Miniaturization effects in the anatomy of the minute springtail *Mesaphorura sylvatica* (Hexapoda: Collembola: Tullbergiidae) (#37277)

First submission

Guidance from your Editor

Please submit by 1 Jul 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s)

1 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Miniaturization effects in the anatomy of the minute springtail Mesaphorura sylvatica (Hexapoda: Collembola: Tullbergiidae)

Irina V. Panina Corresp., 1, Mikhail B. Potapov 2, Alexey A. Polilov Corresp., 1

Corresponding Authors: Irina V. Panina, Alexey A. Polilov Email address: i.vl.panina@gmail.com, polilov@mail.bio.msu.ru

Animals display unique characteristics related to small body size, and in recent years miniaturization has been intensely studied in insects. However, the effects of miniaturization have been poorly studied in other arthropods. Collembola, or springtails, are abundant soil microarthropods and part of a basal hexapod group. Many of them are notably smaller than one millimeter long, which makes them a good model for studying miniaturization effects in arthropods. In this study we analyze the anatomy of the minute springtail Mesaphorura sylvatica (body length 400 μm) for the first time. It is described using light and scanning electron microscopy and 3D computer reconstruction. Possible effects of miniaturization are revealed based on a comparative analysis of data from this study and from studies on the anatomy of larger collembolans. Despite the extremely small size, some systems of organs, e.g., muscular and digestive, remain complex. On the other hand, considerable changes in the nervous system have been observed. The brain has two pairs of apertures with three pairs of muscles running through them, and all ganglia shifted in their position posteriad by one segment. The relative volumes of the skeleton, brain, and musculature are smaller than the ones of most microinsects, while the relative volumes of other systems are greater than or same as in most microinsects. Comparison of the effects of miniaturization in collembolans with those found in insects has shown that most of the miniaturization-related features of *M. sylvatica* have also been found in other microinsects (shift of the brain into the prothorax, reduced heart, absence of midgut musculature, etc.), but also has revealed unique features (brain with two apertures and three pair of muscles going through them), which have not been described before.

 $^{^{}m 1}$ Department of Entomology, Biological faculty, Moscow State University, Moscow, Russia

² Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow State Pedagogical University, Moscow, Russia

PeerJ

1	Miniaturization effects in the anatomy of the minute springtail Mesaphorura sylvatica
2	(Hexapoda: Collembola: Tullbergiidae)
3	
4	Irina V. Panina ¹ , Mikhail B. Potapov ² , Alexey A. Polilov ¹
5	¹ Department of Entomology, Biological Faculty, Moscow State University, Moscow, Russia
6	² Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow State
7	Pedagogical University, Moscow, Russia
8	
9	
10	
11	Corresponding Authors:
12	Irina V. Panina
13	Email address: i.vl.panina@gmail.com
14	Alexey A. Polilov
15	Email address: polilov@gmail.com

16 **ABSTRACT**

- 17 Animals display unique characteristics related to small body size, and in recent years
- 18 miniaturization has been intensely studied in insects. However, the effects of miniaturization have
- 19 been poorly studied in other arthropods. Collembola, or springtails, are abundant soil
- 20 microarthropods and part of a basal hexapod group. Many of them are notably smaller than one
- 21 millimeter long, which makes them a good model for studying miniaturization effects in
- 22 arthropods. In this study we analyze the anatomy of the minute springtail *Mesaphorura sylvatica*
- 23 (body length 400 µm) for the first time. It is described using light and scanning electron
- 24 microscopy and 3D computer reconstruction. Possible effects of miniaturization are revealed
- 25 based on a comparative analysis of data from this study and from studies on the anatomy of larger
- 26 collembolans.
- 27 Despite the extremely small size, some systems of organs, e.g., muscular and digestive, remain
- 28 complex. On the other hand, considerable changes in the nervous system have been observed.
- 29 The brain has two pairs of apertures with three pairs of muscles running through them, and all
- 30 ganglia shifted in their position posteriad by one segment. The relative volumes of the skeleton,
- 31 brain, and musculature are smaller than the ones of most microinsects, while the relative volumes
- 32 of other systems are greater than or same as in most microinsects.
- 33 Comparison of the effects of miniaturization in collembolans with those found in insects has
- 34 shown that most of the miniaturization-related features of *M. sylvatica* have also been found in
- 35 other microinsects (shift of the brain into the prothorax, reduced heart, absence of midgut
- 36 musculature, etc.), but also has revealed unique features (brain with two apertures and three pair
- of muscles going through them), which have not been described before.

38 39

Keywords: miniaturization, morphology, anatomy, Collembola, body size

40 41

INTRODUCTION

- 42 Miniaturization plays an important role in morphological changes in animals and has become a
- 43 popular area of research (Hanken & Wake, 1993; Polilov, 2016a; etc.). Many arthropods are
- 44 comparable in size with unicellar organisms and are of great interest for studying miniaturization
- 45 in animals.
- 46 Morphological traits (rev.: Polilov, 2015a; Polilov, 2016a; Minelli & Fusco, 2019), scaling of
- 47 organs (Polilov & Makarova, 2017), and even cognitive abilities (van der Woude et al., 2018;
- 48 Polilov et al., 2019) associated with miniaturization have been studied in insects. Studies on other
- 49 minute Panarthropoda are scarce (Dunlop, 2019; Gross et al., 2019).
- 50 Studies on the miniaturization of insects and the anatomy of the smallest insects show significant
- 51 changes in the anatomy of microinsects due to their size. Some of these changes have been found
- 52 among several taxa, e.g., the reduction of circulatory and tracheal systems, absence of midgut
- 53 musculature; compactization, oligomerization, and asymmetry of central nervous system; and
- many more (Poliloy, 2016a). However, some of the changes are unique to particular microinsects,
- such as complete shift of the brain into the thorax at the adult stage (Polilov & Beutel, 2010) in
- 56 *Mikado* sp., or the lysis of cell bodies and nuclei of neurons in *Megaphragma* sp. (Polilov, 2012,
- 57 2017).

58 Many collembolan genera tend to evolve towards smaller body size, and they might become an 59 interesting model for research of miniaturization in arthropods. However, such studies on the effects of miniaturization in collembolans have not been performed yet, and data on the anatomy 60 of minute collembolans are extremely scarce. Previous studies on collembolan anatomy were 61 62 based mostly on larger species. Moreover, the majority of them were concentrated on specific 63 systems only. Lubbock (1873) described the anatomy of several species, but studied only the 64 largest muscles of the body, and the head musculature was not mentioned. Fernald (1890) described the anatomy of *Anurida maritima*, but of muscular system he studied only the muscles 65 66 associated with the digestive system, and the excretory system was not mentioned. Willem (1900) 67 briefly described the anatomy of 12 species, but the muscular and excretory systems were not mentioned. Prowazek (1900) described the embryology and anatomy of both larvae and adults of 68 69 Isotoma grisea and Achorutes viaticus, but the head musculature was not mentioned. Denis 70 (1928) described the anatomy of Anurida maritima, Onychiurus fimetarius, and Tomocerus *catalanus*, but the reproductive system and musculature of the body (except the head 71 72 musculature) were not mentioned. Mukerji (1932) described the digestive, nervous, and excretory 73 systems, and partly the head musculature of *Protanura carpenteri*. In addition, there were several 74 studies on the muscular system of Orchesella cincta (Folsom, 1899; Bretfeld, 1963), Neanura 75 muscorum (Bretfeld, 1963), Tomocerus longicornis (Lubbock, 1873), Tomocerus spp. (Eisenbeis 76 & Wichard, 1975), Orchesella villosa, Isotomurus palustris, Podura aquatica, and Sminthurus 77 viridis (Imms, 1939), digestive system of Tomocerus flavescens (Humbert, 1979), digestive and excretory systems of Orchesella cincta (Verhoef et al., 1979), Tomocerus flavescens, Anurida 78 79 maritima, Neanura muscorum, Friesea mirabilis, Brachystomella parvula, Odontella armata (Wolter, 1963), and Sminthurus fuscus (Willem & Sabbe, 1897), excretory system of Onychiurus 80 81 quadriocellatus (AlPster, 1968), Tomocerus minor, Lepidocyrtus curvicollis (Humbert, 1975), 82 and Orchesella rufescens (Philiptschenko, 1907), respiratory system of Sminthurus viridis 83 (Davies, 1927), nervous system of Folsomia candida, Protaphorura armata, and 84 Tetrodontophora bielanensis (Kollmann et al., 2011), reproductive system of Allacma fusca 85 (Dallai et al., 2000), Orchesella villosa (Dallai et al., 2008), Anurida maritima (Lécaillon, 1902a), Anurophorus laricis (Lécaillon, 1902b). There were also several reviews (Schaller, 1970; 86 87 Hopkin, 1997). 88

The genus *Mesaphorura* of Collembola includes some of the smaller species, some of them only 0.4 long (Zimdars and Dunger, 1994). The external morphology of the genus *Mesaphorura* has been completely and thoroughly investigated as a key to the identification and comparison of this genus to other taxa (Zimdars & Dunger, 1994; D'Haese, 2003), but its internal morphology has never been described. The aim of this work is to study the anatomy of *Mesaphorura sylavtica* for the first time and analyze the effects of miniaturization.

