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ABSTRACT
We have previously observed that methane supplied to lake sediment microbial
communities as a substrate not only causes a response by bona fide methanotrophic
bacteria, but also by non-methane-oxidizing bacteria, especially by members of
the family Methylophilaceae. This result suggested that methane oxidation in this
environment likely involves communities composed of different functional guilds,
rather than a single type of microbe. To obtain further support for this concept and to
obtain further insights into the factors that may define such partnerships, we carried
out microcosm incubations with sediment samples from Lake Washington at five
different oxygen tensions, while methane was supplied at the same concentration in
each. Community composition was determined through 16S rRNA gene amplicon
sequencing after 10 and 16 weeks of incubation. We demonstrate that, in support of
our prior observations, the methane-consuming communities were represented
by two major types: the methanotrophs of the family Methylococcaceae and by
non-methanotrophic methylotrophs of the family Methylophilaceae. However,
different species persisted under different oxygen tensions. At high initial oxygen
tensions (150 to 225 µM) the major players were, respectively, species of the genera
Methylosarcina and Methylophilus, while at low initial oxygen tensions (15 to 75 µM)
the major players were Methylobacter and Methylotenera. These data suggest that
oxygen availability is at least one major factor determining specific partnerships in
methane oxidation. The data also suggest that speciation within Methylococcaceae
and Methylophilaceae may be driven by niche adaptation tailored toward specific
placements within the oxygen gradient.
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INTRODUCTION
Methanotrophy is a well-characterized mode of microbial metabolism that supports

microbial growth on methane (Trotsenko & Murrell, 2008). Methanotrophs are important

players in the methane cycle, and, more generally, in the carbon cycle on Earth (Singh et

al., 2010; Nisbet, Dlugokencky & Bousquet, 2014). A variety of methane-oxidizing microbes

have been characterized in pure cultures (most prominently the organisms belonging

to Proteobacteria) but also more recently, organisms classified as Verrucomicrobia, the

latter so far only found in extreme environments (Chistoserdova & Lidstrom, 2013). While

methanotrophy can be carried out by single species, it has been noted that methanotrophs

in environmental samples are often associated with specific non-methanotrophic bacteria

(Jensen et al., 2008; Redmond, Valentine & Sessions, 2010; He et al., 2012; Dubinsky et al.,

2013; Rivers et al., 2013), suggesting some type of cooperation (Beck et al., 2013; Van der

Ha et al., 2013). We have previously tested for the possibility of such cooperative behavior

by analyzing the compositions of microcosms originating from Lake Washington sediment

which was exposed to methane as the only carbon source and observed a prominent

presence of satellite bacteria (Oshkin et al., 2014). Among the most persistent satellites,

we identified members of the families Methylophilaceae and Flavobacteriaceae (Oshkin

et al., 2014). These observations further suggested a novel metabolic framework for

methane oxidation as carried out by communities of different metabolic guilds, rather

than methanotrophs alone. However, additional experimental support was necessary in

order to shift the accepted paradigms of methane oxidation (Trotsenko & Murrell, 2008).

As methane oxidation in environments such as lake sediments takes place over steep

counter gradients of methane and oxygen (Auman et al., 2000), the focus of this study

was on investigating the effect of oxygen availability on bacterial community structure in

microcosms enriched with methane as a substrate.

MATERIAL AND METHODS
Sample collection and experimental setup
Samples of Lake Washington sediment were collected on July 15, 2013 (Oshkin et al., 2014).

A 50 ml frozen sediment sample containing 10% of dimethyl sulfoxide (a cryoprotective

agent) was thawed on ice, mixed and used as an inoculum. Five ml aliquots of sediment

slurry were placed into 250 ml vials and diluted with 50 ml of nitrate mineral salts (NMS)

medium (Dedysh & Dunfield, 2014; 0.5 X strength), vials were sealed with rubber stoppers

and flushed with N2 for 2 min (flow rate 400 ml/min), and the excess volume of N2 was

removed by a syringe to equalize the pressure. Five different atmospheres were created in

the headspaces by adding different volumes of ambient air, as follows: 5%, 15%, 25%, 50%

or 75% of the headspace (V/V). All headspaces received 25% (V/V) of methane. Before

adding the air and the methane, the respective volumes of N2 were removed from the vials.

