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Animals display unique characteristics related to small body size, and in recent years
miniaturization has been intensely studied in insects. However, the effects of
miniaturization have been poorly studied in other arthropods. Collembola, or springtails,
are abundant soil microarthropods and part of a basal hexapod group. Many of them are
notably smaller than one millimeter long, which makes them a good model for studying
miniaturization effects in arthropods. In this study we analyze the anatomy of the minute
springtail Mesaphorura sylvatica (body length 400 µm) for the first time. It is described
using light and scanning electron microscopy and 3D computer reconstruction. Possible
effects of miniaturization are revealed based on a comparative analysis of data from this
study and from studies on the anatomy of larger collembolans. Despite the extremely
small size, some systems of organs, e.g., muscular and digestive, remain complex. On the
other hand, considerable changes in the nervous system have been observed. The brain
has two pairs of apertures with three pairs of muscles running through them, and all
ganglia shifted in their position posteriad by one segment. The relative volumes of the
skeleton, brain, and musculature are smaller than the ones of most microinsects, while the
relative volumes of other systems are greater than or same as in most microinsects.
Comparison of the effects of miniaturization in collembolans with those found in insects
has shown that most of the miniaturization-related features of M. sylvatica have also been
found in other microinsects (shift of the brain into the prothorax, reduced heart, absence
of midgut musculature, etc.), but also has revealed unique features (brain with two
apertures and three pair of muscles going through them), which have not been described
before.
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ABSTRACT

Animals display unique characteristics related to small body size, and in recent years 
miniaturization has been intensely studied in insects. However, the effects of miniaturization have
been poorly studied in other arthropods. Collembola, or springtails, are abundant soil 
microarthropods and part of a basal hexapod group. Many of them are notably smaller than one 
millimeter long, which makes them a good model for studying miniaturization effects in 
arthropods. In this study we analyze the anatomy of the minute springtail Mesaphorura sylvatica 
(body length 400 µm) for the first time. It is described using light and scanning electron 
microscopy and 3D computer reconstruction. Possible effects of miniaturization are revealed 
based on a comparative analysis of data from this study and from studies on the anatomy of larger
collembolans.
Despite the extremely small size, some systems of organs, e.g., muscular and digestive, remain 
complex. On the other hand, considerable changes in the nervous system have been observed. 
The brain has two pairs of apertures with three pairs of muscles running through them, and all 
ganglia shifted in their position posteriad by one segment. The relative volumes of the skeleton, 
brain, and musculature are smaller than the ones of most microinsects, while the relative volumes
of other systems are greater than or same as in most microinsects.
Comparison of the effects of miniaturization in collembolans with those found in insects has 
shown that most of the miniaturization-related features of M. sylvatica have also been found in 
other microinsects (shift of the brain into the prothorax, reduced heart, absence of midgut 
musculature, etc.), but also has revealed unique features (brain with two apertures and three pair 
of muscles going through them), which have not been described before.

Keywords: miniaturization, morphology, anatomy, Collembola, body size 

INTRODUCTION

Miniaturization plays an important role in morphological changes in animals and has become a 
popular area of research (Hanken & Wake, 1993; Polilov, 2016a; etc.). Many arthropods are 
comparable in size with unicellar organisms and are of great interest for studying miniaturization 
in animals.
Morphological traits (rev.: Polilov, 2015a; Polilov, 2016a; Minelli & Fusco, 2019), scaling of 
organs (Polilov & Makarova, 2017), and even cognitive abilities (van der Woude et al., 2018; 
Polilov et al., 2019) associated with miniaturization have been studied in insects. Studies on other
minute Panarthropoda are scarce (Dunlop, 2019; Gross et al., 2019).
Studies on the miniaturization of insects and the anatomy of the smallest insects show significant 
changes in the anatomy of microinsects due to their size. Some of these changes have been found 
among several taxa, e.g., the reduction of circulatory and tracheal systems, absence of midgut 
musculature; compactization, oligomerization, and asymmetry of central nervous system; and 
many more (Polilov, 2016a). However, some of the changes are unique to particular microinsects,
such as complete shift of the brain into the thorax at the adult stage (Polilov & Beutel, 2010) in 
Mikado sp., or the lysis of cell bodies and nuclei of neurons in Megaphragma sp. (Polilov, 2012, 
2017). 

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

PeerJ reviewing PDF | (2019:05:37277:0:1:NEW 18 Jun 2019)

Manuscript to be reviewed

Alessandro
Barra

Alessandro
Testo inserito
correlated with



Many collembolan genera tend to evolve towards smaller body size, and they might become an 
interesting model for research of miniaturization in arthropods. However, such studies on the 
effects of miniaturization in collembolans have not been performed yet, and data on the anatomy 
of minute collembolans are extremely scarce. Previous studies on collembolan anatomy were 
based mostly on larger species. Moreover, the majority of them were concentrated on specific 
systems only. Lubbock (1873) described the anatomy of several species, but studied only the 
largest muscles of the body, and the head musculature was not mentioned. Fernald (1890) 
described the anatomy of Anurida maritima, but of muscular system he studied only the muscles 
associated with the digestive system, and the excretory system was not mentioned. Willem (1900)
briefly described the anatomy of 12 species, but the muscular and excretory systems were not 
mentioned. Prowazek (1900) described the embryology and anatomy of both larvae and adults of 
Isotoma grisea and Achorutes viaticus, but the head musculature was not mentioned. Denis 
(1928) described the anatomy of Anurida maritima, Onychiurus fimetarius, and Tomocerus 

catalanus, but the reproductive system and musculature of the body (except the head 
musculature) were not mentioned. Mukerji (1932) described the digestive, nervous, and excretory
systems, and partly the head musculature of Protanura carpenteri. In addition, there were several
studies on the muscular system of Orchesella cincta (Folsom, 1899; Bretfeld, 1963), Neanura 

muscorum (Bretfeld, 1963), Tomocerus longicornis (Lubbock, 1873), Tomocerus spp. (Eisenbeis 
& Wichard, 1975), Orchesella villosa, Isotomurus palustris, Podura aquatica, and Sminthurus 

viridis (Imms, 1939), digestive system of Tomocerus flavescens (Humbert, 1979), digestive and 
excretory systems of Orchesella cincta (Verhoef et al., 1979), Tomocerus flavescens, Anurida 

maritima, Neanura muscorum, Friesea mirabilis, Brachystomella parvula, Odontella armata 
(Wolter, 1963), and Sminthurus fuscus (Willem & Sabbe, 1897), excretory system of Onychiurus 

quadriocellatus (AlPster, 1968), Tomocerus minor, Lepidocyrtus curvicollis (Humbert, 1975), 
and Orchesella rufescens (Philiptschenko, 1907), respiratory system of Sminthurus viridis 
(Davies, 1927), nervous system of Folsomia candida, Protaphorura armata, and 
Tetrodontophora bielanensis (Kollmann et al., 2011), reproductive system of Allacma fusca 
(Dallai et al., 2000), Orchesella villosa (Dallai et al., 2008), Anurida maritima (Lécaillon, 
1902a), Anurophorus laricis (Lécaillon, 1902b). There were also several reviews (Schaller, 1970; 
Hopkin, 1997). 