939495

89

90

91

92

MATERIALS AND METHODS

96 Materials

- 97 Specimens of *Mesaphorura sylvatica* Rusek, 1971 were collected in September 2015 at a sand
- 98 beach, Pirogovskoye Reservoir, Moscow Oblast, Russia, using the flotation method. The material
- 99 was fixed in alcoholic Bouin's solution and stored in 70% ethanol.

100	
101	Scanning electron microscopy (SEM)
102	External morphology was studied using a Jeol JSM-6380 scanning electron microscope following
103	critical point drying (Hitachi HCP-2) and sputter coating of samples with gold (Giko IB-3).
104	
105	Histology
106	The fixed material was dehydrated and embedded in Araldite M. The blocks were cut into series
107	of cross sections 1 μm thick and longitudinal sections 0.5 μm thick using a Leica RM2255
108	microtome. These sections were stained with toluidine blue and pyronine.
109	
110	Three dimensional computer reconstruction (3D)
111	The sections were photographed using a Motic BA410 microscope with a ToupTek camera. The
112	resulting stack was then aligned and calibrated. 3D reconstructions were created in the program
113	Bitplane Imaris using the function of manual segmentation. In addition, we processed the
114	reconstructions with the functions of surface smoothing and rendering in the Autodesk Maya
115	program. Volumes of organs and the body were calculated using the statistical module of Bitplane
116	Imaris (Polilov & Makarova, 2017).
117	
118	Nomenclature
119	The names of morphological elements are based on Folsom (1899), Snodgrass (1935), Bretfeld
120	(1963), Bitsch (2012). The description of the musculature and abbreviations of muscles are based
121	on Folsom (1899) for the head, Bretfeld (1963) for the thorax and abdomen, and Eisenbeis and
122	Wichard (1975) for the ventral tube with some additions. Muscles are named according to the
123	nomenclatures used for insects. The following abbreviations are used in descriptions of muscles:
124	O, origin; I, insertion.
125	
126	RESULTS
127	General morphology
128	The body is around 400 µm in length, uniformly pigmented white in color (Fig. 1). Most of the
129	head is occupied by the brain, the suboesophageal ganglion, the mouthparts and the complex
130	pseudotentorium; the prothorax is occupied by part of the suboesophageal ganglion, while the
131	meso- and metathorax are occupied by the wide midgut and fat body; the abdomen is mainly
132	occupied by the reproductive system, with the digestive system above it (Fig. 2, Fig. S1). All
133	tagmata have well-developed musculature.
134	The body volume of <i>M. sylvatica</i> is about 0.8 nl.
135	
136	Skeleton
137	The cuticle thickness is $0.31-1.24 \mu m$ (M = 0.57 , n = 80). Tergites are well-developed, sclerites
138	and pleurites are hardly distinguishable.
139	The inner skeletal structures are highly developed. A complex pseudotentorium (Fig. 3) is
140	situated in the head. Its body consists of a mandibular tendon in the middle, which continues into
141	a thinner longitudinal endoskeletal connective posteriorly. There is a pair of dorsal suspensory

- arms, connecting the structure with the head capsule anteriorly on the frons. The glossa is
- prolonged behind into a pair of chitinous stalks, called posterior tentorial apodemes by Koch
- 144 (2000), or fulcra (Denis, 1928). They lie externally to the middle line. The enlarged base of the
- stalk is called the foot, and the foot underlies the cardo of the maxilla. They seem to connect with
- the head capsule posteriorly possibly with some endoskeletal connectives. A pair of connecting
- arms (bras d'union, Denis, 1928) extend from the pseudotentorial plate downwards and are fused
- 148 with the posterior tentorial apodemes. A pair of lateral arms (bras latéraux, Denis, 1928) extend
- 149 from the anterior part of the pseudotentorial plate, go upward and outward and are inserted into
- 150 the head.
- 151 According to Folsom (1899) re is also a chitinous rod, which is attached to the base of the
- lobe of the lacinia. The chitinous rod has a chitinous expansion, which is an attachment site for
- several maxillary muscles. It is shown in our model as a part of maxilla.
- 154 Antecostae are submarginal ridges near the anterior edges of the inner surface of the tergum with
- several body muscles attached to them.
- 156 Three ventral furca-like structures are branched and found in the thorax between the first and the
- second thoracic segments, between the second and the third thoracic segments, and between the
- third thoracic segment and the first abdominal segment. Additionally, there is a simple
- rectangular endosternite in the first abdominal segment.
- The volume of the skeleton is about 0.05 nl (5.8% of the body volume).

163

164165

166

167

168

169170

171

172

173

174

175

176

177

178

179

180

181

182

183

Digestive and excretory systems

The alimentary canal (Fig. 4) is shaped as a straight tube without loops or diverticula, extending from the anterior and ventral area of the head into the terminal abdominal segment. It is divided into the fore-, mid-, and hindgut.

The slender foregut is round in cross section and extends posteriorly from the oral cavity. It is divided into the pharynx and oesophagus. The slender pharynx is about 4.2 μ m. The oesophagus passes through the suboesophageal ganglion and leads into the thicker midgut at the level of the metathorax (around the fourth abdominal segment), which consists of one layer of cells (6–8 cells in cross section). The oesophagus has one pair of muscles 1(Oe). The first half of the midgut is round in cross section, about 27.8 μ m in diameter. The second half is oval in cross section. The border between the midgut and the hindgut is indistinguishable. At around the sixth abdominal segment, it extends into the wider rectum with four pairs of muscles. The latter continues backwards and terminates ventrally at the anus with three anal lobes in the last abdominal segment.

Labial nephridia, or tubular glands, the main excretory organs of collembolans, are found in the posterior half of the head (Fig. 4). It is composed of a sac, a labyrinth, and a duct. The sac is situated posteriorly and continues forward into the labyrinth. The labyrinth follows a hardly distinguishable winding course and forms a loop. The labyrinth continues as the duct, which opens in the buccal cavity. Other head glands (anterior and posterior salivary glands, globular, or acinous glands, and antennal nephridia) were not found in *M. sylvatica*.

The volume of the digestive and excretory systems is about $0.07~\mathrm{nL}$ (8.6% of the body volume).

> 186 187

188

189

190

191

192

193

194

195

196

197

198

199

200

Nervous system

The nervous system (Fig. 4) consists of a supraoesophageal ganglion (brain), suboesophageal ganglion, and three thoracic ganglia. The brain extends from the bases of the antennae to the anterior part of the first thoracic segment. It fills the dorsal portion of the head, but narrows in the posterior portion of the head (beyond the beginning of the suboesophageal ganglion) and extends at the boundary between of the head and the first thoracic segment, it terminates in the anterior half of the latter. The brain has a unique structure, with two pairs of apertures with one pair of oesophageal 1(Oe) and two pairs of pseudotentorial suspensory muscles 1(Pst), 2(Pst) running through them. The suboesophageal ganglion lies in the ventral portion of the head, starting at its middle, and continues to the distal margin of the first thoracic segment. Three large ventral thoracic ganglia, one in each segment, shift their position by one segment: the first ganglion lies in the mesothorax, the second one is in the metathorax, and the third one is in the first abdominal segment. They are interconnected by longitudinal cords in intersegments (one in each). As in all collembolans, the abdominal ganglia are fused with the third thoracic ganglion.

The volume of the central nervous system is about 0.05 nL (6.3% of body volume). The volume of the brain is about 0.02 nL (2.2% of the body volume).

201202

203

204

205

206207

208

209

210211

212

213

214215

216217

218

219220

221

222223

224

225

Muscular system

Musculature of head (Fig. 3, Table S1). 1(Pst) (M. craniotentorialis lateralis): O, medial surface of frons, laterad of 2(Pst); I, dorsal surface of pseudotentorial plate, laterad of 2(Pst), 2(Pst) (M. craniotentorialis medialis): O, medial surface of frons, mediad of 1(Pst); I, dorsal surface of pseudotentorial plate, mediad of 1(Pst). 1(An) (M. antennotentoralis): O, lateral face of first antennal segment; I, pseudotentorium. 3(Mn) (M. craniomandibularis posterior): O, posterior surface of gena I, dorsolateral surface of basal ridge of mandible, posterad of 4(Mn), 4(Mn) (M. craniomandibularis anterior): O, frons, mediad of 3(Mn); I, dorsolateral surface of basal ridge of mandible, anterad of 3(Mn), posterad of 5(Mn). 5(Mn) (M. tentoriomandibularis): O, anterior arm of pseudotentorium; I, dorsolateral surface of mandible, anterad of 4(Mn). 7(Mn) (M. craniomandibularis): O, frons, along with 1(Mx), mediad of 10(Mn); I, ventroposterior area, outer angle of large triangular opening of mandible along with 8(Mn), 10(Mn), 8(Mn) (M. craniomandibularis): O, posterior surface of frons, crossing median plane, posterad of 7(Mn); I, ventroposterior area, outer angle of large triangular opening of mandible along with 7(Mn), 10(Mn). 9(Mn) (M. tentoriomandibularis): O, base of pseudotentorium; I, large triangular opening (median surface) of mandible. 10(Mn) (M. craniomandibularis): O, frons, laterad of 7(Mn); I, ventroposterior area, outer angle of large triangular opening of mandible along with 7(Mn), 8(Mn). 11(Mn) (M. craniomandibularis): O, anterior surface of area antennalis, near antennal base, ventrad of 12(Mn); I, lateral surface of mandible, laterad of 12(Mn), 12(Mn) (M. craniomandibularis): O, anterior surface of area antennalis, dorsad of 11(Mn); I, lateral surface of mandible, mediad of 11(Mn). 1(Mx) (M. craniocardinalis): O, dorsomedial area of occiput; I, lateral edge of cardo, dorsad of 5(Mx). 2(Mx) (M. craniostipitalis medialis): O, posterior surface of gena, ventrad of 3(Mx); I, lateral edge of chitinous expansion, mediad of 3(Mx). 3(Mx) (M. craniostipitalis lateralis): O, posterior surface of gena, dorsad of 2(Mx); I, median edge of