These initial oxygen tensions correspond to, respectively, approximately 15, 45, 75, 150,

and 225 µM of dissolved oxygen. Three replicate microcosms for each oxygen tension were

incubated in a shaker (250 RPM) at 18 ◦C. The headspace gas composition was recreated

daily, as above. After three weeks of incubation, the microcosms were transferred into
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new medium, with 10-fold dilutions, similarly to the procedure described previously

(Oshkin et al., 2014). Such transfers were then repeated through week 16.

Oxygen and methane measurements
Oxygen and methane concentrations in the headspace were measured using a GC2014

gas chromatograph (Shimadzu Instruments, Pleasanton, California, USA) as described by

Oshkin et al. (2014).

16S rRNA gene amplicon sequencing
Cell biomass was collected at weeks 10 and 16. DNA was isolated using the FastDNA

SPIN KIT for Soil (MP Biomedicals, Burlingame, California, USA) and submitted to

MR DNA service facility (www.mrdnalab.com; Shallowater, TX, USA). PCR primers

27F/519r with barcode on the forward primer were used in a 30 cycle PCR using the

HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, California, USA) under the following

conditions: 94 ◦C for 3 min, followed by 28 cycles of 94 ◦C for 30 s, 53 ◦C for 40 s and

72 ◦C for 1 min, after which a final elongation step at 72 ◦C for 5 min was performed.

After amplification, PCR products were checked in a 2% agarose gel to determine

the success of amplification and the relative intensity of bands. Multiple individual

samples were pooled together in a way that each sample was represented equally, for

multiplexing. Pooled samples were purified using calibrated Ampure XP beads. Then

the pooled and purified PCR products were used to prepare DNA libraries following the

manufacturer’s instructions. Sequencing was performed on a MiSeq instrument following

the manufacturer’s guidelines. Sequence data were processed using a proprietary MR DNA

analysis pipeline in which sequences barcodes were removed, then sequences <150 bp or

with ambiguous base calls were removed, sequences were denoised and chimera sequences

were removed. The pairs of sequences were joined, resulting in sequences between 490 and

492 nucleotides. The data have been archived with the NCBI (Bioproject PRJNA274703,

http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA274703).

Bioinformatics
The UPARSE method was used for sequence processing and OTU clustering with

USEARCH version 7.0.1001 (Edgar, 2013). Clustering was performed at 95% and chimeras

were identified against the ChimeraSlayer reference database in the Broad Microbiome

Utilities version r20110519 obtained from the UCHIME distribution (Edgar et al., 2011).

For each OTU, a representative sequence was selected using the method of Edgar (2013),

and taxonomic assignments were made using the RDP Classifier from the Ribosomal

Database Project downloaded on October 22, 2013 (Wang et al., 2007). The samples were

scaled so that the numbers of reads in each sample were equal. Hierarchical clustering of

samples and OTUs was performed using the percentage of reads per OTU for the most

abundant taxa, i.e., greater than 1.0% population in at least one sample. Bray-Curtis

distances and Shannon indices were calculated and multivariate analyses were carried

out using the vegan library version 2.0-10 (Oksanen et al., 2014) in R version 3.0.2
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(http://www.R-project.org/). The processing and analysis code has been made available

(DOI 10.5281/zenodo.13190).

Genome–genome comparisons were carried out using the Phylogenetic Profilers tool

that is part of the Integrated Microbial Genomes database (IMG/JGI; https://img.jgi.doe.

gov). Reciprocal searches were performed to determine all the genes present in both Methy-

lobacter genomes but absent in the Methylosarcina genome and vice versa, and searches

were performed to determine all the genes present in both Methylophilus genomes but in

none of the Methylotenera genomes and vice versa, using 30% protein sequence cutoff.

RESULTS AND DISCUSSION
Previously, we had followed short-term community dynamics in microcosms of Lake

Washington sediment, under an atmosphere of methane and two oxygen tension regimens,

‘high’ and ‘low’ (Oshkin et al., 2014). However, with the experimental design utilized,

the communities were limited by oxygen in both conditions for extended periods of

time. Under both regimens, we observed rapid loss of community complexity and es-

tablishment of stable communities dominated by Methylobacter, a gammaproteobacterial

methanotroph, and by members of Methylophilaceae (Methylotenera or Methylophilus),

non-methanotrophic methylotrophs within Betaproteobacteria. We have also noted

persistent presence of certain non-methylotrophic heterotrophs, such as Flavobacteriaceae

(Oshkin et al., 2014).