The genus Mesaphorura of Collembola includes some of the smaller species, some of 
them only 0.4 long (Zimdars and Dunger, 1994). The external morphology of the genus 
Mesaphorura has been completely and thoroughly investigated as a key to the identification and 
comparison of this genus to other taxa (Zimdars & Dunger, 1994; D’Haese, 2003), but its internal
morphology has never been described. The aim of this work is to study the anatomy of 
Mesaphorura sylavtica for the first time and analyze the effects of miniaturization.

MATERIALS AND METHODS

Materials 

Specimens of Mesaphorura sylvatica Rusek, 1971 were collected in September 2015 at a sand 
beach, Pirogovskoye Reservoir, Moscow Oblast, Russia, using the flotation method. The material
was fixed in alcoholic Bouin’s solution and stored in 70% ethanol. 
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Scanning electron microscopy (SEM)

External morphology was studied using a Jeol JSM-6380 scanning electron microscope following
critical point drying (Hitachi HCP-2) and sputter coating of samples with gold (Giko IB-3).

Histology

The fixed material was dehydrated and embedded in Araldite M. The blocks were cut into series 
of cross sections 1 μm thick and longitudinal sections 0m thick and longitudinal sections 0.5 μm thick and longitudinal sections 0m thick using a Leica RM2255 
microtome. These sections were stained with toluidine blue and pyronine.

Three dimensional computer reconstruction (3D)

The sections were photographed using a Motic BA410 microscope with a ToupTek camera. The 
resulting stack was then aligned and calibrated. 3D reconstructions were created in the program 
Bitplane Imaris using the function of manual segmentation. In addition, we processed the 
reconstructions with the functions of surface smoothing and rendering in the Autodesk Maya 
program. Volumes of organs and the body were calculated using the statistical module of Bitplane
Imaris (Polilov & Makarova, 2017).

Nomenclature

The names of morphological elements are based on Folsom (1899), Snodgrass (1935), Bretfeld 
(1963), Bitsch (2012). The description of the musculature and abbreviations of muscles are based
on Folsom (1899) for the head, Bretfeld (1963) for the thorax and abdomen, and Eisenbeis and 
Wichard (1975) for the ventral tube with some additions. Muscles are named according to the 
nomenclatures used for insects. The following abbreviations are used in descriptions of muscles: 
O, origin; I, insertion.

RESULTS

General morphology

The body is around 400 μm thick and longitudinal sections 0m in length, uniformly pigmented, white in color (Fig. 1). Most of the 
head is occupied by the brain, the suboesophageal ganglion, the mouthparts and the complex 
pseudotentorium; the prothorax is occupied by part of the suboesophageal ganglion, while the 
meso- and metathorax are occupied by the wide midgut and fat body; the abdomen is mainly 
occupied by the reproductive system, with the digestive system above it (Fig. 2, Fig. S1). All 
tagmata have well-developed musculature.

The body volume of M. sylvatica is about 0.8 nl. 

Skeleton

The cuticle thickness is 0.31–1.24 μm thick and longitudinal sections 0m (M = 0.57, n = 80). Tergites are well-developed, sclerites 
and pleurites are hardly distinguishable.
The inner skeletal structures are highly developed. A complex pseudotentorium (Fig. 3) is 
situated in the head. Its body consists of a mandibular tendon in the middle, which continues into 
a thinner longitudinal endoskeletal connective posteriorly. There is a pair of dorsal suspensory 
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arms, connecting the structure with the head capsule anteriorly on the frons. The glossa is 
prolonged behind into a pair of chitinous stalks, called posterior tentorial apodemes by Koch 
(2000), or fulcra (Denis, 1928). They lie externally to the middle line. The enlarged base of the 
stalk is called the foot, and the foot underlies the cardo of the maxilla. They seem to connect with
the head capsule posteriorly possibly with some endoskeletal connectives. A pair of connecting 
arms (bras d'union, Denis, 1928) extend from the pseudotentorial plate downwards and are fused 
with the posterior tentorial apodemes. A pair of lateral arms (bras latéraux, Denis, 1928) extend 
from the anterior part of the pseudotentorial plate, go upward and outward and are inserted into 
the head. 
According to Folsom (1899), there is also a chitinous rod, which is attached to the base of the 
lobe of the lacinia. The chitinous rod has a chitinous expansion, which is an attachment site for 
several maxillary muscles. It is shown in our model as a part of maxilla.
Antecostae are submarginal ridges near the anterior edges of the inner surface of the tergum with 
several body muscles attached to them.
Three ventral furca-like structures are branched and found in the thorax between the first and the 
second thoracic segments, between the second and the third thoracic segments, and between the 
third thoracic segment and the first abdominal segment. Additionally, there is a simple 
rectangular endosternite in the first abdominal segment.
The volume of the skeleton is about 0.05 nl (5.8% of the body volume). 

Digestive and excretory systems

The alimentary canal (Fig. 4) is shaped as a straight tube without loops or diverticula, 
extending from the anterior and ventral area of the head into the terminal abdominal segment. It 
is divided into the fore-, mid-, and hindgut.

The slender foregut is round in cross section and extends posteriorly from the oral cavity. 
It is divided into the pharynx and oesophagus. The slender pharynx is about 4.2 μm thick and longitudinal sections 0m. The 
oesophagus passes through the suboesophageal ganglion and leads into the thicker midgut at the 
level of the metathorax (around the fourth abdominal segment), which consists of one layer of 
cells (6–8 cells in cross section). The oesophagus has one pair of muscles 1(Oe). The first half of 
the midgut is round in cross section, about 27.8 μm thick and longitudinal sections 0m in diameter. The second half is oval in cross 
section. The border between the midgut and the hindgut is indistinguishable. At around the sixth 
abdominal segment, it extends into the wider rectum with four pairs of muscles. The latter 
continues backwards and terminates ventrally at the anus with three anal lobes in the last 
abdominal segment.