226 chitinous expansion, laterad of 2(Mx). 4(Mx) (M. maxillaris internus 1): O, anterior surface of 227 cardo; I, dorsoventral surface of chitinous expansion. 5(Mx) (M. tentoriocardinalis): O, base of pseudotentorium; I, concavity of cardo, ventrad of 1(Mx). 7(Mx) (M. maxillaris internus 2): O, 228 229 median surface of stipes; I, dorsolateral surface of chitinous expansion. 1–3(Hy) (M. 230 craniohypopharyngealis): O, anterioventral area of the head capsule; I, hypopharynx. Three very 231 small obscure muscles. 1(Oe) (M. cranioesophagialis): O, anteriomedial surface of area 232 antennalis; I, dorsal surface of oesophagus. dlm1 (M. occiputo-cranialis medialis): O, occiput, 233 mediad of dlm2; I, medial surface of frons, mediad of dlm2. dlm2 (M. occiputo-cranialis 234 lareralis): O, occiput, laterad of dlm1; I, medial surface of frons, laterad of dlm1. 235 Musculature of thorax (Fig. 5, Table S1). Prothorax. I dlm1 (M. antecosta-occipitalis medialis): O, antecosta I, mediad of I dlm2; I, occiput, mediad of I dlm2. I dlm2 (M. antecosta-occipitalis 236 237 lateralis): O, antecosta I, laterad of I dlm1; I, occiput, laterad of I dlm1. I ism1 (M. antecosta-238 pseudotentoralis): O, antecosta I; I, posterior area of fulcrum. I ism2 (M. profurca-occipitalis): O, dorsal area of profurca-like structure; I, dorsolateral area of occiput. I dvm1 (M. cervico-coxalis): 239 240 O, dorsolateral cervical membrane; I, anterior procoxal rim. I dvm3 (M. pronoto-coxalis lateralis; 241 two bands): O, anterior region of pronotum; I, lateral procoxal rim and anterior procoxal rim along with instertion of I dvm2. I ldvm1 (M. pronoto-coxalis medialis): O, anterolateral part of 242 pronotum; I, anterior procoxal rim. Lb dvm1 (M. occiputo-pseudotentoralis; two bands): O, 243 244 dorsal area of occipitale; I, posterior area of fulcrum. Lb dvm2 (M. occiputo-cervicalis): O, dorsal 245 area of occipitale; I, ventral cervical membrane. I vlm (M. profurca-pseudotentoralis): O, anterior part of profurca-like structure; I, union arm of pseudotentorium. I scm1 (M. profurca-coxalis 1): 246 O, anterior face of profurca-like structure; I, posterior procoxal rim, laterad of I scm2. I scm2 (M. 247 profurca-coxalis 2): O, ventral face of profurca-like structure; I, posterior procoxal rim, mediad 248 249 of I scm1. I scm3 (M. profurca-coxalis 3): O, ventral face of profurca-like structure along with I 250 scm4; I, lateral procoxal rim. I scm4 (M. profurca-coxalis 4): O, ventral face of profurca-like 251 structure along with I scm3; I, posteriolateral procoxal rim. Mesothorax. II dlm1 (M. antecosta-antecostalis medialis): O, antecosta II, mediad of II dlm2; I, 252 253 antecosta III, mediad of II dlm2. II dlm2 (M. antecosta-antecostalis lateralis): O, antecosta II, laterad of II dlm1; I, antecosta III, laterad of II dlm1. II ism1 (M. profurca-antecostalis medialis): 254 O, lateral part of profurca-like structure, mediad of II ism2; I, antecosta III, mediad of II ism2. II 255 ism2 (M. profurca-antecostalis lateralis): O, lateral part of profurca-like structure, laterad of II 256 257 ism1; I, antecosta III, laterad of II ism1. II dvm1 (M. mesonoto-profurcalis anterior): O, dorsolateral part of profurca-like structure, anterad of II dvm2; I, mesonotum (middle of 258 259 segment), anterad of II dvm2. II dvm2 (M. mesonoto-profurcalis posterior): O, dorsolateral part of profurca-like structure, posterad of II dvm1; I, mesonotum (middle of segment), posterad of II 260 261 dvm1. II dvm3 (M. mesonoto-coxalis; two bands): O, lateral part of mesonotum (middle of 262 segment); I, anterior face of mesocoxa. II dvm4 (M. mesonoto-subcoxalis anterior; two bands): O, anterolateral part of mesonotum; I, anterior border of mesosubcoxa. II dvm5 (M. metanoto-263 subcoxalis posterior): O, posterolateral part of mesonotum; I, ventral border of mesosubcoxa. II 264 265 ldvm1 (M. mesonoto-coxalis anterior): O, posterolateral part of mesonotum; I, anterior 266 mesocoxal rim. II ldvm2 (M. metanoto-subcoxalis; two bands): O, posterolateral part of 267 mesonotum; I, posteroventral border of mesosubcoxa and posterior border of mesocoxal rim. II

268 ldvm3 (M. metanoto-coxalis posterior): O, posterolateral part of mesonotum; I, anterior face of 269 mesocoxa. II vlm (M. profurca-mesofurcalis): O, lateral part of profurca-like structure; I, lateral part of mesofurca-like structure. II scm1 (M. mesofurca-coxalis 1): O, anterior face of mesofurca-270 271 like structure; I, posterior mesocoxal rim, laterad of II scm2. II scm2 (M. mesofurca-coxalis 2): 272 O, ventrolateral face of mesofurca-like structure along with II scm4; I, posterior mesocoxal rim, 273 mediad of II scm1. II scm3 (M. mesofurca-coxalis 3): O, anterior face of mesofurca-like 274 structure; I, lateral mesocoxal rim, laterad of II scm4. II scm4 (M. mesofurca-coxalis 4): O, 275 ventrolateral face of mesofurca-like structure along with II scm2; I, lateral mesocoxal rim, 276 mediad of II scm3. II scm5 (M. profurca-coxalis lateralis): O, posterior face of profurca-like 277 structure; I, anteriolateral metacoxal rim, laterad of II scm6. II scm6 (M. profurca-coxalis medialis): O, posterior face of profurca-like structure; I, anteriolateral metacoxal rim, mediad of 278 279 II scm5. Metathorax. All muscles that are present in mesothorax, are found in metathorax, except: III 280 281 282 Musculature of abdomen (Fig. 6, Table S1). AI dlm1 (M. antecosta-antecostalis medialis): O, antecosta III, mediad of AI dlm2; I, antecosta IV, mediad of AI dlm2. AI dlm2 (M. antecosta-283 antecostalis lateralis): O, antecosta III, laterad of AI dlm1; I, antecosta IV, laterad of AI dlm1. AI 284 vlm (M. metafurca-endosternalis): O, lateral face of metafurca-like structure; I, endosternite I. AI 285 286 ism1 (M. antecosta-metafurcalis anterior): O, antecosta IV, anterad of AI ism2; I, lateral face of 287 metafurca-like structure, anterad of AI ism2. AI ism2 (M. antecosta-metafurcalis posterior): O, antecosta IV, posterad of AI ism1; I, lateral face of metafurca-like structure, posterad of AI ism1. 288 AI dvm1 (M. tergo-metafurcalis anterior): O, middle region region of tergum, anterad of AI 289 dvm2; I, lateral face of metafurca-like structure, anterad of AI dvm2. AI dvm2 (M. tergo-290 291 metafurcalis posterior): O, middle region region of tergum, posterad of AI dvm1; I, lateral face of metafurca-like structure, posterad of AI dvm1. AI ldvm1 (M. pleuro-metafurcalis): O, lateral wall 292 293 of segment; I, lateral face of metafurca-like structure. AI dvm VT (M. tergo-pleuralis): O, anterior 294 region of tergum; I, tendon system. AI lm (M. sterno-pleuralis): O, base of ventral tube; I, valva 295 of ventral tube. AI pm1 (M. sterno-pleuralis): O, base of ventral tube; I, metafurca-like structure. AI pm2 (M. sterno-pleuralis): O, base of ventral tube; I, tendon system. AI pm3 (M. sterno-296 297 pleuralis): O, base of ventral tube; I, tendon system. AI pm4 (M. sterno-pleuralis): O, base of ventral tube; I, tendon system. AI dvm3 (M. pleuro-pleuralis): O, lateral wall of segment; I, 298 299 tendon system. AI dvm4 (M. tergo-pleuralis): O, posterior region of tergum; I, tendon system. AI dm1 (M. sterno-pleuralis): O, anterior face of ventral tube, laterad of dm3; I, metafurca-like 300 301 structure. AI dm2 (M. sterno-pleuralis): O, vesicles of ventral tube; I, endosternite I. AI dm3 (M. 302 sterno-pleuralis): O, anterior face of ventral tube, mediad of dm1; I, metafurca-like structure. AI 303 dm4 (M. sterno-pleuralis): O, vesicles of ventral tube; I, endosternite I. AI dm5 dm4 (M. sterno-304 pleuralis): O, posterior face of ventral tube; I, tendon system. All dlm1 (M. antecosta-antecostalis 305 medialis): O, antecosta IV, mediad of AII dlm2; I, antecosta V, mediad of AII dlm2. All dlm2 (M. 306 antecosta-antecostalis lateralis): O, antecosta IV, laterad of AII dlm1; I, antecosta V, laterad of AII 307 dlm1. All vlm (M. endosterno-antecostalis): O, endosternum I; I, antecosta V. All ism1 (M. 308 antecosta-endosternalis anterior): O, antecosta V, anterad of AII ism2; I, endosternum I, anterad 309 of AII ism2. All ism2 (M. antecosta-endosternalis posterior): O, antecosta V, posterad of AII

