of “deformed” brains in ant-like stone
654 beetles (Scydmaeninae, Staphylinidae). *Arthropod Structure and Development* 41 (1):17–28
655 DOI: 10.1016/j.asd.2011.07.003
- 656 Jordana R, Baquero E, Montuenga LM. 2000. A new type of arthropod photoreceptor. *Arthropod*
657 *Structure and Development* 29 (4):289–293
- 658 Koch M. 2000. The cuticular cephalic endoskeleton of primarily wingless hexapods: ancestral
659 state and evolutionary changes. *Pedobiologia* 44:374–385
- 660 Kollmann M, Huetteroth W, SchachPster J. 2011. Brain organization in Collembola (springtails).
661 *Arthropod Structure and Development* 40:304–316 DOI: 10.1016/j.asd.2011.02.003
- 662 Lécaillon A. 1902a. Sur le testicule d'*Anurida maritima*. *Bulletin de la Société entomologique de*
663 *France* 7(4):64–67
- 664 Lécaillon A. 1902b. Sur le testicule d'*Anurophorus laricis* Nie. *Bulletin de la Société*
665 *Philomatique de Paris* 4:46–52
- 666 Lubbock J. 1873. Monograph of the Collembola and Thysanura. Ray Society, London.
- 667 Manton SM. 1964. Mandibular mechanisms and the evolution of arthropods. *Philosophical*
668 *Transactions of the Royal Society of London B* 247
- 669 Minelli A, Fusco G. 2019. No limits: Breaking constrains in insect miniaturization. *Arthropod*
670 *Structure & Development*. 48:4–11 DOI: 10.1016/j.asd.2018.11.009
- 671 Mukerji D. 1932. Description of a new species of Collembola and its anatomy. *Record of Indian*
672 *Museum* 34:47–49
- 673 Philitschenko J. 1907. Anatomische Studien über Collembola. *Zeitschrift für wissenschaftliche*
674 *Zoologie* 85:270–304
- 675 Polilov AA. 2005. Anatomy of the feather-winged beetles *Acrotrichis montandoni* and *Ptilium*
676 *myrmecophilum* (Coleoptera, Ptiliidae). *Entomological Review* 85:467–475
- 677 Polilov AA. 2008. Anatomy of the smallest of the Coleoptera, feather-winged beetles from tribe
678 Nanosellini (Coleoptera, Ptiliidae) and limits to insect miniaturization. *Zoologicheskii*
679 *Zhurnal* 87(2):181–188 [Entomological Review 2008; 88(1): 26–33]
- 680 Polilov AA, Beutel, RG. 2009. Miniaturization effects in larvae and adults of *Mikado* sp.
681 (Coleoptera: Ptiliidae), one of the smallest free-living insects. *Arthropod Structure and*
682 *Development* 38:247–270 DOI: 10.1016/j.asd.2008.11.003
- 683 Polilov AA, Beutel RG. 2010. Developmental stages of the hooded beetle *Sericoderus lateralis*
684 (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of