Labial nephridia, or tubular glands, the main excretory organs of collembolans, are found 
in the posterior half of the head (Fig. 4). It is composed of a sac, a labyrinth, and a duct. The sac 
is situated posteriorly and continues forward into the labyrinth. The labyrinth follows a hardly 
distinguishable winding course and forms a loop. The labyrinth continues as the duct, which 
opens in the buccal cavity. Other head glands (anterior and posterior salivary glands, globular, or 
acinous glands, and antennal nephridia) were not found in M. sylvatica.

The volume of the digestive and excretory systems is about 0.07 nL (8.6% of the body 
volume).
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Nervous system

The nervous system (Fig. 4) consists of a supraoesophageal ganglion (brain), suboesophageal 
ganglion, and three thoracic ganglia. The brain extends from the bases of the antennae to the 
anterior part of the first thoracic segment. It fills the dorsal portion of the head, but narrows in the
posterior portion of the head (beyond the beginning of the suboesophageal ganglion) and extends 
at the boundary between of the head and the first thoracic segment, it terminates in the anterior 
half of the latter. The brain has a unique structure, with two pairs of apertures with one pair of 
oesophageal 1(Oe) and two pairs of pseudotentorial suspensory muscles 1(Pst), 2(Pst) running 
through them. The suboesophageal ganglion lies in the ventral portion of the head, starting at its 
middle, and continues to the distal margin of the first thoracic segment. Three large ventral 
thoracic ganglia, one in each segment, shift their position by one segment: the first ganglion lies 
in the mesothorax, the second one is in the metathorax, and the third one is in the first abdominal 
segment. They are interconnected by longitudinal cords in intersegments (one in each). As in all 
collembolans, the abdominal ganglia are fused with the third thoracic ganglion.

 The volume of the central nervous system is about 0.05 nL (6.3% of body volume). The 
volume of the brain is about 0.02 nL (2.2% of the body volume).