- 310 ism1; I, endosternum I, posterad of AII ism1. All dvm1 (M. tergo-endosternalis anterior): O, 311 middle region of tergum, anterad of AII dvm2; I, endosternum I, anterad of AII dvm2. All dvm2 312 (M. tergo-endosternalis posterior): O, middle region of tergum, posterad of AII dvm1; I, 313 endosternum I, posterad of AII dvm1. All ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; 314 I, sternum. All dvm3 (M. tergo-sternalis anterior): O, anterior border of tergum; I, lateral border 315 of sternum. All dvm4 (M. tergo-sternalis posterior): O, lateral area of tergum; I, lateral border of 316 sternum. All trm1 (M. endosterno-endosternalis): O, inner surface of endosternum I; I, inner 317 surface of endosternum I (opposite side). Alll dlm1 (M. antecosta-antecostalis medialis): O, 318 antecosta V, mediad of AIII dlm2; I, antecosta Vl, mediad of AIII dlm2. Alll dlm2 (M. antecosta-319 antecostalis lateralis): O, antecosta V, laterad of AIII dlm1; I, antecosta Vl, laterad of AIII dlm1. 320 Alll ism1 (M. antecosta-antecostalis medialis): O, antecosta VI, mediad of AIII ism2; I, ventral 321 area of antecosta V, mediad of AIII ism2. Alll ism2 (M. antecosta-antecostalis lateralis): O, 322 antecosta VI, laterad of AIII ism1; I, ventral area of antecosta V, laterad of AIII ism1. Alll dvm1 323 (M. tergo-antecostalis anterior); O, middle region of tergum, anterad of AIII dvm2; I, ventral area 324 of antecosta V, anterad of AIII dvm2. Alll dvm2 (M. tergo-antecostalis posterior): O, middle 325 region of tergum, laterad of AIII dvm1; I, ventral area of antecosta V, laterad of AIII dvm1. Alll dvm3 (M. tergo-sternalis anterior): O, anterior border of tergum; I, lateral border of sternum. Alll 326 327 dvm4 (M. tergo-sternalis posterior): O, lateral area of tergum; I, lateral border of sternum. Alll 328 ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; I, sternum. AIV dlm1 (M. antecosta-329 antecostalis medialis): O, antecosta Vl, mediad of AIV dlm2; I, antecosta Vll, mediad of AIV dlm2. AIV dlm2 (M. antecosta-antecostalis lateralis): O, antecosta Vl, laterad of AIV dlm1; I, 330 antecosta VII, laterad of AIV dlm1. AlV vlm (M. antecosta-antecostalis): O, antecosta V; I, 331 antecosta VII. AIV ism1 (M. antecosta-antecostalis): O, dorsal part of antecosta VI; I, ventral part 332 333 of antecosta VII. AIV dvm1 (M. tergo-sternalis posterior): O, anterior border of tergum; I, 334 posterior border of sternum. AIV dvm2 (M. pleuro-sternalis): O, lateral wall of segment; I, 335 sternum, along with AIV ldvm5. AIV dvm3 (M. tergo-sternalis anterior): O, anterior border of 336 tergum; I, posterior border of sternum. AIV ldvm3 (M. tergo-antecostalis): O, posterior region of 337 tergum; I, ventral part of antecosta VII. AIV ldvm4 (M. tergo-sternalis): O, posterior region of 338 tergum; I, lateral board of sternum. AIV ldvm5 (M. tergo-sternalis): O, posterior region of 339 tergum; I, sternum, along with AIV dym2. AIV ldym7 (M. pleuro-sternalis): O, lateral wall of 340 segment; I, lateral board of sternum. AV dlm1 (M. antecosta-antecostalis medialis): O, antecosta 341 Vll, mediad of AV dlm2; I, antecosta Vlll, mediad of AV dlm2. AV dlm2 (M. antecosta-342 antecostalis lateralis): O, antecosta Vll, laterad of AV dlm1; I, antecosta Vlll, AV dlm1. AV ism1 343 (M. tergo-intersegmentalis): O, anterior region of tergum; intersegmental area between 5th and 344 6th segments. AV ldvm1 (M. pleuro-sternalis): O, lateral wall of segment; I, sternum. AVl sm1 345 (M. sterno-rectalis): O, sternum; I, rectum. AVI sm2 (M. sterno-rectalis): O, lateral board of 346 sternum; I, rectum. AVI dvm1 (M. tergo-rectalis): O, anterior region of tergum; I, rectum. AVI 347 dvm2 (M. tergo-sternalis): O, central region of tergum; I, rectum. AVI dvm3 (M. tergo-sternalis): O, posterior region of tergum; I, dorsal anal lobe. AVl dvm4 (M. pleuro-sternalis): O, lateral wall 348 349 of segment; I, lateral anal lobe. 350 The volume of the muscular system is about 0.04 nL (5.2% of the body volume).
 - PeerJ reviewing PDF | (2019:05:37277:0:1:NEW 18 Jun 2019)

Reproductive system

The female reproductive system has been studied in detail (Fig. 4). The ovary is unpaired with three lobes. The largest lobe probably contains eggs, while two other, smaller lobes contain no eggs and lie dorsad of the largest one. The anterior portion of the ovary lies between the abdominal segments 2 and 3, while its posterior portion ends between abdominal segments 4 and 5. The oviduct is small, short and unpaired, leading to the vagina, the margins of which are indistinct. The vagina opens ventrally on the fifth abdominal segment with a transverse reproductive orifice (gonopore).

The volume of the reproductive system is about 0.15 nL (18.9% of the body volume).

Circulatory system and fat body

Organs of the circulatory system are absent. The fat body occupies all cavities between organs in the head, thorax, and abdomen. It consists of cells of various shape.

The volume of the circulatory system and fat body is about 0.44 nL (55.2% of the body volume).

Respiratory system

Organs of the respiratory system (trachea) are absent.

DISCUSSION

We studied the anatomy of *M. sylvatica* to extend the knowledge on the anatomy of Collembola as well as to reveal possible miniaturization traits and compare them to the miniaturization effects discovered in microinsects and other minute arthropods. Moreover, we analyzed the relative volume of organs in *Mesaphorura sylvatica* in comparison with microinsects.

Skeleton

The endoskeletal structures of *M. sylvatica* are well-developed as in larger species (Manton, 1964), the complex pseudotentorium has multiple arms, and the furca-like structures are branched. However, reductions seem to have affected the abdomen, in which we observed only one endosternite, compared to *Neanura muscorum*, in which five endosternites were found (Bretfeld, 1963). In microinsects, elements of the endoskeleton tend to fuse (Polilov, 2015a; Polilov, 2015b). Of all adult microinsects, only booklice have a complex tentorium (Polilov, 2016b), and all furcae are developed in thrips, beetles of the family Corylophidae, and wasps of the family Mymaridae (Polilov and Beutel, 2010, Polilov and Shmakov, 2016, Polilov, 2016c).

The relative volume of the skeleton of *M. sylvatica* is similar to the one of adult Paraneoptera of the same size, but notably smaller than the ones of other microinsects (both larvae and adults) of the same size (Polilov & Makarova, 2017). The smaller relative volume of the skeleton of *M. sylvatica*, compared to most microinsects, could be related to the differences in cuticle thickness (due to the fragmented epicuticle of all collembolans) and to the flightlessness of collembolans.

Nervous system

Unlike those of larger species of Collembola (Hopkin, 1997; Kolmann et al., 2011), the brain and suboesophageal ganglion of *M. sylvatica* extend into the prothorax. The three thoracic ganglia of *M. sylvatica* shift their position by one segment posteriorly, reported by Lubbock (1873) in larger species. The brain and suboesophagal ganglion are situated close to each other; they are connected in the neck region. The central nervous system is symmetrical and displays moderate concentration and oligomerization of ganglia. Similar degrees of concentration and oligomerization of the central nervous system are found in adult booklice of the family Liposcelididae (Polilov, 2016b) and in adult thrips (Polilov & Shmakov, 2016).

The shift of different parts of the brain into the prothorax has been described in thrips larvae (Polilov & Shmakov, 2016), adults and larvae of beetles of the family Ptiliidae (Polilov & Beutel, 2009), adults and larvae of beetles of the family Corylophidae (Polilov & Beutel, 2010), larvae of beetles of the family Strepsiptera (Beutel et. al., 2005), larvae of beetles of the family Scydmaenidae (Jałoszyński et al., 2012), larvae of beetles of the family Hydroscaphidae (Beutel & Haas, 1998), adults of beetles of the family Sphaeriusidae (Yavorskaya et al., 2018).