- 685 miniaturization. *Arthropod Structure and Development* 39:52–69 DOI:
686 10.1016/j.asd.2009.08.005
- 687 Polilov AA. 2012. The smallest insects evolve anucleate neurons. *Arthropod Structure and*
688 *Development* 41:29–34 DOI: 10.1016/j.asd.2011.09.001
- 689 Polilov AA. 2015a. Small is beautiful: features of the smallest insects and limits to
690 miniaturization. *The Annual Review of Entomology* 60:103 – 121 DOI: 10.1146/annurev-
691 ento-010814-020924
- 692 Polilov AA. 2015b. Consequences of miniaturization in insect morphology. *Moscow University*
693 *Biological Sciences Bulletin* 70 (3):136–142 DOI: 10.3103/S0096392515030098
- 694 Polilov AA. 2016a. *At the size limit - effects of miniaturization in insects*. Springer International
695 Publishing. DOI: 10.1007/978-3-319-39499-2
- 696 Polilov AA. 2016b. Anatomy of adult and first instar nymph of book lice *Liposcelis*
697 *bostrychophila* (Psocoptera: Liposcelididae). *Zoologicheskii Zhurnal* 95(11):1305–1321.
698 [Entomological Review 96(9):1165–1181]. DOI: 10.7868/S0044513416090087.
- 699 Polilov AA. 2016c. Features of the structure of Hymenoptera associated with miniaturization: 1.
700 Anatomy of the fairyfly *Anaphes flavipes* (Hymenoptera, Mymaridae). *Zoologicheskii*
701 *Zhurnal* 95(5):567–578. [Entomological Review 96 (4):407 –418]. DOI:
702 10.7868/S004451341605010X
- 703 Polilov AA. 2016d. Features of the structure of Hymenoptera associated with miniaturization: 2.
704 Anatomy of the *Trichogramma evanescens* (Hymenoptera, Trichogrammatidae).
705 *Zoologicheskii Zhurnal* 95(6):699–711. [Entomological Review 96 (4):419 –431]. DOI:
706 10.7868/S0044513416060155
- 707 Polilov AA. 2017. Anatomy of adult *Megaphragma* (Hymenoptera: Trichogrammatidae), one of
708 the smallest insects, and new insight into insect miniaturization. *PLOS One* 12
709 (5):e0175566 DOI: 10.1371/journal.pone.0175566
- 710 Polilov AA, Shmakov AS. 2016. The anatomy of the thrips *Heliothrips haemorrhoidalis*
711 (Thysanoptera, Thripidae) and its specific features caused by miniaturization. *Arthropod*
712 *Structure and Development* 45:496 -507 DOI: 10.1016/j.asd.2016.09.002
- 713 Polilov AA, Makarova AA. 2017. The scaling and allometry of organ size associated with
714 miniaturization in insects: A case study for Coleoptera and Hymenoptera. *Scientific Reports*
715 7:43–95 DOI: 10.1038/srep43095
- 716 Polilov AA, Makarova AA, Kolesnikova UK. 2019. Cognitive abilities with a tiny brain:
717 neuronal structures and associative learning in the minute *Nephantes titan* (Coleoptera:
718 Ptiliidae). *Arthropod Structure and Development* 48:98-102 DOI:
719 10.1016/j.asd.2018.11.008
- 720 Prowazek S. 1900. Bau und Entwicklung der Collembolen. *Arbeiten aus dem Zoologischen*
721 *Instituten der Universität Wien und der Zoologischen Station in Triest* 12:335–370
- 722 Randolph S, Zimmermann D, Aspöck U. 2017. Head anatomy of adult *Coniopteryx pygmaea*
723 Enderlein 1906: effects of miniaturization and the systematic position of Coniopterygidae
724 (Insecta: Neuroptera). *Arthropod Structure and Development* 46:304–322 DOI:
725 10.1016/j.asd.2016.12.004
- 726 Schaller F. 1970. 1. Collembola (Springschwanze). *Handbuch der Zoologie*, Berlin 4(2)

- 727 Snodgrass R. 1935. Principles of insect morphology. New York: McGraw-Hill Book Company
- 728 van der Woude E, Martinus EH, Smid HM. 2018. Differential effects of brain size on memory
- 729 performance in parasitic wasps *Animal Behaviour*, 141:57–66 DOI:
- 730 10.1016/j.anbehav.2018.05.011
- 731 Verhoef HA, Bosman C, Bierenbroodspot A, Boer HH. 1979. Ultrastructure and function of the
- 732 labial nephridia and the rectum of *Orchesella cinta* (L) (Collembola). *Cell and tissue*
- 733 *research* 198 (2):237–246
- 734 Vilhelmsen L, Mikó I, Krogmann L. 2010. Beyond the wasp-waist: Structural diversity and
- 735 phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera).
- 736 *Zoological Journal of the Linnean Society* 159:22–194 DOI: 10.1111/j.1096-
- 737 3642.2009.00576.x
- 738 Willem V. 1900. Recherche sur les Collemboles et les Thysanoures. *Mémoires couronnés et*
- 739 *mémoires des savants étrangers / publiés par l'Académie royale des sciences, des lettres et*
- 740 *des beaux-arts de Belgique* 58:1–144
- 741 Willem V, Sabbe H. 1897. Le tube ventral et les glandes céphaliques des *Sminthures*. *Annales de*
- 742 *la Société entomologique de Belgique* 41:130–132
- 743 Wolter H. 1963. Vergleichende Untersuchungen zur Anatomie und Funktionsmorphologie der
- 744 stechend-saugenden Mundwerkzeuge der Collembolen. *Zoologische Jahrbücher, Anatomie*
- 745 81:27–100
- 746 Yavorskaya MI, Anton E, Jałoszyński P, Polilov A, Beutel RG. 2018. Cephalic anatomy of
- 747 Sphaeriusidae and a morphology-based phylogeny of the suborder Myxophaga
- 748 (Coleoptera). *Systematic Entomology* 43:777–797 DOI: 10.1111/syen.12304
- 749 Zimdars B, Dunger W. 1994. Synopses on Palaearctic Collembola. Volume 1. Tullberginae.
- 750 Abhandlungen und Berichte des Naturkundemuseums Görlitz 68