Muscular system

Musculature of head (Fig. 3, Table S1). 1(Pst) (M. craniotentorialis lateralis): O, medial surface 
of frons, laterad of 2(Pst); I, dorsal surface of pseudotentorial plate, laterad of 2(Pst). 2(Pst) (M. 
craniotentorialis medialis): O, medial surface of frons, mediad of 1(Pst); I, dorsal surface of 
pseudotentorial plate, mediad of 1(Pst). 1(An) (M. antennotentoralis): O, lateral face of first 
antennal segment; I, pseudotentorium. 3(Mn) (M. craniomandibularis posterior): O, posterior 
surface of gena I, dorsolateral surface of basal ridge of mandible, posterad of 4(Mn). 4(Mn) (M. 
craniomandibularis anterior): O, frons, mediad of 3(Mn); I, dorsolateral surface of basal ridge of 
mandible, anterad of 3(Mn), posterad of 5(Mn). 5(Mn) (M. tentoriomandibularis): O, anterior arm
of pseudotentorium; I, dorsolateral surface of mandible, anterad of 4(Mn). 7(Mn) (M. 
craniomandibularis): O, frons, along with 1(Mx), mediad of 10(Mn); I, ventroposterior area, outer
angle of large triangular opening of mandible along with 8(Mn), 10(Mn). 8(Mn) (M. 
craniomandibularis): O, posterior surface of frons, crossing median plane, posterad of 7(Mn); I, 
ventroposterior area, outer angle of large triangular opening of mandible along with 7(Mn), 
10(Mn). 9(Mn) (M. tentoriomandibularis): O, base of pseudotentorium; I, large triangular 
opening (median surface) of mandible. 10(Mn) (M. craniomandibularis): O, frons, laterad of 
7(Mn); I, ventroposterior area, outer angle of large triangular opening of mandible along with 
7(Mn), 8(Mn). 11(Mn) (M. craniomandibularis): O, anterior surface of area antennalis, near 
antennal base, ventrad of 12(Mn); I, lateral surface of mandible, laterad of 12(Mn). 12(Mn) (M. 
craniomandibularis): O, anterior surface of area antennalis, dorsad of 11(Mn); I, lateral surface of
mandible, mediad of 11(Mn). 1(Mx) (M. craniocardinalis): O, dorsomedial area of occiput; I, 
lateral edge of cardo, dorsad of 5(Mx). 2(Mx) (M. craniostipitalis medialis): O, posterior surface 
of gena, ventrad of 3(Mx); I, lateral edge of chitinous expansion, mediad of 3(Mx). 3(Mx) (M. 
craniostipitalis lateralis): O, posterior surface of gena, dorsad of 2(Mx); I, median edge of 
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chitinous expansion, laterad of 2(Mx). 4(Mx) (M. maxillaris internus 1): O, anterior surface of 
cardo; I, dorsoventral surface of chitinous expansion. 5(Mx) (M. tentoriocardinalis): O, base of 
pseudotentorium; I, concavity of cardo, ventrad of 1(Mx). 7(Mx) (M. maxillaris internus 2): O, 
median surface of stipes; I, dorsolateral surface of chitinous expansion. 1–3(Hy) (M. 
craniohypopharyngealis): O, anterioventral area of the head capsule; I, hypopharynx. Three very 
small obscure muscles. 1(Oe) (M. cranioesophagialis): O, anteriomedial surface of area 
antennalis; I, dorsal surface of oesophagus. dlm1 (M. occiputo-cranialis medialis): O, occiput, 
mediad of dlm2; I, medial surface of frons, mediad of dlm2. dlm2 (M. occiputo-cranialis 
lareralis): O, occiput, laterad of dlm1; I, medial surface of frons, laterad of dlm1.
Musculature of thorax (Fig. 5, Table S1). Prothorax. I dlm1 (M. antecosta-occipitalis medialis): 
O, antecosta I, mediad of I dlm2; I, occiput, mediad of I dlm2. I dlm2 (M. antecosta-occipitalis 
lateralis): O, antecosta I, laterad of I dlm1; I, occiput, laterad of I dlm1. I ism1 (M. antecosta-
pseudotentoralis): O, antecosta I; I, posterior area of fulcrum. I ism2 (M. profurca-occipitalis): O, 
dorsal area of profurca-like structure; I, dorsolateral area of occiput. I dvm1 (M. cervico-coxalis):
O, dorsolateral cervical membrane; I, anterior procoxal rim. I dvm3 (M. pronoto-coxalis lateralis;
two bands): O, anterior region of pronotum; I, lateral procoxal rim and anterior procoxal rim 
along with instertion of I dvm2. I ldvm1 (M. pronoto-coxalis medialis): O, anterolateral part of 
pronotum; I, anterior procoxal rim. Lb dvm1 (M. occiputo-pseudotentoralis; two bands): O, 
dorsal area of occipitale; I, posterior area of fulcrum. Lb dvm2 (M. occiputo-cervicalis): O, dorsal
area of occipitale; I, ventral cervical membrane. I vlm (M. profurca-pseudotentoralis): O, anterior
part of profurca-like structure; I, union arm of pseudotentorium. I scm1 (M. profurca-coxalis 1): 
O, anterior face of profurca-like structure; I, posterior procoxal rim, laterad of I scm2. I scm2 (M.
profurca-coxalis 2): O, ventral face of profurca-like structure; I, posterior procoxal rim, mediad 
of I scm1. I scm3 (M. profurca-coxalis 3): O, ventral face of profurca-like structure along with I 
scm4; I, lateral procoxal rim. I scm4 (M. profurca-coxalis 4): O, ventral face of profurca-like 
structure along with I scm3; I, posteriolateral procoxal rim.
Mesothorax. II dlm1 (M. antecosta-antecostalis medialis): O, antecosta II, mediad of II dlm2; I, 
antecosta III, mediad of II dlm2. II dlm2 (M. antecosta-antecostalis lateralis): O, antecosta II, 
laterad of II dlm1; I, antecosta III, laterad of II dlm1. II ism1 (M. profurca-antecostalis medialis): 
O, lateral part of profurca-like structure, mediad of II ism2; I, antecosta III, mediad of II ism2. II 
ism2 (M. profurca-antecostalis lateralis): O, lateral part of profurca-like structure, laterad of II 
ism1; I, antecosta III, laterad of II ism1. II dvm1 (M. mesonoto-profurcalis anterior): O, 
dorsolateral part of profurca-like structure, anterad of II dvm2; I, mesonotum (middle of 
segment), anterad of II dvm2. II dvm2 (M. mesonoto-profurcalis posterior): O, dorsolateral part 
of profurca-like structure, posterad of II dvm1; I, mesonotum (middle of segment), posterad of II 
dvm1. II dvm3 (M. mesonoto-coxalis; two bands): O, lateral part of mesonotum (middle of 
segment); I, anterior face of mesocoxa. II dvm4 (M. mesonoto-subcoxalis anterior; two bands): 
O, anterolateral part of mesonotum; I, anterior border of mesosubcoxa. II dvm5 (M. metanoto-
subcoxalis posterior): O, posterolateral part of mesonotum; I, ventral border of mesosubcoxa. II 
ldvm1 (M. mesonoto-coxalis anterior): O, posterolateral part of mesonotum; I, anterior 
mesocoxal rim. II ldvm2 (M. metanoto-subcoxalis; two bands): O, posterolateral part of 
mesonotum; I, posteroventral border of mesosubcoxa and posterior border of mesocoxal rim. II 
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ldvm3 (M. metanoto-coxalis posterior): O, posterolateral part of mesonotum; I, anterior face of 
mesocoxa. II vlm (M. profurca-mesofurcalis): O, lateral part of profurca-like structure; I, lateral 
part of mesofurca-like structure. II scm1 (M. mesofurca-coxalis 1): O, anterior face of mesofurca-
like structure; I, posterior mesocoxal rim, laterad of II scm2. II scm2 (M. mesofurca-coxalis 2): 
O, ventrolateral face of mesofurca-like structure along with II scm4; I, posterior mesocoxal rim, 
mediad of II scm1. II scm3 (M. mesofurca-coxalis 3): O, anterior face of mesofurca-like 
structure; I, lateral mesocoxal rim, laterad of II scm4. II scm4 (M. mesofurca-coxalis 4): O, 
ventrolateral face of mesofurca-like structure along with II scm2; I, lateral mesocoxal rim, 
mediad of II scm3. II scm5 (M. profurca-coxalis lateralis): O, posterior face of profurca-like 
structure; I, anteriolateral metacoxal rim, laterad of II scm6. II scm6 (M. profurca-coxalis 
medialis): O, posterior face of profurca-like structure; I, anteriolateral metacoxal rim, mediad of 
II scm5.
Metathorax. All muscles that are present in mesothorax, are found in metathorax, except: III 
scm4.
Musculature of abdomen (Fig. 6, Table S1). AI dlm1 (M. antecosta-antecostalis medialis): O, 
antecosta III, mediad of AI dlm2; I, antecosta IV, mediad of AI dlm2. AI dlm2 (M. antecosta-
antecostalis lateralis): O, antecosta III, laterad of AI dlm1; I, antecosta IV, laterad of AI dlm1. AI 
vlm (M. metafurca-endosternalis): O, lateral face of metafurca-like structure; I, endosternite I. AI 
ism1 (M. antecosta-metafurcalis anterior): O, antecosta IV, anterad of AI ism2; I, lateral face of 
metafurca-like structure, anterad of AI ism2. AI ism2 (M. antecosta-metafurcalis posterior): O, 
antecosta IV, posterad of AI ism1; I, lateral face of metafurca-like structure, posterad of AI ism1. 
AI dvm1 (M. tergo-metafurcalis anterior): O, middle region region of tergum, anterad of AI 
dvm2; I, lateral face of metafurca-like structure, anterad of AI dvm2. AI dvm2 (M. tergo-
metafurcalis posterior): O, middle region region of tergum, posterad of AI dvm1; I, lateral face of
metafurca-like structure, posterad of AI dvm1. AI ldvm1 (M. pleuro-metafurcalis): O, lateral wall
of segment; I, lateral face of metafurca-like structure. AI dvm VT (M. tergo-pleuralis): O, anterior
region of tergum; I, tendon system. AI lm (M. sterno-pleuralis): O, base of ventral tube; I, valva 
of ventral tube. AI pm1 (M. sterno-pleuralis): O, base of ventral tube; I, metafurca-like structure. 
AI pm2 (M. sterno-pleuralis): O, base of ventral tube; I, tendon system. AI pm3 (M. sterno-
pleuralis): O, base of ventral tube; I, tendon system. AI pm4 (M. sterno-pleuralis): O, base of 
ventral tube; I, tendon system. AI dvm3 (M. pleuro-pleuralis): O, lateral wall of segment; I, 
tendon system. AI dvm4 (M. tergo-pleuralis): O, posterior region of tergum; I, tendon system. AI 
dm1 (M. sterno-pleuralis): O, anterior face of ventral tube, laterad of dm3; I, metafurca-like 
structure. AI dm2 (M. sterno-pleuralis): O, vesicles of ventral tube; I, endosternite I. AI dm3 (M. 
sterno-pleuralis): O, anterior face of ventral tube, mediad of dm1; I, metafurca-like structure. AI 
dm4 (M. sterno-pleuralis): O, vesicles of ventral tube; I, endosternite I. AI dm5 dm4 (M. sterno-
pleuralis): O, posterior face of ventral tube; I, tendon system. All dlm1 (M. antecosta-antecostalis 
medialis): O, antecosta IV, mediad of AII dlm2; I, antecosta V, mediad of AII dlm2. All dlm2 (M. 
antecosta-antecostalis lateralis): O, antecosta IV, laterad of AII dlm1; I, antecosta V, laterad of AII
dlm1. All vlm (M. endosterno-antecostalis): O, endosternum I; I, antecosta V. All ism1 (M. 
antecosta-endosternalis anterior): O, antecosta V, anterad of AII ism2; I, endosternum I, anterad 
of AII ism2. All ism2 (M. antecosta-endosternalis posterior): O, antecosta V, posterad of AII 
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ism1; I, endosternum I, posterad of AII ism1. All dvm1 (M. tergo-endosternalis anterior): O, 
middle region of tergum, anterad of AII dvm2; I, endosternum I, anterad of AII dvm2. All dvm2 
(M. tergo-endosternalis posterior): O, middle region of tergum, posterad of AII dvm1; I, 
endosternum I, posterad of AII dvm1. All ldvm1 (M. pleuro-sternalis): O, lateral wall of segment;
I, sternum. All dvm3 (M. tergo-sternalis anterior): O, anterior border of tergum; I, lateral border 
of sternum. All dvm4 (M. tergo-sternalis posterior): O, lateral area of tergum; I, lateral border of 
sternum. All trm1 (M. endosterno-endosternalis): O, inner surface of endosternum I; I, inner 
surface of endosternum I (opposite side). Alll dlm1 (M. antecosta-antecostalis medialis): O, 
antecosta V, mediad of AIII dlm2; I, antecosta Vl, mediad of AIII dlm2. Alll dlm2 (M. antecosta-
antecostalis lateralis): O, antecosta V, laterad of AIII dlm1; I, antecosta Vl, laterad of AIII dlm1. 
Alll ism1 (M. antecosta-antecostalis medialis): O, antecosta VI, mediad of AIII ism2; I, ventral 
area of antecosta V, mediad of AIII ism2. Alll ism2 (M. antecosta-antecostalis lateralis): O, 
antecosta VI, laterad of AIII ism1; I, ventral area of antecosta V, laterad of AIII ism1. Alll dvm1 
(M. tergo-antecostalis anterior); O, middle region of tergum, anterad of AIII dvm2; I, ventral area
of antecosta V, anterad of AIII dvm2. Alll dvm2 (M. tergo-antecostalis posterior): O, middle 
region of tergum, laterad of AIII dvm1; I, ventral area of antecosta V, laterad of AIII dvm1. Alll 
dvm3 (M. tergo-sternalis anterior): O, anterior border of tergum; I, lateral border of sternum. Alll 
dvm4 (M. tergo-sternalis posterior): O, lateral area of tergum; I, lateral border of sternum. Alll 
ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; I, sternum. AIV dlm1 (M. antecosta-
antecostalis medialis): O, antecosta Vl, mediad of AIV dlm2; I, antecosta Vll, mediad of AIV 
dlm2. AIV dlm2 (M. antecosta-antecostalis lateralis): O, antecosta Vl, laterad of AIV dlm1; I, 
antecosta Vll, laterad of AIV dlm1. AlV vlm (M. antecosta-antecostalis): O, antecosta V; I, 
antecosta VII. AIV ism1 (M. antecosta-antecostalis): O, dorsal part of antecosta VI; I, ventral part
of antecosta VII. AIV dvm1 (M. tergo-sternalis posterior): O, anterior border of tergum; I, 
posterior border of sternum. AIV dvm2 (M. pleuro-sternalis): O, lateral wall of segment; I, 
sternum, along with AIV ldvm5. AIV dvm3 (M. tergo-sternalis anterior): O, anterior border of 
tergum; I, posterior border of sternum. AIV ldvm3 (M. tergo-antecostalis): O, posterior region of 
tergum; I, ventral part of antecosta VII. AIV ldvm4 (M. tergo-sternalis): O, posterior region of 
tergum; I, lateral board of sternum. AIV ldvm5 (M. tergo-sternalis): O, posterior region of 
tergum; I, sternum, along with AIV dvm2. AIV ldvm7 (M. pleuro-sternalis): O, lateral wall of 
segment; I, lateral board of sternum. AV dlm1 (M. antecosta-antecostalis medialis): O, antecosta 
Vll, mediad of AV dlm2; I, antecosta Vlll, mediad of AV dlm2. AV dlm2 (M. antecosta-
antecostalis lateralis): O, antecosta Vll, laterad of AV dlm1; I, antecosta Vlll, AV dlm1. AV ism1 
(M. tergo-intersegmentalis): O, anterior region of tergum; intersegmental area between 5th and 
6th segments. AV ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; I, sternum. AVl sm1 
(M. sterno-rectalis): O, sternum; I, rectum. AVI sm2 (M. sterno-rectalis): O, lateral board of 
sternum; I, rectum. AVl dvm1 (M. tergo-rectalis): O, anterior region of tergum; I, rectum. AVI 
dvm2 (M. tergo-sternalis): O, central region of tergum; I, rectum. AVI dvm3 (M. tergo-sternalis): 
O, posterior region of tergum; I, dorsal anal lobe. AVl dvm4 (M. pleuro-sternalis): O, lateral wall 
of segment; I, lateral anal lobe.