The nervous system of *M. sylvatica* shows unique changes in the brain with two pairs of apertures and three pairs of muscles running through them. This feature has not been described in studies of the nervous system of larger collembolans (Lubbock, 1873; Hopkin, 1997; Kollmann et al., 2011) or microinsects (Polilov, 2015a; Polilov, 2015b).

The relative volume of the central nervous system of *M. sylvatica* is similar to the one of tiny adult Coleoptera, smaller than the ones of minute adult Hymenoptera and Paraneoptera larvae, and greater than the one of adult Paraneoptera of the same size (Polilov & Makarova, 2017). The same relative volume as in tiny adult Coleoptera possibly follows the tendency of the nervous system of microinsects to increase as the body size decreases (Polilov & Makarova, 2017). It is also supported by the fact that representatives of adult minute Paraneoptera have greater body size, but smaller relative volume of the central nervous system compared to the body size and the relative volume of *M. sylvatica*. The smaller relative volume compared to the one of minute adult Hymenoptera and Paraneoptera larvae could be related to better pronounced effects of miniaturization in adult Hymenoptera and Paraneoptera larvae of the same size.

The relative volume of the brain of *M. sylvatica* is similar to the one of adult Coleoptera of the same size, slightly greater than the one of minute adult Paraneoptera, and notably smaller than the ones of other microinsects of the same size (Polilov & Makarova, 2017). The smaller relative volume than in most microinsects of the same size could possibly be related to the simpler behavior and absence of eyes (Jordana et al., 2000).

Circulatory system and fat body

The circulatory system of *M. sylvatica* is simplified, the heart and the vessels are absent. Most of the body cavities of *M. sylvatica* are filled with fat body. In larger species, there is a heart with 2–6 pairs of ostia and an aorta (Fernald, 1890; Denis, 1928; Imms, 1957; Schaller, 1970). The same reduction as in *M. sylvatica* was observed in adults and larvae of beetles of the family Ptiliidae (Polilov, 2005; Polilov & Beutel, 2009), larvae of booklice of the family Liposcelididae (Polilov, 2016b), adult hymenopterans of the family Trichogrammatidae (Polilov, 2016d; Polilov, 2017), tardigrades (Gross et al., 2019), and some chelicerates (Dunlop, 2019). In microinsects, it

is assumed that the diffusion of metabolites is sufficient enough for the transport between the organs (Polilov, 2008; Polilov & Beutel, 2009), which is, apparently, the same case in *M.* sylvatica.

The relative volume of the circulatory system and fat body of *M. sylvatica* is particularly great, greater than the ones of other microinsects of the same size except Paraneoptera and Coleoptera larvae (Polilov & Makarova, 2017). The high relative volume could be related to the importance of fat body in excretion in Collembola (Schaller, 1970).

Female reproductive system

The female reproductive system of *M. sylvatica* has unpaired structures (the ovaries and oviducts). In larger species, it consists of paired ovaries, oviducts and accessory glands, and unpaired spermatheca. We did not observe the accessory glands and spermatheca in *Mesaphorura sylvatica*, what may be explained by the fact that they are hardly recognizable even in larger species (Schaller, 1970; Dallai, 2008). The same changes were observed in beetles of the family Ptiliidae, in which both sexes have unpaired structures (Polilov & Beutel, 2009).

The relative volume of the reproductive system of *M. sylvatica* is also particularly great; it is smaller only than the ones of some minute adult Coleoptera and minute Hymenoptera (Polilov & Makarova, 2017). The greater relative volume compared to those of most microinsects of the same size could be related to the relative egg size increase with decreasing body size (Polilov, 2016a).

Digestive and excretory systems

The digestive system of *M. sylvatica* is least modified, compared to larger species (Lubbock, 1873; Folsom, 1899; Wolter, 1963; Schaller, 1970). It is straight, without loops or diverticula. Among microinsects, only larvae of booklice of the family Liposcelididae have no loops or pronounced bends (Polilov, 2016b). No salivary glands are found in *M. sylvatica*. Salivary glands in some microinsects are absent as a result of miniaturization (Polilov, 2015a; Polilov, 2015b). We did not observe any muscles of the midgut, the absence which is also a common trait among minute insects (Polilov, 2016a).

The relative volume of the digestive system of *M. sylvatica* is similar to those of most minute Coleoptera, notably smaller than those of minute Paraneoptera, but greater than the ones of Hymenoptera and some Coleoptera species of the same size (Polilov & Makarova, 2017).

Excretory system

The specialized organs of the excretory system are absent in *Mesaphorura sylvatica*. In larger species, re might be small papillae instead of Malpighian tubes or labial nephridia in the head (Schaller, 1970). Moreover, in collembolans, there are also acinous glands and antennal nephridia (Wolter, 1963). In microinsects, Malpighian tubes do not disappear, but their number decreases (Polilov, 2015a).

Musculature

478

479 480

481 482

483

484

485 486

487 488

489

490 491

492

493 494

495

496

497

498

499 500

501502

503

504

505

506

507508

509

510511

512

513

514

515516

517

518

The muscular system of *M. sylvatica* is reduced, compared to those of larger species of Collembola, and has 24 pairs of muscles in the head, 51 in the thorax, and 60 in the abdomen (and 1 unpaired muscle); 136 pairs in total. The total number of muscles of all tagmata have not been studied for a single species of springtails, which makes it challenging to compare our results with previous studies.

It is challenging to compare muscles of a head in Collembola. Folsom (1899) described at least 47 pairs of muscles in the head of a large collembolan *Orchesella cincta* associated with the digestive system and mouthparts. There are 26 pairs of muscles associated with mouthparts (labrum, labium, maxilla, mandible) in details. In addition, he noted 20 pairs of muscles associated with both pharynx and oesophagus (7 of them are the ventral dilators of pharynx, which he later classified as tentorial muscles), but he did not designate them. He mentioned the presence of tentorial muscles (dilators of pharynx, antennal, and muscles connected to the head), but did not even specify the number of these muscles. Folsom (1899) also mentioned two muscles of the palpi, but it is not clear whether he meant two pairs of muscles or two muscles in total. Denis (1928) described at least 73 pairs of muscles in the head of a large collembolan Anurida maritima associated with mouthparts, pseudotentorium and the digestive system. He divided the muscles of the head into several groups, but he specified the number of muscles only for some of them. For mouthparts (maxilla and mandible), he remarked that for some muscles he drew a single bundle that included several muscles, but he did not specify the number of them. There are at least 17 pairs of muscles associated with maxilla and mandible in *Anurida maritima*. Moreover, he described all tentorial muscles, and there are at least 45 of them (14 of those are the ventral dilators of pharvnx). In addition, he mentioned superlingual muscles (the number was not given), suspensors of the atrium (3 pairs), 8 pairs of antennal muscles (excluding the muscles inside the antenna), and 5 muscles associated with epipharynx and pharynx. He did not specify a number of muscles of labium. Moreover, he described the groups of muscles of heads of two large species *Onychiurus fimetarius* and *Tomocerus catalanus*, but he compared them to *Anurida* maritima, without any details on exact numbers. With Tomocerus catalanus he refers to the study of Hoffmann (1908). Hoffmann (1908) described at least 53 pairs of muscles in the head of a large collembolan *Tomocerus plumbeus*. There are 35 muscles associated with mouthparts (maxilla, mandible, and labium), 15 muscles of pharynx, and 3 muscles of glossa. Hoffmann (1908) also mentioned presence of tentorial muscles, but did not specify the number of them. There are 15 pairs of muscles in *M. sylvatica* associated with maxilla and mandible, one pair of antennal muscles, one pair of oesophagal muscles, two pairs of suspensory pseudotentorial muscles, and three pairs of muscles, possibly associated with hypopharynx. Moreover, there are two pairs of dorsal longitudinal muscles, while this group of muscles was mentioned, but not described in the literature. In this study, we have not described any other tentorial muscles, except those mentioned above, and internal antennal muscles due to their small size. *M. sylvatica* has 15 pairs of muscles of maxilla and mandible, which is less than in larger collembolans O. cincta (20), A. maritima (17), and T. plumbeus (29). M. sylvatica does not have muscles of labium or labrum, while there are 6 pairs of them in *O. cincta* and at least 6 pairs in *T. plumbeus*. *M*. sylvatica has only one pair of dorsal dilators of the oesophagus and no dorsal dilators of the pharynx, which is less than in larger collembolans O. cincta (13), T. plumbeus (15).