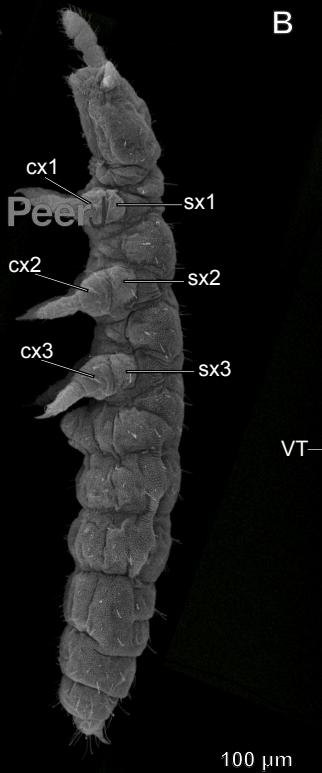


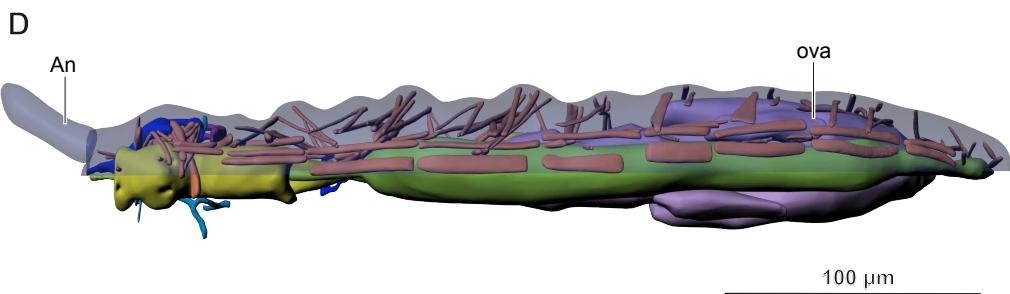
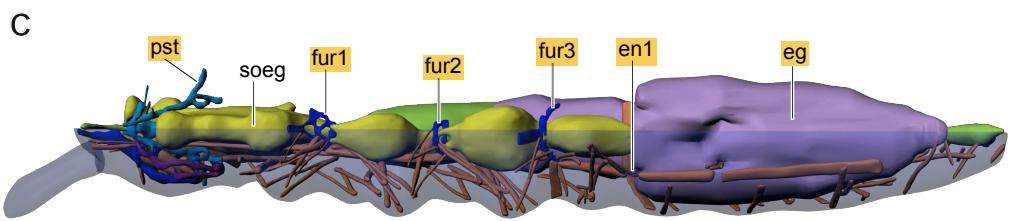
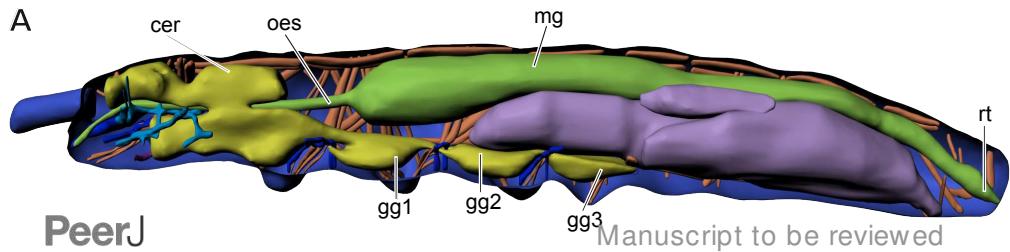
Figure 1(on next page)

Habitus of *Mesaphorura sylvatica*, SEM

(A) lateral view; (B) ventral view; (C) dorsal view; ao — anal opening, as — anal spine, cx1, 2, 3 — pro-, meso-, and metacoxae, go — genital opening, PAO — postantennal organ, sx1, 2, 3 — pro-, meso, and metasubcoxae, vt — ventral tube.