The volume of the muscular system is about 0.04 nL (5.2% of the body volume).
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Reproductive system

The female reproductive system has been studied in detail (Fig. 4). The ovary is unpaired 
with three lobes. The largest lobe probably contains eggs, while two other, smaller lobes contain 
no eggs and lie dorsad of the largest one. The anterior portion of the ovary lies between the 
abdominal segments 2 and 3, while its posterior portion ends between abdominal segments 4 and 
5. The oviduct is small, short and unpaired, leading to the vagina, the margins of which are 
indistinct. The vagina opens ventrally on the fifth abdominal segment with a transverse 
reproductive orifice (gonopore).

The volume of the reproductive system is about 0.15 nL (18.9% of the body volume).

Circulatory system and fat body

Organs of the circulatory system are absent. The fat body occupies all cavities between organs
in the head, thorax, and abdomen. It consists of cells of various shape.

The volume of the circulatory system and fat body is about 0.44 nL (55.2% of the body 
volume).

Respiratory system

Organs of the respiratory system (trachea) are absent. 

DISCUSSION

We studied the anatomy of M. sylvatica to extend the knowledge on the anatomy of 
Collembola as well as to reveal possible miniaturization traits and compare them to the 
miniaturization effects discovered in microinsects and other minute arthropods. Moreover, we 
analyzed the relative volume of organs in Mesaphorura sylvatica in comparison with 
microinsects.