538

539

540

541542

543544

545

546

547

548549

550

551

552

553

554

555

556

557558

559

560

519 A total of 51 pairs of muscles were described in the thorax of *Neanura muscorum* (Bretfeld, 520 1963) and a total of 37 pairs of muscles were described in the thorax of *O. cincta* (Bretfeld, 521 1963). Any muscles associated with legs have not been described in this study. We found 36 pairs 522 of muscles not associated with legs in the thorax of M. sylvatica and 17 pairs of muscles 523 associated with legs. There is a greater similarity between the muscles of *M. sylvatica* and *O.* 524 cincta (both species have greater numbers of dorsoventral muscles) than between the muscles of 525 M. sylvatica and N. muscorum. M. sylvatica lacks several dorsoventral and intersegmental 526 muscles, while the amount of longitudinal muscles remain the same. It is important to note that 527 Bretfeld (1963) described several muscles in the thorax as muscles possibly associated with the 528 head. Two of them, Lb dlm1 and Lb dlm2, we describe as dlm1 and dlm2 in the section on the muscles of the head. A total of 52 pairs and 9 unpaired muscles were described in the abdomen of 529 530 *N. muscorum* (Bretfeld, 1963) and a total of 45 pairs of muscles were described in the abdomen 531 of O. cincta (Bretfeld, 1963). No muscles associated with the ventral tube, rectum, or anal lobes 532 were described in these collembolans, except one in one species (VTm in O. cincta). We found 533 43 pairs and one unpaired muscle in the abdomen of *M. sylvatica*, not connected to the ventral 534 tube, as well as 11 pairs of muscles associated with the ventral tube, four with the rectum, and two with the anal lobes. As for the thorax, *M. sylvatica* lacks many dorsoventral muscles, some 535 intersegmental muscles and almost all transverse unpaired muscles. 536

Minute adult Coleoptera have 19 or 20 pairs of muscles in the head (Sericoderus lateralis and *Mikado* sp., respectively) and 48 or 49 pairs of muscles in the thorax (*Mikado* sp. and *S. lateralis*, respectively) (Polilov & Beutel, 2009; Polilov & Beutel, 2010). Compared to them, the number of the head pairs of muscles (24) and thoracic pairs of muscles (51) in M. sylvatica is slightly greater. Larvae of minute Coleoptera have 16 pairs of muscles in the head (*Mikado* sp. and *S*. lateralis) (Polilov & Beutel, 2009; Polilov & Beutel, 2010) and 46 (Mikado sp., the first instar larvae), 52 (Mikado sp., the last instar larvae) 63 (S. lateralis, the first instar larvae) or 64 (S. *lateralis*, the last instar larvae) pairs of muscles in the thorax. The number of thoracic pairs of muscles in minute M. sylvatica (51) is close to the number of thoracic muscles in the last instar larvae of *Mikado* sp., but smaller than in larvae of *S. lateralis*. Minute Hymenoptera have 18 (Megapragma mymaripenne, Trichogramma evanescens) (Polilov, 2016d; Polilov, 2017), or 20 (Anaphes flavipes) (Polilov, 2016c) muscles in the head and 45 (M. mymaripenne), 50 (A. flavipes), 52 (T. evanescens), or 53 (Gonatocerus morrilli) (Vilhelmsen et al., 2010) muscles in the thorax. Compared to them, the number of the head muscles of *M. sylvatica* (24) is slightly greater, but the number of the thoracic muscles of this species (51) is greater only compared to those of M. mymaripenne and A. flavipes. Minute adult booklice Liposcelis bostrychophila have 33 pairs of muscles in the head and 57 pairs of muscles in the thorax (Polilov, 2016b). The larvae of L. bostrychophila have 29 pairs of muscles in the head and 55 pairs of muscles in the thorax (Poliloy, 2016b). Compared to both larvae and adults, the number of the head pairs of muscles (24) and thoracic pairs of muscles (51) of *M. sylvatica* is notably smaller. Minute adult thrips Heliothrips haemorrhoidalis have 19 pairs of muscles in the head and 60 pairs of muscles in the thorax (Polilov & Shmakov, 2016). Compared to them, the number of the head pairs of muscles (24) of *M. sylvatica* is greater, but the number of the thoracic pairs of muscles (51) is notably smaller. Larvae of *H. haemorrhoidalis* have 18 pairs of muscles in the head and 41 pairs of

566

567

568 569

570

571 572

573

574

575

578

579

580

581

582

583 584

585

586

587

588 589

561 muscles in the thorax (Polilov & Shmakov, 2016). Compared to them, the number of the head 562 pairs of muscles (24) and thoracic pairs of muscles (51) of *M. sylvatica* is notably greater. Minute Neuroptera *Coniopteryx pygmaea* (Randolf et al., 2016) have 46 pairs of muscles in the head. 563 564

Compared to them, the number of the head pairs of muscles (24) of *M. sylvatica* is notably lesser.

In all studied microinsects, there are three groups of abdominal muscles: dorsoventral, dorsal longitudinal, and ventral longitudinal (Polilov, 2016a). All three groups are present in the abdomen of *M. sylvatica*.

In conclusion, the musculature system of *M. sylvatica* shows minor reductions in numbers of muscles compared to larger species. Studies on microinsects also show that the changes in musculature are minor, and this system is rather conserved (Polilov, 2015a). The number of muscles in *M. sylvatica* is slightly greater than those in most microinsects.

The relative volume of the musculature of *M. sylvatica* is smaller than those of other microinsects of the same size except Coleoptera larvae (Polilov & Makarova, 2017). The smaller relative volume compared to those of other microinsects could be explained by absence of flight musculature.

576 577

CONCLUSIONS

The anatomy of the minute collembolan *M. sylvatica* has been studied for the first time. It is shown that, despite the small body size, some systems (the highly developed elements of endoskeleton, or complexity of the musculature system) are not greatly changed compared to larger relatives.

Possible miniaturization effects are revealed; most of them are found in microinsects (the absence of organs of the circulatory system, unpaired ovaries and oviducts of the female reproductive system, absence of midgut musculature and salivary glands, reduction of some muscles).

We found unique features of the anatomy of *M. sylvatica*: two pairs of apertures in the brain with three pairs of muscles going through it.

Reduction in size leads to changes in different organs and organ systems. It is crucial to study miniaturization effects in other Panarthropoda including other minute collembolans to broaden our knowledge on miniaturization in living organisms.

590 591 592

ACKNOWLEDGMENTS

We thank Natalia Kuznetsova (MSPU) and Pyotr Petrov (MSU) for their helpful discussions.

594 595 596

601

593

REFERENCES

597 Altster H, 1968. Die Ultrastruktur der Labialnephridien von Onychiurus quadriocellatus 598 (Collembola). Journal of Ultrastructure Research 24:349–366 DOI: 10.1016/S0022-599 5320(68)80042-5

600 Beutel RG, Haas A. 1998. Larval head morphology of *Hydroscapha natans* (Coleoptera,

Myxophaga) with reference to miniaturization and the systematic position of

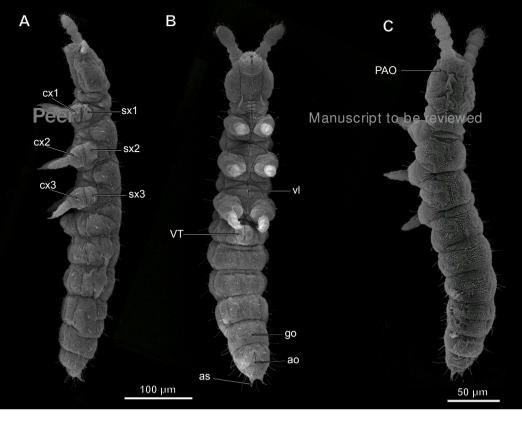
602 Hydroscaphidae. Zoomorphology 118:103–116 DOI: 10.1007/s004350050061

603	Beutel RG, Pohl H, Hunefeld F. 2005. Strepsipteran brain and effect of miniaturization (Insecta).
604	Arthropod Structure and Development 34:301–313 DOI: 10.1016/j.asd.2005.03.001
605	Bretfeld G. 1963. Zur Anatomie und Embryologie der Rumpfmuskulatur und der abdominalen
606	Anhänge der Collembolen. Zoologische Jahrbücher Anatomie 80:309–384
607	Bitsch J. 2012. The controversial origin of the abdominal appendage-like processes in immature
608	insects: Are they true segmental appendages or secondary outgrowths? (Arthropoda
609	Hexapoda). Journal of morphology 273:919–931 DOI: 10.1002/jmor.20031
610	D'Haese CA. 2003. Homology and morphology in Poduromorpha (Hexapoda, Collembola).
611	European Journal of Entomology 101:385-407 DOI: 10.14411/eje.2003.060
612	Dallai R, Cavallo V, Falso LF, Fanciulli PP. 2000. The fine structure of the male genital organs of
613	Allacma fusca (L.) (Collembola, Symphypteona). Pedobiologia 44 (3-4):202–209 DOI:
614	10.1078/S0031-4056(04)70040-2
615	Dallai R, Zizzari ZV, Fanciulli PP. 2008. Fine structure of the spermatheca and of the accessory
616	glands in Orchesella villosa (Collembola, Hexapoda). Journal of Morphology 269:464–478
617	DOI: 10.1002/jmor.10595
618	Davies WM. 1927. On the tracheal system of Collembola, with special reference to that of
619	Sminthurus viridis Lubb. The Quarterly Journal of Microscopical Science, N.S. 281:15–30
620	Denis JR. 1928. Études sur l'anatomie de la tête de quelques collemboles suivies de
621	considérations sur la morphologie de la tête des insectes. Archives de Zoologie
622	Experimentale et Générale 68:1-291
623	Dunlop J. 2019. Miniaturisation in Chelicerata. <i>Arthropod Structure and Development</i> 48:20–34
624	DOI: 10.1016/j.asd.2018.10.002
625	Eisenbeis G, Wichard W. 1975. Feinstruktureller und histochemischer Nachweis des
626	Transportepithels am Ventraltubus symphypleoner Collembolen (Insecta, Collembola).
627	Zeitschrift für Morphologie der Tiere 81:103–110
628	Fernald HT. 1890. The relationships of Arthropods. Studies from the Biological Laboratory of
629	Johns Hopkins University 4:431–513
630	Folsom JW. 1899. The anatomy and physiology of the mouth-parts of the Collembola <i>Orchesella</i>
631	cincta L. Bulletin of the Museum of Comparative Zoology at Harvard College 35 (2):7–39
632	Gross V, Treffkorn S, Reichelt J, Epple L, Lüter C, Mayer G. 2019. Miniaturization of tardigrades
633	(water bears): Morphological and genomic perspectives. Arthropod Structure and
634	Development 48:12–19 DOI: 10.1016/j.asd.2018.11.006
635	Hanken J, Wake DB. 1993. Miniaturization of body size: organismal consequences and
636	evolutionary significance. The Annual Review of Ecology, Evolution, and Systematics
637	24:501–19 DOI:10.1146/annurev.es.24.110193.002441
638	Hoffmann RW. 1908. Uber die Morphologie und die Funktion der Kauwerkzeuge und uber des
639	Kopfnervensystem von Tomocerus plumbeus L. III Beitrag zur KennPstis der Collembolen.
640	Zeitschrift für wissenschaftliche Zoologie 89:598-689
641	Hopkin SP. 1997. Biology of the Springtails (Insecta: Collembola). Oxford University Press,
642	Oxford, UK