In the research described here, one of our goals was to test for the reproducibility of

microcosm trajectories, adding a few modifications to the experimental design (such as

a slightly modified medium, slightly higher temperature, and most notably a different

sequencing technology) and to confirm the persistence of specific bacterial taxa in such

microcosms, under the selective pressure of methane. Our second goal was to test a broader

range of oxygen tensions, with a stricter control over the oxygen concentration in the

headspace. We employed five discrete initial oxygen tensions, calculated to correspond

to approximately 225, 150, 75, 45 and 15 µM dissolved oxygen, mimicking the oxygen

gradient between 0 and 5 mm in the native sediment of Lake Washington where most of the

methane oxidizing activity takes place (Auman et al., 2000). With the headspace compo-

sitions recreated daily, only the communities exposed to 150 and 225 µM initial dissolved

oxygen remained oxygenated (starting with week 7 for the 225 µM oxygen community and

week 8 for the 150 µM community; Fig. S1). Communities exposed to lower initial oxygen

tensions depleted oxygen before the next addition (Fig. S1). Typical rates of methane and

oxygen consumption in the established communities are shown in Fig. 1.

The community composition was measured after ten and sixteen weeks of incubation,

in three replicated microcosms for each oxygen tension (Table S1). Illumina-based

analysis of microcosm communities uncovered that they were simple communities

(20 to 40 operational taxonomic units (OTUs) per microcosm; Fig. S2), and they

contained two dominant bacterial guilds, methanotrophs of the family Methylococaceae

and methylotrophs of the family Methylophilaceae. In most of the microcosms (66.6%),

sequence reads ascribed to these two functional guilds made up over 90% of all reads
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Figure 1 Typical dynamics of oxygen (A) and methane (B) consumption in low complexity microcosms, over the course of 24 h. For this
experiment, six additional replicates were prepared for each microcosm at week 16, and these were allowed to incubate for 48 h, with the atmospheres
recreated at the 24-h point. At the 48-h point, the atmospheres were recreated again, and measurements were taken every two (15 and 45 µM
treatments) or four (75 to 225 mM treatments) hours. Bars indicate standard error across the replicates.

Figure 2 Relative abundance of Methylococcaceae and Methylophilaceae in methane-fed micro-
cosms. Samples were ordered from the lowest to the highest concentration of oxygen. Sample desig-
nations include oxygen tension, followed by the alphabetical name of a replicate and by the week of
sampling.

(Fig. 2). These data are in agreement with the data from our prior study, in which similar

community structures were observed after approximately four weeks of incubation under

methane (Oshkin et al., 2014). Only one microcosm (microcosm 150C 10) was dominated

by non-methylotroph species. Specifically, a Janthinobacterium and a Flavobacterium

species were present at highest relative abundances in this microcosm. These species

were also noted as highly abundant in some of the previously characterized samples,
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Figure 3 Heatmap of major OTU relative abundances across samples. Abundances were measured as
Ln of reads. Sample designations are the same as in Fig. 2. Samples and OTUs were clustered hierarchically
(average linkage), based on Bray-Curtis dissimilarity index of relative abundance profiles.

likely a result of a stochastic event of ‘community crash’ resulting in death and lysis of the

dominant species (Oshkin et al., 2014).

Of the methanotroph types, a total of three OTUs were recognized: OTU 2 was

classified as Methylobacter, and OTU 5 and OTU 239 were classified as Methylosarcina

(Table 1). Of the Methylophilaceae types, a total of four OTUs were recognized, one

classified as Methylophilus (OTU 1) and three classified as Methylotenera (OTU 3, OTU 4

and OTU 115). These were most closely related to, respectively, Methylotenera mobilis

13, Methylotenera sp. G11, and Methylotenera sp. N17 (Table 1), all isolated from Lake

Washington. Most of the remaining persistent OTUs (more that 1% of total sequences in at

least one sample) belonged to Flavobacteriaceae (Fig. 3 and Table S1).