Skeleton

The endoskeletal structures of M. sylvatica are well-developed as in larger species (Manton, 
1964), the complex pseudotentorium has multiple arms, and the furca-like structures are 
branched. However, reductions seem to have affected the abdomen, in which we observed only 
one endosternite, compared to Neanura muscorum, in which five endosternites were found 
(Bretfeld, 1963). In microinsects, elements of the endoskeleton tend to fuse (Polilov, 2015a; 
Polilov, 2015b). Of all adult microinsects, only booklice have a complex tentorium (Polilov, 
2016b), and all furcae are developed in thrips, beetles of the family Corylophidae, and wasps of 
the family Mymaridae (Polilov and Beutel, 2010, Polilov and Shmakov, 2016, Polilov, 2016c).

The relative volume of the skeleton of M. sylvatica is similar to the one of adult Paraneoptera 
of the same size, but notably smaller than the ones of other microinsects (both larvae and adults) 
of the same size (Polilov & Makarova, 2017). The smaller relative volume of the skeleton of M. 

sylvatica, compared to most microinsects, could be related to the differences in cuticle thickness 
(due to the fragmented epicuticle of all collembolans) and to the flightlessness of collembolans.

Nervous system
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Unlike those of larger species of Collembola (Hopkin, 1997; Kolmann et al., 2011), the brain 
and suboesophageal ganglion of M. sylvatica extend into the prothorax. The three thoracic 
ganglia of M. sylvatica shift their position by one segment posteriorly, reported by Lubbock 
(1873) in larger species. The brain and suboesophagal ganglion are situated close to each other; 
they are connected in the neck region. The central nervous system is symmetrical and displays 
moderate concentration and oligomerization of ganglia. Similar degrees of concentration and 
oligomerization of the central nervous system are found in adult booklice of the family 
Liposcelididae (Polilov, 2016b) and in adult thrips (Polilov & Shmakov, 2016).

The shift of different parts of the brain into the prothorax has been described in thrips larvae 
(Polilov & Shmakov, 2016), adults and larvae of beetles of the family Ptiliidae (Polilov & Beutel,
2009), adults and larvae of beetles of the family Corylophidae (Polilov & Beutel, 2010), larvae of
beetles of the family Strepsiptera (Beutel et. al., 2005), larvae of beetles of the family 
Scydmaenidae (Jałoszyński et al., 2012), larvae of beetles of the family Hydroscaphidae (Beutel 
& Haas, 1998), adults of beetles of the family Sphaeriusidae (Yavorskaya et al., 2018).

The nervous system of M. sylvatica shows unique changes in the brain with two pairs of 
apertures and three pairs of muscles running through them. This feature has not been described in
studies of the nervous system of larger collembolans (Lubbock, 1873; Hopkin, 1997; Kollmann et
al., 2011) or microinsects (Polilov, 2015a; Polilov, 2015b).

The relative volume of the central nervous system of M. sylvatica is similar to the one of tiny 
adult Coleoptera, smaller than the ones of minute adult Hymenoptera and Paraneoptera larvae, 
and greater than the one of adult Paraneoptera of the same size (Polilov & Makarova, 2017). The 
same relative volume as in tiny adult Coleoptera possibly follows the tendency of the nervous 
system of microinsects to increase as the body size decreases (Polilov & Makarova, 2017). It is 
also supported by the fact that representatives of adult minute Paraneoptera have greater body 
size, but smaller relative volume of the central nervous system compared to the body size and the 
relative volume of M. sylvatica. The smaller relative volume compared to the one of minute adult
Hymenoptera and Paraneoptera larvae could be related to better pronounced effects of 
miniaturization in adult Hymenoptera and Paraneoptera larvae of the same size.

The relative volume of the brain of M. sylvatica is similar to the one of adult Coleoptera of 
the same size, slightly greater than the one of minute adult Paraneoptera, and notably smaller than
the ones of other microinsects of the same size (Polilov & Makarova, 2017). The smaller relative 
volume than in most microinsects of the same size could possibly be related to the simpler 
behavior and absence of eyes (Jordana et al., 2000).

Circulatory system and fat body

The circulatory system of M. sylvatica is simplified, the heart and the vessels are absent. Most
of the body cavities of M. sylvatica are filled with fat body. In larger species, there is a heart with 
2–6 pairs of ostia and an aorta (Fernald, 1890; Denis, 1928; Imms, 1957; Schaller, 1970). The 
same reduction as in M. sylvatica was observed in adults and larvae of beetles of the family 
Ptiliidae (Polilov, 2005; Polilov & Beutel, 2009), larvae of booklice of the family Liposcelididae 
(Polilov, 2016b), adult hymenopterans of the family Trichogrammatidae (Polilov, 2016d; Polilov, 
2017), tardigrades (Gross et al., 2019), and some chelicerates (Dunlop, 2019). In microinsects, it 
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is assumed that the diffusion of metabolites is sufficient enough for the transport between the 
organs (Polilov, 2008; Polilov & Beutel, 2009), which is, apparently, the same case in M. 

sylvatica.
The relative volume of the circulatory system and fat body of M. sylvatica is particularly 

great, greater than the ones of other microinsects of the same size except Paraneoptera and 
Coleoptera larvae (Polilov & Makarova, 2017). The high relative volume could be related to the 
importance of fat body in excretion in Collembola (Schaller, 1970).

Female reproductive system

The female reproductive system of M. sylvatica has unpaired structures (the ovaries and 
oviducts). In larger species, it consists of paired ovaries, oviducts and accessory glands, and 
unpaired spermatheca. We did not observe the accessory glands and spermatheca in Mesaphorura

sylvatica, what may be explained by the fact that they are hardly recognizable even in larger 
species (Schaller, 1970; Dallai, 2008). The same changes were observed in beetles of the family 
Ptiliidae, in which both sexes have unpaired structures (Polilov & Beutel, 2009).

The relative volume of the reproductive system of M. sylvatica is also particularly great; it is 
smaller only than the ones of some minute adult Coleoptera and minute Hymenoptera (Polilov & 
Makarova, 2017). The greater relative volume compared to those of most microinsects of the 
same size could be related to the relative egg size increase with decreasing body size (Polilov, 
2016a).

Digestive and excretory systems

The digestive system of M. sylvatica is least modified, compared to larger species (Lubbock, 
1873; Folsom, 1899; Wolter, 1963; Schaller, 1970). It is straight, without loops or diverticula. 
Among microinsects, only larvae of booklice of the family Liposcelididae have no loops or 
pronounced bends (Polilov, 2016b). No salivary glands are found in M. sylvatica. Salivary glands
in some microinsects are absent as a result of miniaturization (Polilov, 2015a; Polilov, 2015b). 
We did not observe any muscles of the midgut, the absence which is also a common trait among 
minute insects (Polilov, 2016a).