- Humbert W. 1975. Ultrastructure des Nephrocytes cephaliques et abdominaux chez *Tomocerus* minor (Lubbock) et *Lepidocyrtus curvicollis* Bourlet (Collemboles). *International Journal* of *Insect Morphology and Embryology* 4:307–318 DOI: 10.1016/0020-7322(75)90019-7
- 646 Humbert W. 1979. The midgut of *Tomocerus minor* Lubbock (Insecta, Collembola):
- 647 ultrastructure, cytochemistry, ageing and renewal during a moulting cycle. *Cell and Tissue*648 *Research* 196:39–57 DOI: 10.1007/BF00236347
- Imms AD. 1939. On the antennal musculature in insects and other arthropods. *The Quarterly Journal of Microscopical Science* 2:273–320
- Imms AD. 1957. A general textbook of Entomology, 10th edn., revised by O. W. Richards and R.
 G. Davies. London: Methuen
- Jałoszyński P, Hünefeld F, Beutel RG. 2012. The evolution of "deformed" brains in ant-like stone
 beetles (Scydmaeninae, Staphylinidae). Arthropod Structure and Development 41 (1):17–28
 DOI: 10.1016/j.asd.2011.07.003
- Jordana R, Baquero E, Montuenga LM. 2000. A new type of arthropod photoreceptor. *Arthropod Structure and Development* 29 (4):289–293
- Koch M. 2000. The cuticular cephalic endoskeleton of primarily wingless hexapods: ancestral state and evolutionary changes. *Pedobiologia* 44:374–385
- Kollmann M, Huetteroth W, SchachPster J. 2011. Brain organization in Collembola (springtails).
 Arthropod Structure and Development 40:304–316 DOI: 10.1016/j.asd.2011.02.003
- 662 Lécaillon A. 1902a. Sur Ie testicule d'*Anurida maritima*. *Bulletin de la Société entomologique de* 663 *France* 7(4):64–67
- Lécaillon A. 1902b. Sur le testicule d'*Anurophorus laricis* Nie. *Bulletin de la Sociiti Philomatique de Paris* 4:46–52
- 666 Lubbock J. 1873. Monograph of the Collembola and Thysanura. Ray Society, London.
- Manton SM. 1964. Mandibular mechanisms and the evolution of arthropods. Philosophical Transactions of the Royal Society of London B 247
- Minelli A, Fusco G. 2019. No limits: Breaking constrains in insect miniaturization. *Arthropod* Structure & Development. 48:4–11 DOI: 10.1016/j.asd.2018.11.009
- 671 Mukerji D. 1932. Description of a new species of Collembola and its anatomy. *Record of Indian*672 *Museum* 34:47–49
- Philiptschenko J. 1907. Anatomische Studien über Collembola. Zeitschrift für wissenschaftliche
 Zoologie 85:270-304
- Polilov AA. 2005. Anatomy of the feather-winged beetles *Acrotrichis montandoni* and *Ptilium myrmecophilum* (Coleoptera, Ptiliidae). *Entomological Review* 85:467–475
- Polilov AA. 2008. Anatomy of the smallest of the Coleoptera, feather-winged beetles from tribe
 Nanosellini (Coleoptera, Ptiliidae) and limits to insect miniaturization. *Zoologicheskii*Zhurnal 87(2):181–188 [Entomological Review 2008; 88(1): 26–33]
- Polilov AA, Beutel, RG. 2009. Miniaturization effects in larvae and adults of *Mikado* sp.
- 681 (Coleoptera: Ptiliidae), one of the smallest free-living insects. *Arthropod Structure and*682 *Development* 38:247–270 DOI: 10.1016/j.asd.2008.11.003
- Polilov AA, Beutel RG. 2010. Developmental stages of the hooded beetle *Sericoderus lateralis* (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of

685	miniaturization. Arthropod Structure and Development 39:52–69 DOI:
686	10.1016/j.asd.2009.08.005
687	Polilov AA. 2012. The smallest insects evolve anucleate neurons. Arthropod Structure and
688	Development 41:29–34 DOI: 10.1016/j.asd.2011.09.001
689	Polilov AA. 2015a. Small is beautiful: features of the smallest insects and limits to
690	miniaturization. The Annual Review of Entomology 60:103 – 121 DOI: 10.1146/annurev-
691	ento-010814-020924
692	Polilov AA. 2015b. Consequences of miniaturization in insect morphology. Moscow University
693	Biological Sciences Bulletin 70 (3):136–142 DOI: 10.3103/S0096392515030098
694	Polilov AA. 2016a. At the size limit - effects of miniaturization in insects. Springer International
695	Publishing. DOI: 10.1007/978-3-319-39499-2
696	Polilov AA. 2016b. Anatomy of adult and first instar nymph of book lice <i>Liposcelis</i>
697	bostrychophila (Psocoptera: Liposcelididae). Zoologicheskii Zhurnal 95(11):1305–1321.
698	[Entomological Review 96(9):1165–1181]. DOI: 10.7868/S0044513416090087.
699	Polilov AA. 2016c. Features of the structure of Hymenoptera associated with miniaturization: 1.
700	Anatomy of the fairyfly Anaphes flavipes (Hymenoptera, Mymaridae). Zoologicheskii
701	Zhurnal 95(5):567–578. [Entomological Review 96 (4):407 –418]. DOI:
702	10.7868/S004451341605010X
703	Polilov AA. 2016d. Features of the structure of Hymenoptera associated with miniaturization: 2.
704	Anatomy of the <i>Trichogramma evanescens</i> (Hymenoptera, Trichogrammatidae).
705	Zoologicheskii Zhurnal 95(6):699–711. [Entomological Review 96 (4):419 –431]. DOI:
706	10.7868/S0044513416060155
707	Polilov AA. 2017. Anatomy of adult <i>Megaphragma</i> (Hymenoptera: Trichogrammatidae), one of
708	the smallest insects, and new insight into insect miniaturization. PLOS One 12
709	(5):e0175566 DOI: 10.1371/journal.pone.0175566
710	Polilov AA, Shmakov AS. 2016. The anatomy of the thrips <i>Heliothrips haemorrhoidalis</i>
711	(Thysanoptera, Thripidae) and its specific features caused by miniaturization. <i>Arthropod</i>
712	Structure and Development 45:496 -507 DOI: 10.1016/j.asd.2016.09.002
713	Polilov AA, Makarova AA. 2017. The scaling and allometry of organ size associated with
714	miniaturization in insects: A case study for Coleoptera and Hymenoptera. Scientific Reports
715	7:43–95 DOI: 10.1038/srep43095
716	Polilov AA, Makarova AA, Kolesnikova UK. 2019. Cognitive abilities with a tiny brain:
717	neuronal structures and associative learning in the minute <i>Nephanes titan</i> (Coleoptera:
718	Ptiliidae). Arthropod Structure and Development 48:98-102 DOI:
719	10.1016/j.asd.2018.11.008
720	Prowazek S. 1900. Bau und Entwicklung der Collembolen. Arbeiten aus dem Zoologischen
721	Instituten der Universität Wien und der Zoologischen Station in Triest 12:335–370
722	Randolf S, Zimmermann D, Aspöck U. 2017. Head anatomy of adult <i>Coniopteryx pygmaea</i>
723	Enderlein 1906: effects of miniaturization and the systematic position of Coniopterygidae
724	(Insecta: Neuroptera). Arthropod Structure and Development 46:304–322 DOI:
725	10.1016/j.asd.2016.12.004
726	Schaller F. 1970. 1. Collembola (Springschwanze). <i>Handbuch der Zoologie</i> , Berlin 4(2)