In most of the microcosms (73.3%), the methanotroph types made up less than 50% of

the total population, and in most (63.3%), the Methylophilaceae types were most relatively

abundant (Fig. 2). These data support our prior observations on a strong response by

Methylophilaceae to the methane stimulus, and on a successful carbon transfer between the

methanotrophs and non-methanotrophs (Oshkin et al., 2014).
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Table 1 Methylotroph OTUs, cultivated proxy organisms, and nitrate metabolism functions. Methylobacter isolates from Lake Washington have not been formally
described. Phenotypically and genomically they are similar to each other and to the described strain of Methylobacter tundripaludum (Wartiainen et al., 2006).

OTU Cultivated proxy
organism

% 16S
rRNA
identity

Respiratory
nitrate
reductase

Respiratory
nitrite
reductase

Nitric
oxide
reductase

Nitrous
oxide
reductase

N2 fixation
machinery

Rnf
complex

Hydrogenase

OTU 2 Methylobacter 21/22a 99.4 + + − − + + +

OTU 2 Methylobacter 31/32a 99.4 + + − − + + +

OTU 5 Methylosarcina lacus LW14b 99.8 − − +
e

− − − −

OTU 3 Methylotenera 13c 99.8 + + + + − + −

OTU 4 Methylotenera G11d 98.6 − + + − − + −

OTU 115 Methylotenera N17d 99.6 − − − − − + −

OTU 1 Methylophilus 1c 99.8 − − +
e

− − − −

OTU 1 Methylophilus Q8d 99.8 − − − − − − −

Notes.
a Data from the IMG/JGI public database.
b Data from Kalyuzhnaya et al. (2005).
c Data from Beck et al. (2014).
d Data from McTaggart et al. (2015).
e Gene product is likely nonfunctional.
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We observed a dramatic difference between community responses to high (150 to

225 µM) versus low (15 to 75 µM) initial oxygen tensions, especially in terms of the major

methane-oxidizing types. While the Methylosarcina types were dominant in high-oxygen

microcosms, they were almost absent from the low-oxygen microcosms. Conversely, the

Methylobacter types were dominant in the low-oxygen microcosms while constituting

only a minor population in the high-oxygen microcosms (Figs. 2 and 3). We have not

identified Methylosarcina species in our prior experiments, except for the native lake

sediment communities, at low relative abundances (Oshkin et al., 2014). This is likely due

to the fact that, in the previous study, the ‘high’ oxygen microcosms were only fed oxygen

weekly, thus becoming hypoxic for a significant duration of time (Oshkin et al., 2014). This

suggests that the Methylosarcina species are only competitive when oxygen is present, and

that they become outcompeted by the Methylobacter types during hypoxia. Although it is

unlikely, this behavior could simply be explained by the differences in oxygen affinity, as all

of the oxygen concentrations used in this study were well above the reported Km values for

methanotrophs (Joergensen, 1985; Dunfield et al., 1999). More likely, the differences are due

to the different metabolic strategies employed during hypoxia (see below).

The occurrence of specific Methylophilaceae types was also oxygen-dependent. The

Methylophilus types prevailed at higher oxygen tensions, and the Methylotenera types

prevailed at lower oxygen tensions. Of the latter, OTU 3 was the most relatively abundant

among the samples, and OTU 115 was the least relatively abundant (Figs. 2 and 3).

However, the transition between the Methylophilus and Methylotenera types was more

gradual. While the Methylophilus types were dominant at high oxygen tensions, they were

present at variable levels at the intermediate oxygen tensions. The Methylotenera types were

more represented in the samples with the lowest oxygen, suggesting competitive advantage

for these species during hypoxia. These data are in agreement with our prior data on

Methylophilus being more competitive in the conditions of higher oxygen and stable in the

conditions of lower oxygen when no competitor is present (Oshkin et al., 2014).

The distribution of the non-methylotrophic heterotrophic species among the

communities investigated was also nonrandom. As with the methylotrophs, a clear

switch was observed between some of the prevailing satellite species between the high-

and the low oxygen tension conditions. While the more prominent satellites in the

high oxygen samples were OTU 14 (Flavobacterium), OTU 24 (Burkholderiales) and

OTU 113 (Flavobacterium), the most prominent satellites in the low oxygen conditions

were OTU 10, OTU 11 and OTU 18, all Flavobacterium species.