The relative volume of the digestive system of M. sylvatica is similar to those of most minute 
Coleoptera, notably smaller than those of minute Paraneoptera, but greater than the ones of 
Hymenoptera and some Coleoptera species of the same size (Polilov & Makarova, 2017).

Excretory system

The specialized organs of the excretory system are absent in Mesaphorura sylvatica. In larger
species, there might be small papillae instead of Malpighian tubes or labial nephridia in the head 
(Schaller, 1970). Moreover, in collembolans, there are also acinous glands and antennal nephridia
(Wolter, 1963). In microinsects, Malpighian tubes do not disappear, but their number decreases 
(Polilov, 2015a).

Musculature
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The muscular system of M. sylvatica is reduced, compared to those of larger species of 
Collembola, and has 24 pairs of muscles in the head, 51 in the thorax, and 60 in the abdomen 
(and 1 unpaired muscle); 136 pairs in total. The total number of muscles of all tagmata have not 
been studied for a single species of springtails, which makes it challenging to compare our results
with previous studies.

It is challenging to compare muscles of a head in Collembola. Folsom (1899) described at 
least 47 pairs of muscles in the head of a large collembolan Orchesella cincta associated with the 
digestive system and mouthparts. There are 26 pairs of muscles associated with mouthparts 
(labrum, labium, maxilla, mandible) in details. In addition, he noted 20 pairs of muscles 
associated with both pharynx and oesophagus (7 of them are the ventral dilators of pharynx, 
which he later classified as tentorial muscles), but he did not designate them. He mentioned the 
presence of tentorial muscles (dilators of pharynx, antennal, and muscles connected to the head), 
but did not even specify the number of these muscles. Folsom (1899) also mentioned two 
muscles of the palpi, but it is not clear whether he meant two pairs of muscles or two muscles in 
total. Denis (1928) described at least 73 pairs of muscles in the head of a large collembolan 
Anurida maritima associated with mouthparts, pseudotentorium and the digestive system. He 
divided the muscles of the head into several groups, but he specified the number of muscles only 
for some of them. For mouthparts (maxilla and mandible), he remarked that for some muscles he 
drew a single bundle that included several muscles, but he did not specify the number of them. 
There are at least 17 pairs of muscles associated with maxilla and mandible in Anurida maritima. 
Moreover, he described all tentorial muscles, and there are at least 45 of them (14 of those are the
ventral dilators of pharynx). In addition, he mentioned superlingual muscles (the number was not 
given), suspensors of the atrium (3 pairs), 8 pairs of antennal muscles (excluding the muscles 
inside the antenna), and 5 muscles associated with epipharynx and pharynx. He did not specify a 
number of muscles of labium. Moreover, he described the groups of muscles of heads of two 
large species Onychiurus fimetarius and Tomocerus catalanus, but he compared them to Anurida 

maritima, without any details on exact numbers. With Tomocerus catalanus he refers to the study 
of Hoffmann (1908). Hoffmann (1908) described at least 53 pairs of muscles in the head of a 
large collembolan Tomocerus plumbeus. There are 35 muscles associated with mouthparts 
(maxilla, mandible, and labium), 15 muscles of pharynx, and 3 muscles of glossa. Hoffmann 
(1908) also mentioned presence of tentorial muscles, but did not specify the number of them. 
There are 15 pairs of muscles in M. sylvatica associated with maxilla and mandible, one pair of 
antennal muscles, one pair of oesophagal muscles, two pairs of suspensory pseudotentorial 
muscles, and three pairs of muscles, possibly associated with hypopharynx. Moreover, there are 
two pairs of dorsal longitudinal muscles, while this group of muscles was mentioned, but not 
described in the literature. In this study, we have not described any other tentorial muscles, except
those mentioned above, and internal antennal muscles due to their small size. M. sylvatica has 15 
pairs of muscles of maxilla and mandible, which is less than in larger collembolans O. cincta 
(20), A. maritima (17), and T. plumbeus (29). M. sylvatica does not have muscles of labium or 
labrum, while there are 6 pairs of them in O. cincta and at least 6 pairs in T. plumbeus. M. 

sylvatica has only one pair of dorsal dilators of the oesophagus and no dorsal dilators of the 
pharynx, which is less than in larger collembolans O. cincta (13), T. plumbeus (15).
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A total of 51 pairs of muscles were described in the thorax of Neanura muscorum (Bretfeld, 
1963) and a total of 37 pairs of muscles were described in the thorax of O. cincta (Bretfeld, 
1963). Any muscles associated with legs have not been described in this study. We found 36 pairs
of muscles not associated with legs in the thorax of M. sylvatica and 17 pairs of muscles 
associated with legs. There is a greater similarity between the muscles of M. sylvatica and O. 

cincta (both species have greater numbers of dorsoventral muscles) than between the muscles of 
M. sylvatica and N. muscorum. M. sylvatica lacks several dorsoventral and intersegmental 
muscles, while the amount of longitudinal muscles remain the same. It is important to note that 
Bretfeld (1963) described several muscles in the thorax as muscles possibly associated with the 
head. Two of them, Lb dlm1 and Lb dlm2, we describe as dlm1 and dlm2 in the section on the 
muscles of the head. A total of 52 pairs and 9 unpaired muscles were described in the abdomen of
N. muscorum (Bretfeld, 1963) and a total of 45 pairs of muscles were described in the abdomen 
of O. cincta (Bretfeld, 1963). No muscles associated with the ventral tube, rectum, or anal lobes 
were described in these collembolans, except one in one species (VTm in O. cincta). We found 
43 pairs and one unpaired muscle in the abdomen of M. sylvatica, not connected to the ventral 
tube, as well as 11 pairs of muscles associated with the ventral tube, four with the rectum, and 
two with the anal lobes. As for the thorax, M. sylvatica lacks many dorsoventral muscles, some 
intersegmental muscles and almost all transverse unpaired muscles. 