Add a note of the absence of external furca and eyes

Throughout the figures and figure legends: Make sure all abbreviations found in the figure are explained in the figure legend (except when it's stated that they are in the main text), and that all of the terms explained in the legend are found in the figure!




A**B****C**

The scale bars: is the individual in C really so much smaller than A and B?

Figure 2(on next page)

Internal morphology of *Mesaphorura sylvatica*, 3D

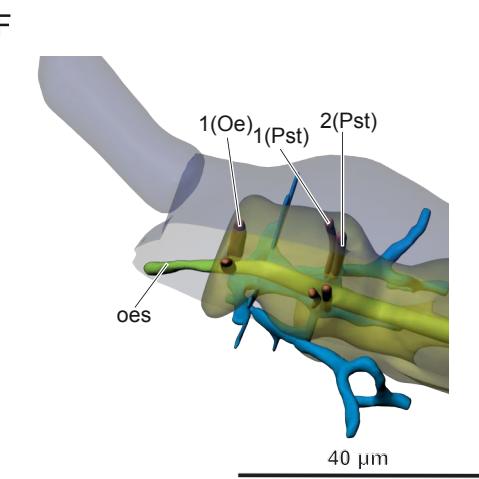
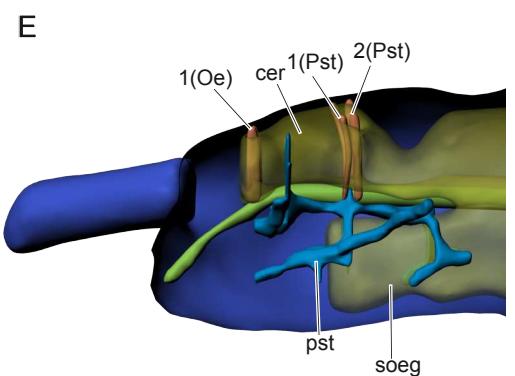
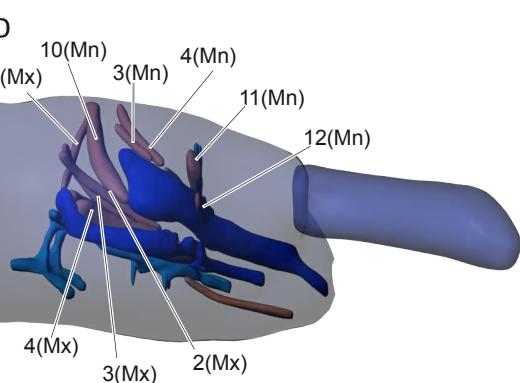
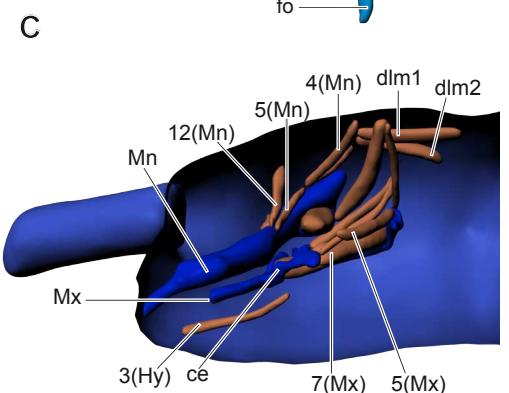
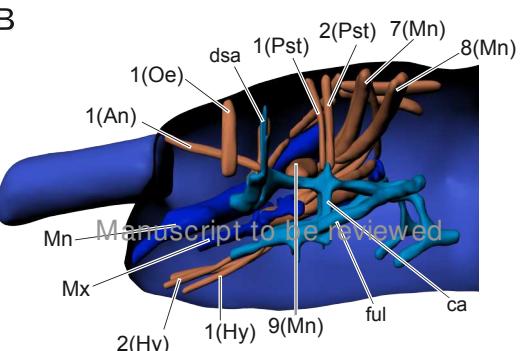
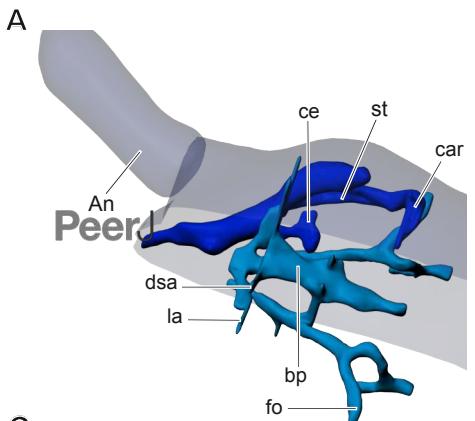
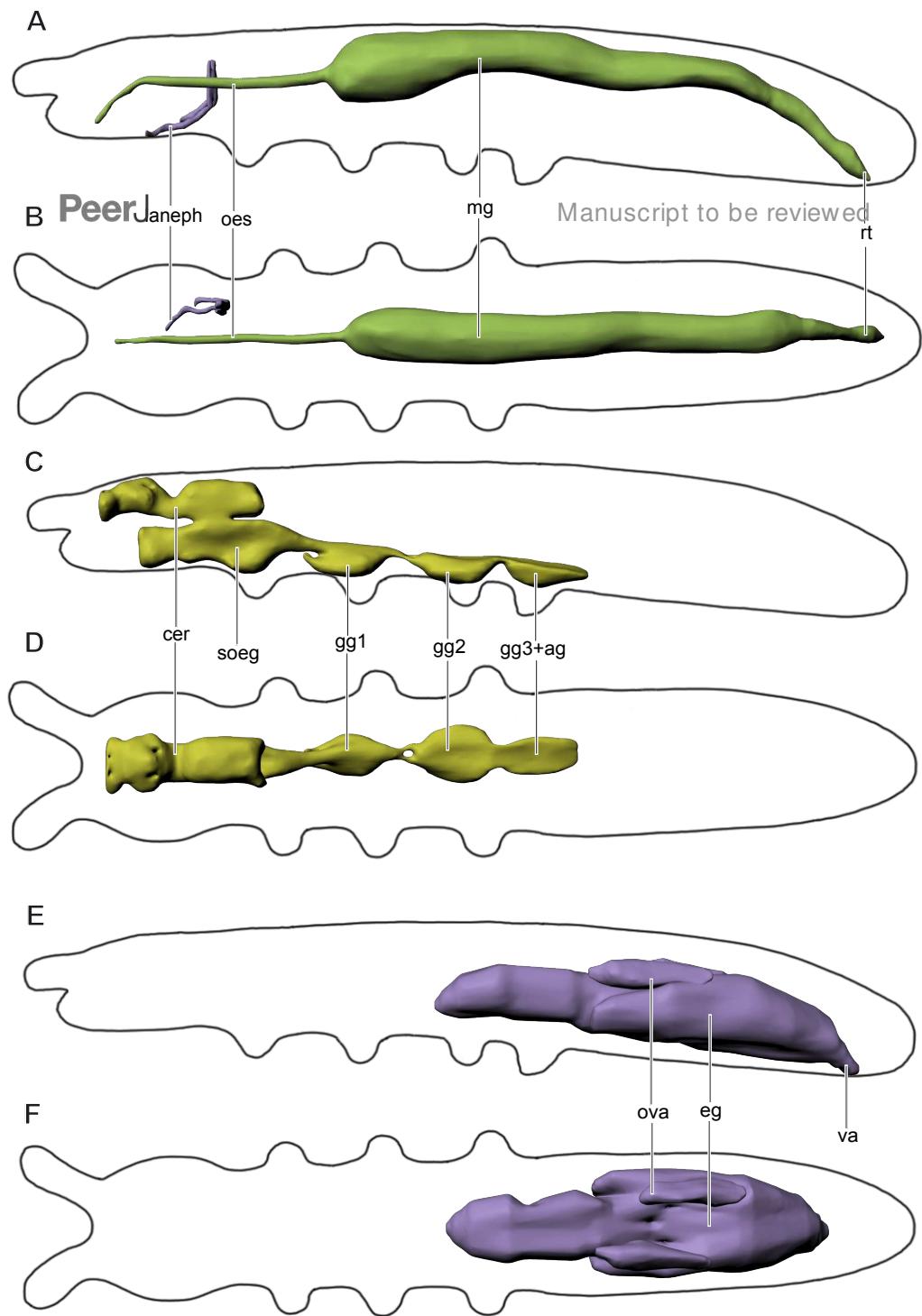