At this moment, we have no mechanistic knowledge of interactions within these

methane-oxidizing communities, beyond the observation that carbon from methane does

get transferred to Methylophilaceae and potentially to a broader range of microbes, based

on stable isotope analysis (Kalyuzhnaya et al., 2008; Beck et al., 2013) and based on rapid

population growth of Methylophilaceae and of certain non-methylotroph heterotrophs in

the microcosms. However, the associations of methanotrophs with non-methanotrophs

are persistent, and they do select for specific types. The communities are roughly stable
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over time, with the methanotroph population typically oscillating between one third and

two thirds of the community.

We carried out comparative genomics in order to obtain hints regarding which

metabolic features might be responsible for oxygen level adaptation, including survival

and/or growth during the periods of hypoxia. The genomes of two cultivated Methylobacter

strains were compared to the genome of a Methylosarcina strain, and the genomes of

Methylotenera strains were compared to the genomes of Methylophilus (see Table 1 for

the list of organisms). Only a few metabolic features were uncovered that differentiated

the functional counterparts, the most notable being nitrogen metabolism functions. The

Methylosarcina genome only encoded functions for nitrate conversion into ammonium

(assimilatory denitrification) and for a single, likely nonfunctional subunit of nitric oxide

reductase. On the contrary, the Methylobacter genomes encoded, in addition, respiratory

nitrate and nitrite reductases (Table 1). The Methylobacter genomes also contained genes

predicted to encode functions essential to dinitrogen fixation, including the subunits of the

Rnf complex that is essential for this metabolism, at least in some species (Schmehl et al.,

1993). These genomes also encoded multiple hydrogenases and accessory functions. While

at this moment the potential role of dinitrogen fixation in the fitness of Methylobacter is

not obvious, its ability to denitrify presents a mechanism by which it may be able to out-

compete Methylosarcina during hypoxia. Methanotrophy has been recently demonstrated

during hypoxia, linked to nitrate reduction, in a related methanotroph (Kits, Klotz &

Stein, 2015). Interestingly, one other difference between Methylobacter and Methylosarcina

genomes was the presence of the pxmABC gene cluster (in the former but not the latter),

encoding homologs of the subunits of methane monooxygenase (Tavormina et al., 2011).

While the function of these genes remains unknown, they were found overexpressed

during hypoxia in a denitrifying methanotroph (Kits, Klotz & Stein, 2015).

Likewise, while the Methylophilus genomes only encoded assimilatory denitrification

reactions, the Methylotenera genomes varied in terms of their denitrification potential,

from assimilatory in strain N17 to partial dissimilatory in strain G11 to complete

dissimilatory in strain 13 (Beck et al., 2014). The denitrification capability has been

experimentally demonstrated in at least one Methylotenera species (Mustakhimov et al.,

2013). The Methylotenera genomes also encoded the Rnf complex, in the absence of any

dinitrogen fixation genes.

It is tempting to speculate that nitrogen metabolism functions, and especially

the denitrification capability, confer competitive advantage at low oxygen to both

Methylobacter and Methylotenera. It is also possible that these organisms may exchange

nitrogen species such as nitrite, nitric or nitrous oxide. However, as yet we do not have

information regarding how a methanotroph can provide carbon to a community of

non-methanotrophs and as to what advantage the methanotroph may be gaining from

the satellite community.

Overall, the experiments described here provide further support to our observations

on a special relationship between the Methylococcaceae and the Methylophilaceae, and also

provide further support to the observation that non-methylotrophic species, especially
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Flavobacteriaceae, may also play a role in this proposed mutualistic relationship. Moreover,

we now conclude that oxygen availability is a major factor determining what species

engage in cooperative behavior. At high oxygen tensions, Methylosarcina appear to

have advantage over Methylobacter, and Methylophilus appears to have advantage over

Methylotenera. At intermediate oxygen tensions, Methylobacter appears to cooperate with

either Methylophilus or Methylotenera. At low oxygen tensions, including extended periods

of hypoxia, Methylobacter and Methylotenera outcompete, respectively, Methylosarcina and

Methylophilus. However, different types within each genus are also identifiable (see also

Oshkin et al., 2014), and these may be selected by more discrete factors. These details will be

addressed in future studies.
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