Minute adult Coleoptera have 19 or 20 pairs of muscles in the head (Sericoderus lateralis and
Mikado sp., respectively) and 48 or 49 pairs of muscles in the thorax (Mikado sp. and S. lateralis,
respectively) (Polilov & Beutel, 2009; Polilov & Beutel, 2010). Compared to them, the number 
of the head pairs of muscles (24) and thoracic pairs of muscles (51) in M. sylvatica is slightly 
greater. Larvae of minute Coleoptera have 16 pairs of muscles in the head (Mikado sp. and S. 

lateralis) (Polilov & Beutel, 2009; Polilov & Beutel, 2010) and 46 (Mikado sp., the first instar 
larvae), 52 (Mikado sp., the last instar larvae) 63 (S. lateralis, the first instar larvae) or 64 (S. 

lateralis, the last instar larvae) pairs of muscles in the thorax. The number of thoracic pairs of 
muscles in minute M. sylvatica (51) is close to the number of thoracic muscles in the last instar 
larvae of Mikado sp., but smaller than in larvae of S. lateralis. Minute Hymenoptera have 18 
(Megapragma mymaripenne, Trichogramma evanescens) (Polilov, 2016d; Polilov, 2017), or 20 
(Anaphes flavipes) (Polilov, 2016c) muscles in the head and 45 (M. mymaripenne), 50 (A. 
flavipes), 52 (T. evanescens), or 53 (Gonatocerus morrilli) (Vilhelmsen et al., 2010) muscles in 
the thorax. Compared to them, the number of the head muscles of M. sylvatica (24) is slightly 
greater, but the number of the thoracic muscles of this species (51) is greater only compared to 
those of M. mymaripenne and A. flavipes. Minute adult booklice Liposcelis bostrychophila have 
33 pairs of muscles in the head and 57 pairs of muscles in the thorax (Polilov, 2016b). The larvae 
of L. bostrychophila have 29 pairs of muscles in the head and 55 pairs of muscles in the thorax 
(Polilov, 2016b). Compared to both larvae and adults, the number of the head pairs of muscles 
(24) and thoracic pairs of muscles (51) of M. sylvatica is notably smaller. Minute adult thrips 
Heliothrips haemorrhoidalis have 19 pairs of muscles in the head and 60 pairs of muscles in the 
thorax (Polilov & Shmakov, 2016). Compared to them, the number of the head pairs of muscles 
(24) of M. sylvatica is greater, but the number of the thoracic pairs of muscles (51) is notably 
smaller. Larvae of H. haemorrhoidalis have 18 pairs of muscles in the head and 41 pairs of 
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muscles in the thorax (Polilov & Shmakov, 2016). Compared to them, the number of the head 
pairs of muscles (24) and thoracic pairs of muscles (51) of M. sylvatica is notably greater. Minute
Neuroptera Coniopteryx pygmaea (Randolf et al., 2016) have 46 pairs of muscles in the head. 
Compared to them, the number of the head pairs of muscles (24) of M. sylvatica is notably lesser.

In all studied microinsects, there are three groups of abdominal muscles: dorsoventral, dorsal 
longitudinal, and ventral longitudinal (Polilov, 2016a). All three groups are present in the 
abdomen of M. sylvatica.

In conclusion, the musculature system of M. sylvatica shows minor reductions in numbers of 
muscles compared to larger species. Studies on microinsects also show that the changes in 
musculature are minor, and this system is rather conserved (Polilov, 2015a). The number of 
muscles in M. sylvatica is slightly greater than those in most microinsects.

The relative volume of the musculature of M. sylvatica is smaller than those of other 
microinsects of the same size except Coleoptera larvae (Polilov & Makarova, 2017). The smaller 
relative volume compared to those of other microinsects could be explained by absence of flight 
musculature.

CONCLUSIONS

The anatomy of the minute collembolan M. sylvatica has been studied for the first time. It 
is shown that, despite the small body size, some systems (the highly developed elements of 
endoskeleton, or complexity of the musculature system) are not greatly changed compared to 
larger relatives.

Possible miniaturization effects are revealed; most of them are found in microinsects (the 
absence of organs of the circulatory system, unpaired ovaries and oviducts of the female 
reproductive system, absence of midgut musculature and salivary glands, reduction of some 
muscles).

We found unique features of the anatomy of M. sylvatica: two pairs of apertures in the 
brain with three pairs of muscles going through it.

Reduction in size leads to changes in different organs and organ systems. It is crucial to 
study miniaturization effects in other Panarthropoda including other minute collembolans to 
broaden our knowledge on miniaturization in living organisms.
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Figure 1(on next page)

Habitus of Mesaphorura sylvatica, SEM

(A) lateral view; (B) ventral view; (C) dorsal view; ao — anal opening, as — anal spine, cx1, 2,
3 — pro-, meso-, and metacoxae, go — genital opening, PAO — postantennal organ, sx1, 2, 3
— pro-, meso, and metasubcoxae, vt — ventral tube.
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Figure 2(on next page)

Internal morphology of Mesaphorura sylvatica, 3D

Colors: blue — cuticle, light blue – tentorium, green — digestive system, yellow — central
nervous system, brown — musculature, purple — reproductive system, dark violet –
excretory system: (A) lateral internal view; (B) lateral external view; (C) vetral view; (D)
dorsal view; an — antennae, cer — brain, cx1, 2, 3 — pro-, meso-, and metacoxae, gg1, 2,
3+ag — pro-, meso-, and metathoracic+abdominal ganglia, mg — midgut, oes —
oesophagus, ova — ovary lobe with eggs, ov — ovary lobe without eggs, rt — rectum, soeg —
supraoesophagal ganglion, VT — ventral tube.
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Figure 3(on next page)

Anatomy of head in Mesaphorura sylvatica, 3D

(A, F) dorsolateral view, (B, C, E) lateral internal view, (D) lateral external view. bp–body of
pseudotentorium, ca–connecting arm, car–cardo, ce–chitinous expansion, cer — cerebrum,
dsa–dorsal suspensory arm, fo–foot, ful–fulcrum, la — lateral arm, Mn — mandible, Mx —
maxillae, oes–oesophagus, soeg — supraoesophagal ganglion, st–stipes. Musculature see
text.
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Figure 4(on next page)

Digestive and excretory (A, B), nervous (C, D), and reproductive (E, F) systems of
Mesaphorura sylvatica, 3D

(A, C, E) lateral view; (B, D, F) dorsal view. cer — brain, eg — ovary lobe with eggs, gg1, 2,
3+ag — pro-, meso-, and metathoracic+abdominal ganglia, mg — midgut, oes —
oesophagus, ova — ovary lobe without eggs, rt — rectum, soeg — supraoesophagal ganglion,
va — vagina.
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Figure 5(on next page)

Musculature of thorax in Mesaphorura sylvatica, 3D

(A — C) lateral internal view. cx1, 2, 3 — pro-, meso-, and metacoxae, fur1, 2, 3 — pro-,
meso-, and metafurca-like structures, pst — pseudotentorium. Musculature see text.
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Figure 6(on next page)

Musculature of abdomen in Mesaphorura sylvatica, 3D

(A — B) lateral internal view. fur3 — metafurca-like structure, en — endosternite.
Musculature see text.
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