Colors: blue — cuticle, light blue - tentorium, green — digestive system, yellow — central nervous system, brown — musculature, purple — reproductive system, dark violet - excretory system: (A) lateral internal view; (B) lateral external view; (C) ventral view; (D) dorsal view; an — antennae, cer — brain, cx1, 2, 3 — pro-, meso-, and metacoxae, gg1, 2, 3+ag — pro-, meso-, and metathoracic+abdominal ganglia, mg — midgut, oes — oesophagus, ova — ovary lobe with eggs, ov — ovary lobe without eggs, rt — rectum, soeg — supraoesophageal ganglion, VT — ventral tube.

Figure 3(on next page)

Anatomy of head in *Mesaphorura sylvatica*, 3D

(A, F) dorsolateral view, (B, C, E) lateral internal view, (D) lateral external view. bp—body of pseudotentorium, ca—connecting arm, car—cardo, ce—chitinous expansion, cer — cerebrum, dsa—dorsal suspensory arm, fo—foot, ful—fulcrum, la — lateral arm, Mn — mandible, Mx — maxillae, oes—oesophagus, soeg — supraoesophageal ganglion, st—stipes. Musculature see text.


Figure 4(on next page)

Digestive and excretory (A, B), nervous (C, D), and reproductive (E, F) systems of *Mesaphorura sylvatica*, 3D

(A, C, E) lateral view; (B, D, F) dorsal view. cer — brain, eg — ovary lobe with eggs, gg1, 2, 3+ag — pro-, meso-, and metathoracic+abdominal ganglia, mg — midgut, oes — oesophagus, ova — ovary lobe without eggs, rt — rectum, soeg — supraoesophageal ganglion, va — vagina.

Sub?

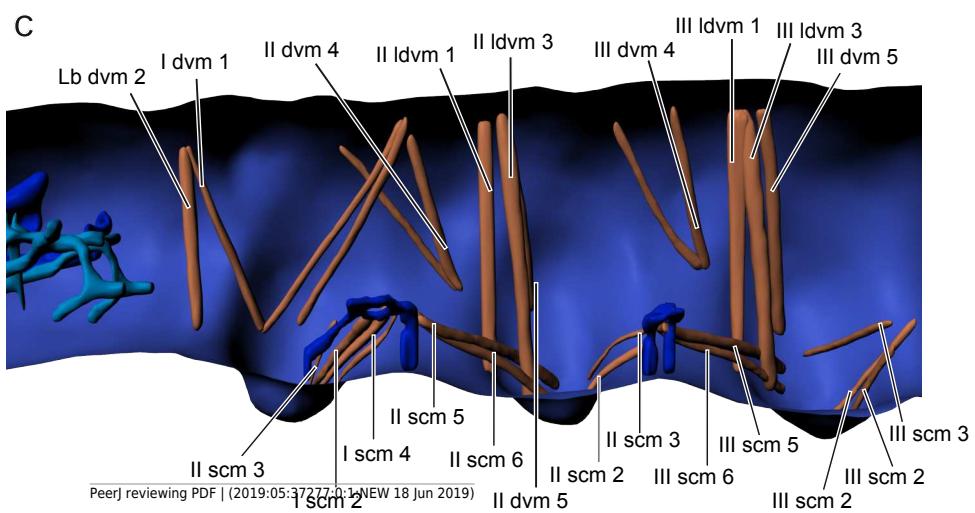
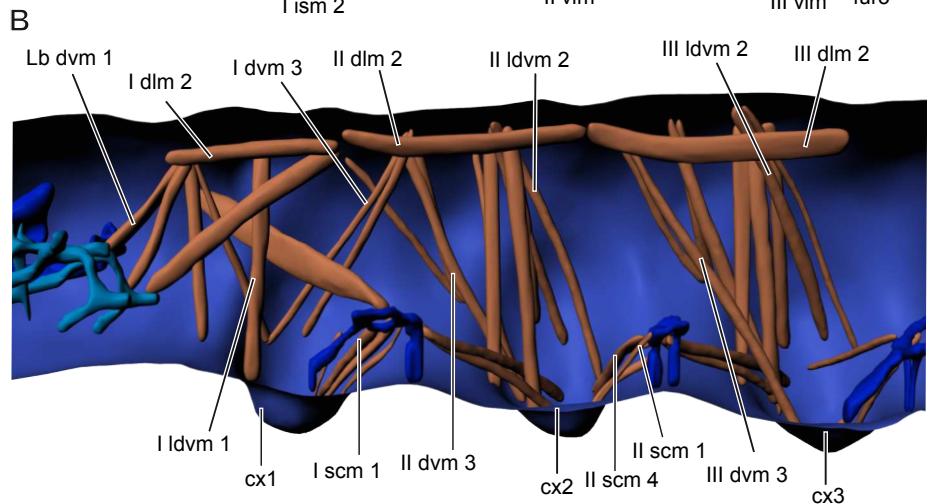