727	Snodgrass R. 1935. Principles of insect morphology. New York: McGraw-Hill Book Company
728	van der Woude E, Martinus EH, Smid HM. 2018. Differential effects of brain size on memory
729	performance in parasitic wasps Animal Behaviour, 141:57–66 DOI:
730	10.1016/j.anbehav.2018.05.011
731	Verhoef HA, Bosman C, Bierenbroodspot A, Boer HH. 1979. Ultrastructure and function of the
732	labial nephridia and the rectum of Orchesella cinta (L) (Collembola). Cell and tissue
733	research 198 (2):237–246
734	Vilhelmsen L, Mikó I, Krogmann L. 2010. Beyond the wasp-waist: Structural diversity and
735	phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera).
736	Zoological Journal of the Linnean Society 159:22–194 DOI: 10.1111/j.1096-
737	3642.2009.00576.x
738	Willem V. 1900. Recherche sur les Collemboles et les Thysanoures. Mémoires couronnés et
739	mémoires des savants étrangers / publiés par l'Académie royale des sciences, des lettres et
740	des beaux-arts de Belgique 58:1–144
741	Willem V, Sabbe H. 1897. Le tube ventral et les glandes cephaliques des <i>Sminthures.</i> Anales de
742	la Société entomologique de Belgique 41:130–132
743	Wolter H. 1963. Vergleichende Untersuchungen zur Anatomie und Funktionsmorphologie der
744	stechend-saugenden Mundwerkzeuge der Collembolen. Zoologische Jahrbücher, Anatomie
745	81:27–100
746	Yavorskaya MI, Anton E, Jałoszyński P, Polilov A, Beutel RG. 2018. Cephalic anatomy of
747	Sphaeriusidae and a morphology-based phylogeny of the suborder Myxophaga
748	(Coleoptera). Systematic Entomology 43:777–797 DOI: 10.1111/syen.12304
749	Zimdars B, Dunger W. 1994. Synopses on Palaearctic Collembola. Volume 1. Tullberginae.
750	Abhandlungen und Berichte des Naturkundemuseums Görlitz 68

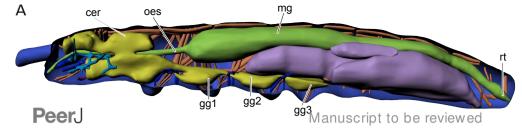

Figure 1(on next page)

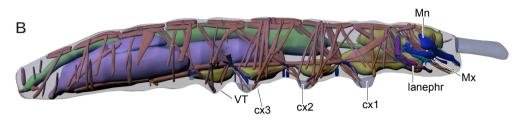
Habitus of Mesaphorura sylvatica, SEM

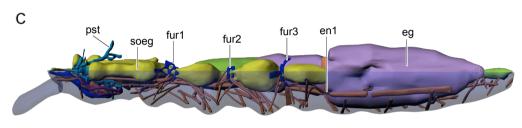
(A) lateral view; (B) ventral view; (C) dorsal view; ao — anal opening, as — anal spine, cx1, 2,

3 — pro-, meso-, and metacoxae, go — genital opening, PAO — postantennal organ, sx1, 2, 3

— pro-, meso, and metasubcoxae, vt — ventral tube.






Figure 2(on next page)

Internal morphology of Mesaphorura sylvatica, 3D

Colors: blue — cuticle, light blue – tentorium, green — digestive system, yellow — central nervous system, brown — musculature, purple — reproductive system, dark violet – excretory system: (A) lateral internal view; (B) lateral external view; (C) vetral view; (D) dorsal view; an — antennae, cer — brain, cx1, 2, 3 — pro-, meso-, and metacoxae, gg1, 2, 3+ag — pro-, meso-, and metathoracic+abdominal ganglia, mg — midgut, oes — oesophagus, ova — ovary lobe with eggs, ov — ovary lobe without eggs, rt — rectum, soeg — supraoesophagal ganglion, VT — ventral tube.

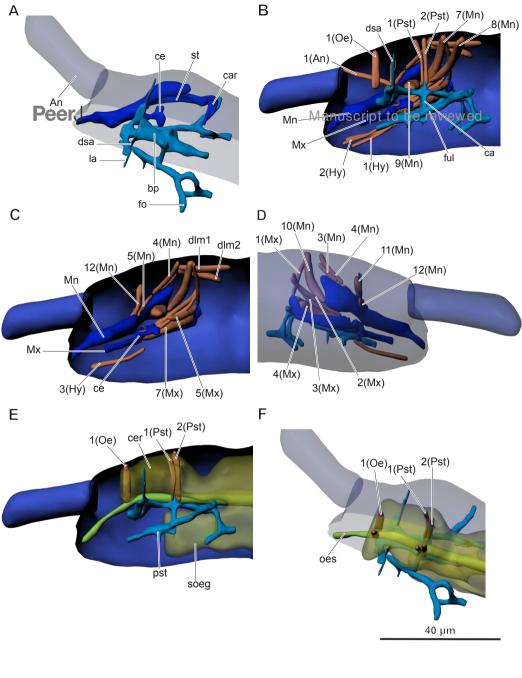


Figure 3(on next page)

Anatomy of head in Mesaphorura sylvatica, 3D

(A, F) dorsolateral view, (B, C, E) lateral internal view, (D) lateral external view. bp-body of pseudotentorium, ca-connecting arm, car-cardo, ce-chitinous expansion, cer — cerebrum, dsa-dorsal suspensory arm, fo-foot, ful-fulcrum, la — lateral arm, Mn — mandible, Mx — maxillae, oes-oesophagus, soeg — supraoesophagal ganglion, st-stipes. Musculature see text.

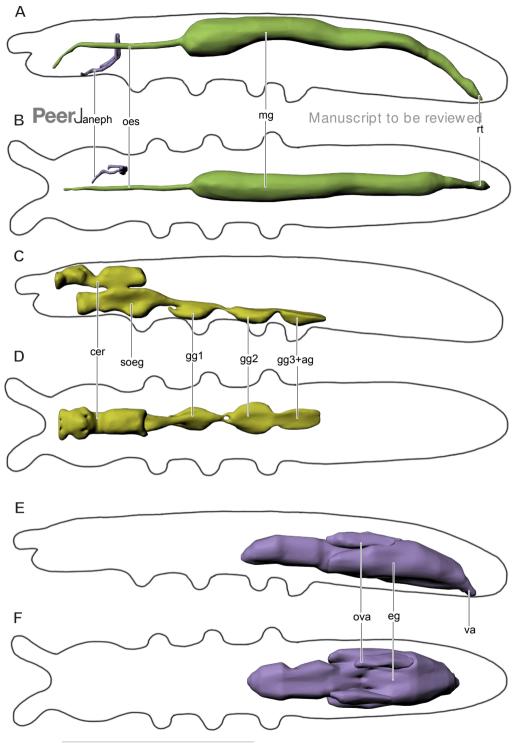


Figure 4(on next page)

Digestive and excretory (A, B), nervous (C, D), and reproductive (E, F) systems of *Mesaphorura sylvatica*, 3D

(A, C, E) lateral view; (B, D, F) dorsal view. cer — brain, eg — ovary lobe with eggs, gg1, 2, 3+ag — pro-, meso-, and metathoracic+abdominal ganglia, mg — midgut, oes — oesophagus, ova — ovary lobe without eggs, rt — rectum, soeg — supraoesophagal ganglion, va — vagina.

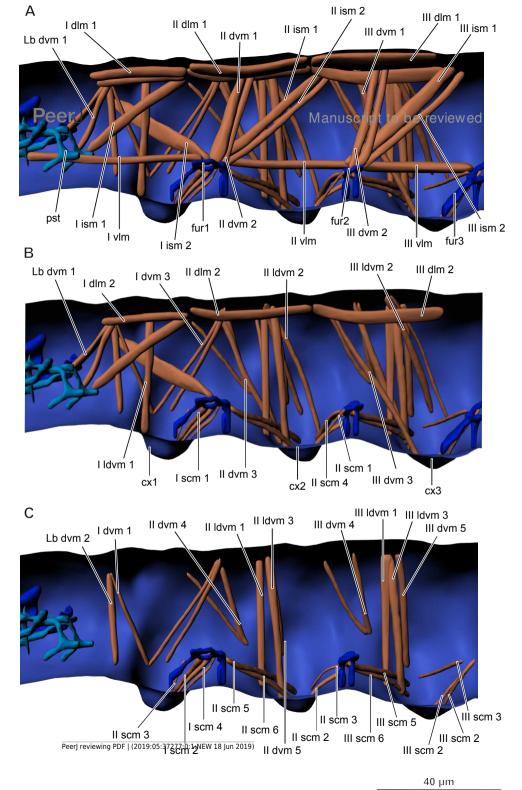
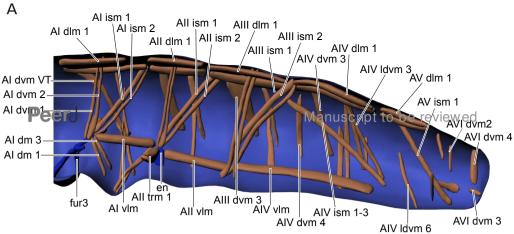
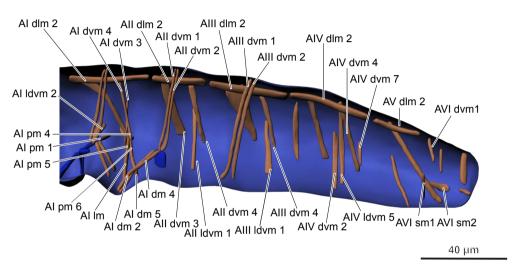

PeerJ reviewing PDF | (2019:05:37277:0:1:NEW 18 Jun 2019)

Figure 5(on next page)

Musculature of thorax in Mesaphorura sylvatica, 3D

(A - C) lateral internal view. cx1, 2, 3 — pro-, meso-, and metacoxae, fur1, 2, 3 — pro-, meso-, and metafurca-like structures, pst — pseudotentorium. Musculature see text.




Figure 6(on next page)

Musculature of abdomen in Mesaphorura sylvatica, 3D

(A-B) lateral internal view. fur3 — metafurca-like structure, en — endosternite. Musculature see text.