laneph - ?

Figure 5(on next page)

Musculature of thorax in *Mesaphorura sylvatica*, 3D

(A – C) lateral internal view. cx1, 2, 3 — pro-, meso-, and metacoxae, fur1, 2, 3 — pro-, meso-, and metafurca-like structures, pst — pseudotentorium. Musculature see text.

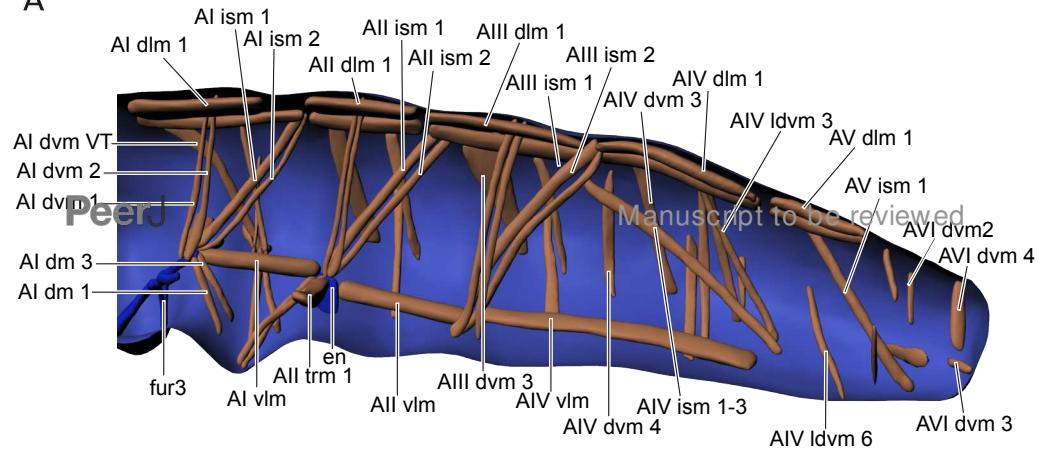
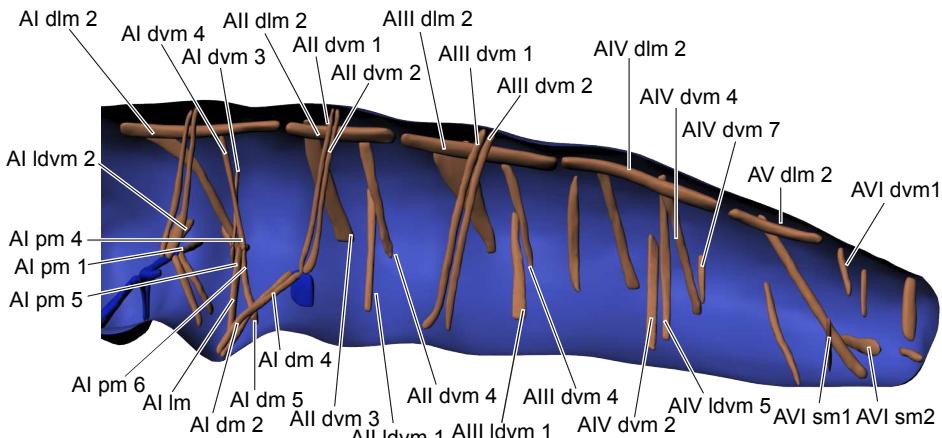


40 μ m

Figure 6(on next page)

Musculature of abdomen in *Mesaphorura sylvatica*, 3D

(A — B) lateral internal view. fur3 — metafurca-like structure, en — endosternite.

Musculature see text.

A**B**